cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A293435 a(n) is the number of the proper divisors of n that are Fibonacci numbers (A000045).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 2, 3, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 3, 2, 2, 1, 4, 1, 3, 2, 2, 2, 3, 1, 2, 3, 4, 1, 4, 1, 2, 3, 2, 1, 4, 1, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 3, 3, 3, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2017

Keywords

Examples

			For n = 55, its proper divisors are [1, 5, 11], of which only two, namely 1 and 5 are in A000045, thus a(55) = 2.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Fibonacci@ Range[2, 40]}, Table[DivisorSum[n, 1 &, And[MemberQ[s, #], # != n] &], {n, 105}]] (* Michael De Vlieger, Oct 09 2017 *)
  • PARI
    A010056(n) = { my(k=n^2); k+=(k+1)<<2; (issquare(k) || (n>0 && issquare(k-8))) }; \\ This function from Charles R Greathouse IV, Jul 30 2012
    A293435(n) = sumdiv(n,d,(dA010056(d));

Formula

a(n) = Sum_{d|n, dA010056(d).
a(n) = A005086(n) - A010056(n).
G.f.: Sum_{k>=2} x^(2*Fibonacci(k)) / (1 - x^Fibonacci(k)). - Ilya Gutkovskiy, Apr 14 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A079586 - 1 = 2.359885... . - Amiram Eldar, Jul 05 2025

A038663 [ n/F_2 ] + [ n/F_3 ] + [ n/F_4 ] +..., F_n=Fibonacci numbers.

Original entry on oeis.org

1, 3, 5, 7, 9, 12, 13, 16, 18, 21, 22, 25, 27, 29, 32, 35, 36, 39, 40, 43, 46, 48, 49, 53, 55, 58, 60, 62, 63, 67, 68, 71, 73, 76, 78, 81, 82, 84, 87, 91, 92, 96, 97, 99, 102, 104, 105, 109, 110, 113, 115, 118, 119, 122, 125, 128, 130, 132, 133, 137, 138, 140, 143, 146
Offset: 1

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)hol.gr)

Keywords

Examples

			a(15)=[ 15/1 ]+[ 15/2 ]+[ 15/3 ]+[ 15/5 ]+[ 15/8 ]+[ 15/13 ]+[ 15/21 ]+...=32.
		

Crossrefs

Cf. A005086.

Programs

  • Magma
    [&+[Floor(n/Fibonacci(k+2)):k in [0..n]]:n in [1..64]]; // Marius A. Burtea, Jul 16 2019
  • Maple
    with(combinat): for n from 1 to 200 do printf(`%d,`,sum(floor(n/fibonacci(k)), k=2..15)) od:
  • Mathematica
    Table[Sum[Floor[n/Fibonacci[k] ],{k,2,200}],{n,70}] (* Harvey P. Dale, Jul 21 2021 *)
    Table[Sum[Floor[n/Fibonacci[k]], {k, 2, Log[Sqrt[5]*n]/Log[GoldenRatio] + 1}], {n, 1, 100}] (* Vaclav Kotesovec, Aug 30 2021 *)

Formula

G.f.: (1/(1 - x)) * Sum_{k>=2} x^Fibonacci(k)/(1 - x^Fibonacci(k)). - Ilya Gutkovskiy, Jul 16 2019
Conjecture: a(n) ~ c * n, where c = A079586 - 1. - Vaclav Kotesovec, Aug 30 2021

Extensions

More terms from Simon Plouffe, who points out that the first differences give A005086
More terms from James Sellers, Feb 19 2001

A105393 Decimal expansion of sum of reciprocals of squares of Fibonacci numbers.

Original entry on oeis.org

2, 4, 2, 6, 3, 2, 0, 7, 5, 1, 1, 6, 7, 2, 4, 1, 1, 8, 7, 7, 4, 1, 5, 6, 9, 4, 1, 2, 9, 2, 6, 6, 2, 0, 3, 7, 4, 3, 2, 0, 2, 5, 9, 7, 7, 4, 5, 1, 3, 8, 3, 0, 9, 0, 5, 1, 1, 0, 1, 0, 2, 8, 3, 4, 5, 4, 6, 6, 1, 1, 9, 3, 7, 5, 1, 1, 1, 9, 7, 8, 6, 3, 6, 8, 7, 7, 5, 3, 8, 9, 8, 1, 5, 2, 1, 5, 3, 6, 3, 6, 3, 7, 9, 2, 1
Offset: 1

Views

Author

Jonathan Vos Post, Apr 04 2005

Keywords

Comments

Known to be transcendental. - Benoit Cloitre, Jan 07 2006
Compare with Sum_{n >= 1} 1/(F(n)^2 + 1) = (5*sqrt(5) - 3)/6 and Sum_{n >= 3} 1/(F(n)^2 - 1) = (43 - 15*sqrt(5))/18. - Peter Bala, Nov 19 2019
Duverney et al. (1997) proved that this constant is transcendental. - Amiram Eldar, Oct 30 2020

Examples

			2.426320751167241187741569...
		

Crossrefs

Cf. A000045, A007598 (squares of Fibonacci numbers).

Programs

  • Mathematica
    RealDigits[Total[1/Fibonacci[Range[500]]^2],10,120][[1]] (* Harvey P. Dale, May 31 2016 *)
  • PARI
    sum(k=1,500,1./fibonacci(k)^2) \\ Benoit Cloitre, Jan 07 2006

Formula

Equals Sum_{k>=1} 1/F(k)^2 = 2.4263207511672411877... - Benoit Cloitre, Jan 07 2006

Extensions

More terms from Benoit Cloitre, Jan 07 2006

A158933 Decimal expansion of Sum_{n>=1} ((-1)^(n+1))/F(n) where F(n) is the n-th Fibonacci number A000045(n).

Original entry on oeis.org

2, 8, 9, 1, 4, 4, 6, 4, 8, 5, 7, 0, 6, 7, 1, 5, 8, 3, 1, 1, 2, 3, 0, 5, 5, 0, 9, 6, 1, 5, 7, 2, 9, 1, 6, 6, 9, 5, 4, 8, 8, 1, 9, 5, 1, 5, 8, 9, 6, 9, 1, 3, 6, 0, 0, 2, 5, 0, 2, 6, 4, 8, 5, 0, 6, 3, 0, 3, 5, 7, 6, 1, 7, 3, 8, 8, 6, 4, 5, 5, 1, 5, 8, 2, 4, 1, 1, 5, 8, 3, 1, 8, 2, 8, 5
Offset: 0

Views

Author

Michel Lagneau, Mar 26 2011

Keywords

Comments

André-Jeannin (1989) proved that this constant is irrational, and Tachiya (2004) proved that it does not belong to the quadratic number field Q(sqrt(5)). - Amiram Eldar, Oct 30 2020

Examples

			0.2891446485706715831123055096157291669...
		

Crossrefs

Programs

  • Maple
    with(combinat, fibonacci):Digits:=100:s:=0:for n from 1 to 2000 do: a1:=fibonacci(n):s:=s+evalf(1/a1)*(-1)^(n+1):od:print(s):
  • Mathematica
    digits = 95; NSum[(-1)^(n+1)*(1/Fibonacci[n]), {n, 1, Infinity}, WorkingPrecision -> digits+1, NSumTerms -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Jan 28 2014 *)
  • PARI
    -sumalt(n=1,(-1)^n/fibonacci(n)) \\ Charles R Greathouse IV, Oct 03 2016

Formula

Equals sqrt(5) * Sum_{k>=0} (-1)^k/(phi^(2*k+1) + (-1)^k), where phi is the golden ratio (A001622). - Amiram Eldar, Oct 04 2020
Equals A153387 - A153386. - Joerg Arndt, Oct 04 2020
Equals 1 - A324007. - Amiram Eldar, Feb 09 2023

Extensions

Offset corrected by Arkadiusz Wesolowski, Jun 28 2011

A105394 Decimal expansion of sum of reciprocals of squares of Lucas numbers.

Original entry on oeis.org

1, 2, 0, 7, 2, 9, 1, 9, 9, 6, 9, 8, 5, 7, 4, 7, 0, 7, 4, 4, 1, 7, 2, 0, 4, 1, 8, 4, 2, 5, 7, 6, 9, 9, 9, 4, 5, 3, 0, 6, 9, 2, 1, 4, 5, 4, 0, 1, 9, 0, 3, 6, 3, 7, 6, 9, 5, 1, 3, 1, 1, 5, 9, 4, 2, 2, 1, 2, 2, 4, 0, 0, 1, 5, 4, 0, 7, 0, 3, 5, 7, 7, 6, 1, 6, 7, 7, 6, 5, 5, 9, 7, 8, 6, 8, 8, 9, 9, 9, 2
Offset: 1

Views

Author

Jonathan Vos Post, Apr 04 2005

Keywords

Comments

This constant is transcendental (Duverney et al., 1997). - Amiram Eldar, Oct 30 2020

Examples

			1.207291996985747074417204...
		

References

  • Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Wiley, 1987, p. 97.

Crossrefs

Cf. A000032, A001254 (squares of Lucas numbers).

Programs

  • Mathematica
    f[n_] := f[n] = RealDigits[ Sum[ 1/LucasL[k]^2, {k, 1, n}], 10, 100] // First; f[n=100]; While[f[n] != f[n-100], n = n+100]; f[n] (* Jean-François Alcover, Feb 13 2013 *)

Formula

Equals Sum_{n >= 1} 1/L(n)^2.
Equals (1/8)*( theta_3(beta)^4 - 1 ), where beta = (3 - sqrt(5))/2 and theta_3(q) = 1 + 2*Sum_{n >= 1} q^(n^2) is a theta function. See Borwein and Borwein, Exercise 7(f), p. 97. - Peter Bala, Nov 13 2019
Equals c*(2*c+1), where c = A153415 (follows from the identity Sum_{n=-oo..oo} 1/L(n^2) = (Sum_{n=-oo..oo} 1/L(2*n))^2, see Bruckman, 1982). - Amiram Eldar, Jan 27 2022

A228040 Decimal expansion of sum of reciprocals, row 2 of Wythoff array, W = A035513.

Original entry on oeis.org

6, 2, 9, 5, 2, 4, 8, 3, 9, 8, 7, 6, 3, 1, 2, 4, 4, 9, 5, 3, 5, 4, 6, 1, 7, 9, 5, 3, 4, 1, 8, 5, 0, 1, 9, 3, 3, 1, 6, 2, 5, 9, 6, 8, 3, 8, 2, 8, 8, 8, 6, 0, 8, 7, 7, 9, 7, 3, 8, 1, 9, 0, 7, 0, 8, 3, 7, 2, 8, 2, 7, 4, 2, 1, 3, 1, 2, 7, 0, 4, 4, 6, 4, 5, 7, 0
Offset: 0

Views

Author

Clark Kimberling, Aug 05 2013

Keywords

Comments

Let c be the constant given by A079586, that is, the sum of reciprocals of the Fibonacci numbers F(k) for k>=1. The number c-1, the sum of reciprocals of row 1 of W, is known to be irrational (see A079586). Conjecture: the same is true for all the other rows of W.
Let h be the constant given at A153387 and s(n) the sum of reciprocals of numbers in row n of W. Then h < 1 + s(n)*floor(n*tau) < c. Thus, s(n) -> 0 as n -> oo.

Examples

			1/4 + 1/7 + 1/11 + ... = 0.629524839876312449535461795341...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Fibonacci[n]; g = GoldenRatio; w[n_, k_] := w[n, k] = f[k + 1]*Floor[n*g] + f[k]*(n - 1);
    n = 2; Table[w[n, k], {n, 1, 5}, {k, 1, 5}]
    r = N[Sum[1/w[n, k], {k, 1, 2000}], 120]
    RealDigits[r, 10]

Formula

Equals A093540 - 4/3. - Amiram Eldar, May 22 2021

A350902 a(n) = (5*F(n)*F(n-1)*F(2*n-1)*a(n-1) + F(n-1)*L(n)*a(n-2))/(L(n-1)*F(n)), with a(0) = 1, a(1) = 0, where F(n) = A000045(n) and L(n) = A000032(n).

Original entry on oeis.org

1, 0, 3, 25, 816, 59475, 12031005, 6229446000, 8517168411895, 30387269735449725, 284188952072106783648, 6954889250543118311091775, 445684855849546942072130113089, 74767094861864103592878982016253600, 32838249084789127737424410920015676309123
Offset: 0

Views

Author

Amiram Eldar, Jan 21 2022

Keywords

Comments

Although the recurrence relation involves fractions, all the terms are integers.
The sequence of fractions b(n) = A350903(n)/A350904(n) is defined by the same recurrence relation, but with the initial terms 0 and 1 instead of 1 and 0.
André-Jeannin (1991) used this sequence and the sequence b(n) to prove that s = Sum_{n>=1} 1/F(n) (A079586) is an irrational number.
The sequence of ratios r(n) = b(n)/a(n) rapidly converges to s. For example, abs(r(16)-s) < 10^(-100) and abs(r(49)-s) < 10^(-1000).

Crossrefs

Programs

  • Mathematica
    With[{F = Fibonacci, L = LucasL}, a[0] = 1; a[1] = 0; a[n_] := a[n] = (5*F[n]*F[n - 1]*F[2*n - 1]*a[n - 1] + F[n - 1]*L[n]*a[n - 2])/(L[n - 1]*F[n]); Array[a, 15, 0]]

Formula

Limit_{n->oo} A350903(n)/(A350904(n)*a(n)) = A079586 (André-Jeannin, 1991).

A350903 Numerators of the sequence of fractions defined by u(n) = ((5*F(n)*F(n-1)*F(2*n-1)*u(n-1) + F(n-1)*L(n)*u(n-2))/(L(n-1)*F(n))), with u(0) = 0 and u(1) = 1, where F(n) = A000045(n) and L(n) = A000032(n).

Original entry on oeis.org

0, 1, 10, 84, 8225, 999146, 161691205, 4081394133187, 801267937794945, 451272063930179690869, 955797228958312695758495, 12869303093903467063139191673469, 141131682569461636438244407470674215, 5214528077594695050414454970728001934806021
Offset: 0

Views

Author

Amiram Eldar, Jan 21 2022

Keywords

Comments

See A350902 for details.

Examples

			The sequence of fractions begins with 0, 1, 10, 84, 8225/3, 999146/5, 161691205/4, 4081394133187/195, 801267937794945/28, 451272063930179690869/4420, ...
		

Crossrefs

Cf. A000032, A000045, A079586, A350902, A350904 (denominators).

Programs

  • Mathematica
    With[{F = Fibonacci, L = LucasL}, u[0] = 0; u[1] = 1; u[n_] := u[n] = (5*F[n]*F[n - 1]*F[2*n - 1]*u[n - 1] + F[n - 1]*L[n]*u[n - 2])/(L[n - 1]*F[n]); Numerator @ Array[u, 15, 0]]

A350904 Denominators of the sequence of fractions defined by u(n) = ((5*F(n)*F(n-1)*F(2*n-1)*u(n-1) + F(n-1)*L(n)*u(n-2))/(L(n-1)*F(n))), with u(0) = 0 and u(1) = 1, where F(n) = A000045(n) and L(n) = A000032(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 4, 195, 28, 4420, 1001, 550732, 94248, 20757737, 150585864, 596098336680, 84878386593, 17090110926980520, 1216260982575912, 13296541287045886485, 484071647034823848, 3418959485072391296664264, 19630886922468003512297
Offset: 0

Views

Author

Amiram Eldar, Jan 21 2022

Keywords

Comments

See A350902 for details.

Crossrefs

Cf. A000032, A000045, A079586, A350902, A350903 (numerators).

Programs

  • Mathematica
    With[{F = Fibonacci, L = LucasL}, u[0] = 0; u[1] = 1; u[n_] := u[n] = (5*F[n]*F[n - 1]*F[2*n - 1]*u[n - 1] + F[n - 1]*L[n]*u[n - 2])/(L[n - 1]*F[n]); Denominator @ Array[u, 25, 0]]

A360957 Decimal expansion of Sum_{i>=1 and i!=0 (mod 3)} 1/Fibonacci(i).

Original entry on oeis.org

2, 6, 9, 6, 3, 8, 3, 5, 2, 7, 3, 1, 0, 1, 4, 9, 3, 5, 6, 0, 3, 6, 1, 3, 0, 2, 0, 6, 9, 6, 8, 9, 3, 3, 8, 8, 3, 9, 1, 3, 6, 3, 8, 8, 8, 2, 1, 0, 7, 4, 3, 8, 9, 5, 8, 1, 9, 2, 4, 4, 5, 3, 8, 9, 6, 4, 4, 8, 0, 1, 1, 5, 8, 5, 8, 2, 4, 2, 0, 0, 3, 3, 0, 9, 6, 0, 6, 1, 6, 7, 7, 1, 1, 3, 2, 4, 9, 2, 3, 6, 3, 4, 3, 8, 1
Offset: 1

Views

Author

Kevin Ryde, Feb 28 2023

Keywords

Comments

Sum of reciprocals of all odd Fibonacci numbers, so Sum_{j>=0} 1/A014437(j)

Examples

			2.6963835273101493560361302069689338...
		

Crossrefs

Formula

Equals A079586 - A360958.
Previous Showing 11-20 of 41 results. Next