A098151 Number of partitions of 2*n with no part divisible by 3 and all odd parts occurring with even multiplicities.
1, 2, 4, 6, 10, 16, 24, 36, 52, 74, 104, 144, 198, 268, 360, 480, 634, 832, 1084, 1404, 1808, 2316, 2952, 3744, 4728, 5946, 7448, 9294, 11556, 14320, 17688, 21780, 26740, 32736, 39968, 48672, 59122, 71644, 86616, 104484, 125768, 151072, 181104, 216684
Offset: 0
Examples
a(4)=10 because 8 = 4+4 = 4+2+2=2+2+2+2 = 2+2+2+1+1 = 2+2+1+1+1+1 = 4+2+1+1 = 4+1+1+1+1 = 2+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1. G.f. = 1 + 2*q + 4*q^2 + 6*q^3 + 10*q^4 + 16*q^5 + 24*q^6 + 36*q^7 + 52*q^8 + ... From _Peter Bala_, Jun 09 2025: (Start) G.f.: A(q) = f(q, q^2) / f(-q, -q^2). Simple continued fraction expansions of A(1/(2*m)): m = 2 [1; 1 9 1 5 8 45 4 1 2 1 1 1 3 3 2 2 ...] m = 3 [1; 2 13 1 14 12 133 8 1 1 7 2 1 2 2 1 1 ...] m = 4 [1; 3 17 1 27 16 297 12 2 2 1 1 1 2 2 2 2 ...] m = 5 [1; 4 21 1 44 20 561 16 2 1 7 3 3 2 2 25 8 ...] m = 6 [1; 5 25 1 65 24 949 20 3 2 1 1 1 3 4 2 1 ...] m = 7 [1; 6 29 1 90 28 1485 24 3 1 7 4 5 2 1 1 6 ...] m = 8 [1; 7 33 1 119 32 2193 28 4 2 1 1 1 4 6 2 1 ...] m = 9 [1; 8 37 1 152 36 3097 32 4 1 7 5 7 2 1 1 3 ...] m = 10 [1; 9 41 1 189 40 4221 36 5 2 1 1 1 5 8 2 1 ...] ... The sequence of the 4th partial denominators [5, 14, 27, 44, ...] appears to be given by the polynomial (2*m + 1)*(m - 1) for m >= 2. The sequence of the 6th partial denominators [45, 133, 297, 561, ...] appears to be given by the polynomial (2*m + 1)*(2*m^2 + 1) for m >= 2. (End)
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
- George E. Andrews, 4-Shadows in q-Series and the Kimberling Index, Preprint, May 15, 2016.
- Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011, 2004.
- Shane Chern, Dennis Eichhorn, Shishuo Fu, and James A. Sellers, Convolutive sequences, I: Through the lens of integer partition functions, arXiv:2507.10965 [math.CO], 2025. See pp. 4, 14-16.
- Byungchan Kim and Eunmi Kim, Partitions weighted by the number of two types of parts, Bull. Korean Math. Soc. (2024) Vol. 61, No. 6, 1677-1684. See p. 1679.
- Jeremy Lovejoy, A theorem on seven-colored overpartitions and its applications, Int. J. Number Theory. 1 (2005) 215-224
- Andrew Sills, Rademacher-Type Formulas for Restricted Partition and Overpartition Functions, Ramanujan Journal, 23 (1-3): 253-264, 2010.
- Andrew Sills, Towards an Automation of the Circle Method, Gems in Experimental Mathematics in Contemporary Mathematics, 2010, formula S24.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Maple
series(product((1+x^k+x^(2*k))/(1-x^k+x^(2*k)),k=1..150),x=0,100); # alternative program using expansion of f(q, q^2) / f(-q, -q^2): with(gfun): series( add(x^(n*(3*n-1)/2),n = -8..8)/add((-1)^n*x^(n*(3*n-1)/2), n = -8..8), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ q^2] QPochhammer[ q^3]^2 / (QPochhammer[ q]^2 QPochhammer[ q^6]), {q, 0, n}] (* Michael Somos, Oct 23 2013 *) nmax = 50; CoefficientList[Series[Product[(1+x^(3*k-1)) * (1+x^(3*k-2)) / ((1-x^(3*k-1)) * (1-x^(3*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A)^2 * eta(x^6 + A)), n))} /* Michael Somos, Dec 04 2004 */
Formula
Expansion of phi(-q^3) / phi(-q) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Apr 15 2012
Expansion of f(q, q^2) / f(-q, -q^2) in powers of q where f(,) is the Ramanujan two-variable theta function. - Michael Somos, Apr 15 2012
Expansion of eta(q^2) * eta(q^3)^2 / (eta(q)^2 * eta(q^6)) in powers of q.
G.f. = (Sum_{n = -oo..oo} (-1)^n*q^(3*n^2)) / (Sum_{n = -oo..oo} (-1)^n*q^(n^2)). - N. J. A. Sloane, Aug 09 2016
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 + u^2) * (u^2 + v^4) - 4 * u^2*v^4. - Michael Somos, Apr 15 2012
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u^3 - v + 3 * u*v^2 - 3 * u^2*v^3. - Michael Somos, Dec 04 2004
Euler transform of period 6 sequence [2, 1, 0, 1, 2, 0, ...]. - Vladeta Jovovic, Sep 24 2004
Taylor series of product_{k=1..inf}(1+x^k+x^(2*k))/(1-x^k+x^(2*k))= product_{k=1..inf}(1+x^k)(1-x^(3k))/((1-x^k)(1+x^(3k)))=Theta_4(0, x^3)/theta_4(0, x)
a(n) ~ Pi * BesselI(1, Pi*sqrt(2*n/3)) / (3*sqrt(2*n)) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/4) * 3^(3/4) * n^(3/4)) * (1 - 3*sqrt(3)/(8*Pi*sqrt(2*n)) - 45/(256*Pi^2*n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 09 2017
From Peter Bala, Jun 09 2025: (Start)
G.f.: A(q) = Sum_{n = -oo..oo} q^(n*(3*n+1)/2) / Sum_{n = -oo..oo} (-1)^n * q^(n*(3*n+1)/2).
Recurrences:
a(n) - a(n-1) - a(n-2) + a(n-5) + a(n-7) - a(n-12) - a(n-15) + + - - ... = f(n), where [0, 1, 2, 5, 7, 12, 15, ...] is the sequence of generalized pentagonal numbers A001318, a(n) is set equal to 0 for negative n and f(n) = 1 if n is a generalized pentagonal number, otherwise f(n) = 0 (see A080995). Compare with the recurrence for the partition function p(n) = A000041(n).
a(n) - 2*a(n-1) + 2*a(n-4) - 2*a(n-9) + 2*a(n-16) - 2*a(n-25) + - ... = g(n), where g(n) = 2*(-1)^k if n is of the form 3*(k^2), otherwise g(n) = 0. (End)
Comments