cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A341655 a(n) is the number of divisors of prime(n)^2 - 1.

Original entry on oeis.org

2, 4, 8, 10, 16, 16, 18, 24, 20, 32, 28, 24, 40, 32, 24, 32, 32, 32, 32, 60, 30, 48, 32, 60, 42, 48, 40, 32, 64, 48, 54, 64, 40, 64, 48, 60, 32, 40, 40, 32, 48, 96, 64, 32, 72, 90, 64, 56, 32, 64, 60, 96, 72, 96, 40, 40, 64, 96, 32, 80, 32, 48, 96, 80, 40, 32
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 25 2021

Keywords

Comments

a(n) >= A309906(2) = 32 for n > 21.

Examples

			        p =                factorization
   n  prime(n)  p^2 - 1      of p^2 - 1      a(n)
  --  --------  -------  ------------------  ----
   1      2         3    3                     2
   2      3         8    2^3                   4
   3      5        24    2^3 * 3               8
   4      7        48    2^4 * 3              10
   5     11       120    2^3 * 3 * 5          16
   6     13       168    2^3 * 3 * 7          16
   7     17       288    2^5 * 3^2            18
   8     19       360    2^3 * 3^2 * 5        24
   9     23       528    2^4 * 3 * 11         20
  10     29       840    2^3 * 3 * 5 * 7      32
  11     31       960    2^6 * 3 * 5          28
  12     37      1368    2^3 * 3^2 * 19       24
  13     41      1680    2^4 * 3 * 5 * 7      40
  14     43      1848    2^3 * 3 * 7 * 11     32
  15     47      2208    2^5 * 3 * 23         24
  16     53      2808    2^3 * 3^3 * 13       32
  17     59      3480    2^3 * 3 * 5 * 29     32
  18     61      3720    2^3 * 3 * 5 * 31     32
  19     67      4488    2^3 * 3 * 11 * 17    32
  20     71      5040    2^4 * 3^2 * 5 * 7    60
  21     73      5328    2^4 * 3^2 * 37       30
  22     79      6240    2^5 * 3 * 5 * 13     48
  23     83      6888    2^3 * 3 * 7 * 41     32
  24     89      7920    2^4 * 3^2 * 5 * 11   60
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0,Prime[n]^2-1],{n,66}] (* Stefano Spezia, Feb 25 2021 *)
  • PARI
    a(n) = numdiv(prime(n)^2-1); \\ Michel Marcus, Feb 25 2021

Formula

a(n) = A000005(A000040(n)^2 - 1) = A000005(A084920(n)).

A084922 a(n) = (prime(n)-1)*(prime(n)+1)/6.

Original entry on oeis.org

4, 8, 20, 28, 48, 60, 88, 140, 160, 228, 280, 308, 368, 468, 580, 620, 748, 840, 888, 1040, 1148, 1320, 1568, 1700, 1768, 1908, 1980, 2128, 2688, 2860, 3128, 3220, 3700, 3800, 4108, 4428, 4648, 4988, 5340, 5460, 6080, 6208, 6468, 6600, 7420
Offset: 3

Views

Author

Reinhard Zumkeller, Jun 11 2003

Keywords

Crossrefs

Programs

  • Magma
    [(p^2-1)/6: p in PrimesInInterval(4, 250)]; // Vincenzo Librandi, Apr 11 2013
    
  • Mathematica
    Select[Range[0, 7000], PrimeQ[Sqrt[6 # + 1]]&] (* Vincenzo Librandi, Apr 11 2013 *)
    (Prime[Range[3,60]]^2 -1)/6 (* G. C. Greubel, May 02 2024 *)
  • PARI
    a(n) = (prime(n)^2-1)/6; \\ Michel Marcus, Mar 22 2016
    
  • SageMath
    [(n^2-1)//6 for n in prime_range(4,301)] # G. C. Greubel, May 02 2024

Formula

a(n) = A084920(n)/6.
a(n) = A084921(n)/3.

A216244 a(n) = (prime(n)^2 - 1)/2 for n >= 2.

Original entry on oeis.org

4, 12, 24, 60, 84, 144, 180, 264, 420, 480, 684, 840, 924, 1104, 1404, 1740, 1860, 2244, 2520, 2664, 3120, 3444, 3960, 4704, 5100, 5304, 5724, 5940, 6384, 8064, 8580, 9384, 9660, 11100, 11400, 12324, 13284, 13944, 14964, 16020, 16380, 18240, 18624, 19404, 19800
Offset: 2

Views

Author

Richard R. Forberg, May 28 2013

Keywords

Comments

Subsequence of A055523 restricted to the case of the other (shorter) leg of the triangle equal to a prime.
There is only one value of a(n) for each prime(n). (This is not necessarily true if the shorter leg is not a prime.)
Note that a(1) is nonexistent since there is no solution with prime = 2.
All terms are divisible by 4.
The values of m (the length of the hypotenuse) always equals a(n) + 1.
a(n) = (prime(n)^2 - 1)/2 for all n > 1.
This follows algebraically given m = a(n) + 1 (or vice versa).
The same two relationships apply when the shorter leg is an odd nonprime, but for only those results corresponding to the longest possible leg of the triangle.

Examples

			24^2 + 7^2 = 625 = 25^2 = (24 +1)^2  and a(4) = (prime(4)^2 -1)/2 = (49 - 1)/2 = 24.
		

Crossrefs

Subset of A055523.
Equals 4*A061066.
Equals A084921 excluding its first term.

Programs

Formula

a(n) = (prime(n)^2 - 1)/2 for n >= 2.
a(n) = 4*A061066(n) = A084920(n)/2.
a(n) = A084921(n) for n > 1.
a(n) = (prime(n)-1)*(prime(n)+1)/2 = lcm(prime(n)+1, prime(n)-1) for n > 1 because one of prime(n)+1 or prime(n)-1 is even and the other is divisible by 4. Say prime(n)-1 is divisible by 4; then (prime(n)+1)/2 and (prime(n)-1)/4 must be coprime. - Frank M Jackson, Dec 11 2018
Product_{n>=2} (1 + 1/a(n)) = 3/2. - Amiram Eldar, Jun 03 2022

Extensions

New name (taken from Formula entry) from Jon E. Schoenfield, Jul 11 2021

A166010 a(n) = prime(n)^2-4.

Original entry on oeis.org

0, 5, 21, 45, 117, 165, 285, 357, 525, 837, 957, 1365, 1677, 1845, 2205, 2805, 3477, 3717, 4485, 5037, 5325, 6237, 6885, 7917, 9405, 10197, 10605, 11445, 11877, 12765, 16125, 17157, 18765, 19317, 22197, 22797, 24645, 26565, 27885, 29925, 32037
Offset: 1

Views

Author

Keywords

Comments

Least common multiple of prime(n)-2 and prime(n)+2.

Crossrefs

Programs

  • Magma
    [NthPrime(n)^2-4: n in [1..41]]; // Bruno Berselli, Apr 17 2012
    
  • Mathematica
    f[n_]:=LCM[n-2,n+2]; lst={};Do[p=Prime[n];AppendTo[lst,f[p]],{n,5!}]; lst
    Prime[Range[5!]]^2 - 4 (* Zak Seidov, Apr 17 2012 *)
  • PARI
    a(n)=prime(n)^2-4 \\ Charles R Greathouse IV, Apr 17 2012

Formula

a(n) = A001248(n)-4 = A040976(n)*A052147(n). [Bruno Berselli, Apr 17 2012]

Extensions

Definition rewritten by Bruno Berselli, Apr 17 2012

A024700 a(n) = (prime(n+2)^2 - 1)/3.

Original entry on oeis.org

8, 16, 40, 56, 96, 120, 176, 280, 320, 456, 560, 616, 736, 936, 1160, 1240, 1496, 1680, 1776, 2080, 2296, 2640, 3136, 3400, 3536, 3816, 3960, 4256, 5376, 5720, 6256, 6440, 7400, 7600, 8216, 8856, 9296, 9976, 10680, 10920, 12160, 12416, 12936, 13200, 14840, 16576, 17176
Offset: 1

Views

Author

Clark Kimberling, Dec 11 1999

Keywords

Comments

Numbers of the form 4*h*(3*h +- 1). - Vincenzo Librandi, May 21 2013
This sequence is also: Numbers n such that k is prime and its square is of the form 3*n + 1 (i.e., k^2 = 3*n + 1). For this case, the sequence is to be prepended with a(0) = 1. - G. C. Greubel, Sep 18 2016

Crossrefs

Programs

  • Magma
    [(NthPrime(n+2)^2-1)/3: n in [1..50]]; // Bruno Berselli, May 22 2013
    
  • Mathematica
    Select[Range[2,10000], PrimeQ[Sqrt[3*#+1]] &] (* G. C. Greubel, Sep 18 2016 *)
    (Prime[Range[3,50]]^2-1)/3 (* Harvey P. Dale, May 05 2022 *)
  • PARI
    a(n) = (prime(n+2)^2-1)/3; \\ Altug Alkan, Sep 18 2016
    
  • SageMath
    [(n^2 -1)/3 for n in prime_range(4,301)] # G. C. Greubel, May 02 2024

Formula

a(n) = (A001248(n+2) - 1)/3. - Elmo R. Oliveira, Jan 20 2023
a(n) = 8*A024702(n+2) = 4*A081115(n+2) = 2*A084922(n+2) = (2/3)*A084921(n) = (4/3)*A024701(n+1) = (8/3)*A061066(n+2). - Alois P. Heinz, Jan 20 2023

A141767 A positive integer k is included if (p-1)*(p+1) divides k for every prime p that divides k.

Original entry on oeis.org

1, 24, 48, 72, 96, 120, 144, 192, 216, 240, 288, 336, 360, 384, 432, 480, 576, 600, 648, 672, 720, 768, 864, 960, 1008, 1080, 1152, 1200, 1296, 1320, 1344, 1440, 1536, 1680, 1728, 1800, 1920, 1944, 2016, 2160, 2304, 2352, 2400, 2592, 2640, 2688, 2880, 3000
Offset: 1

Views

Author

Leroy Quet, Jul 02 2008

Keywords

Comments

For n>1, a(n) is a multiple of 24.

Examples

			120 has the prime factorization of 2^3 * 3^1 * 5^1. The distinct primes dividing 120 are therefore 2,3,5. (2-1)*(2+1)=3, (3-1)*(3+1)=8 and (5-1)*(5+1)=24 all divide 120. So 120 is included in the sequence.
		

Crossrefs

Programs

  • Haskell
    a141767 n = a141767_list !! (n-1)
    a141767_list = filter f [1..] where
       f x = all (== 0) $
             map (mod x) $ zipWith (*) (map pred ps) (map succ ps)
             where ps = a027748_row x
    -- Reinhard Zumkeller, Aug 27 2013
  • Mathematica
    fQ[n_] := Block[{p = First /@ FactorInteger@ n}, Union@ Mod[n, (p - 1) (p + 1)] == {0}]; Select[ Range[2, 3000], fQ@# &] (* Robert G. Wilson v, May 25 2009 *)

Extensions

Added missing term 336 and a(14)-a(47) from Donovan Johnson, Sep 27 2008
a(1)=1 prepended by Max Alekseyev, Aug 27 2013

A182200 a(n) = prime(n)^2-3.

Original entry on oeis.org

1, 6, 22, 46, 118, 166, 286, 358, 526, 838, 958, 1366, 1678, 1846, 2206, 2806, 3478, 3718, 4486, 5038, 5326, 6238, 6886, 7918, 9406, 10198, 10606, 11446, 11878, 12766, 16126, 17158, 18766, 19318, 22198, 22798, 24646, 26566, 27886, 29926, 32038, 32758, 36478
Offset: 1

Views

Author

Bruno Berselli, Apr 17 2012

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime(n)^2-3: n in [1..43]];
  • Maple
    A182200:=n->ithprime(n)^2-3; seq(A182200(k),k=1..50); # Wesley Ivan Hurt, Oct 11 2013
  • Mathematica
    Table[Prime[n]^2 - 3, {n, 43}]

Formula

a(n) = A061725(n)-5 = A066872(n)-4 = A001248(n)-3 = A084920(n)-2 = A049001(n)-1 = A166010(n)+1. [Formulas revised and extended by Bruno Berselli, Oct 15 2012]

A297491 a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^4*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime.

Original entry on oeis.org

9, 44, 234, 664, 2628, 4354, 9774, 13660, 24264, 48690, 59488, 101194, 137718, 158884, 207504, 297594, 410580, 453778, 601324, 715608, 777814, 985840, 1143324, 1409670, 1825054, 2060298, 2185144, 2449764, 2589730, 2885454, 4096384, 4495788, 5142294
Offset: 1

Views

Author

Seiichi Manyama, Dec 31 2017

Keywords

Crossrefs

(1/2) * Sum_{|k|<=2*sqrt(p)} k^m*H(4*p-k^2): A000040 (m=0), A084920 (m=2), this sequence (m=4), A297492 (m=6), A297493 (m=8), A297494 (m=10).
Cf. A259825.

Formula

Let b(n) = 2*n^3 - 3*n - 1.
a(n) = b(prime(n)).

A297492 a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^6*H(4*p-k^2) where H() is the Hurwitz class number and p is the n-th prime.

Original entry on oeis.org

33, 308, 2874, 11528, 72060, 141218, 414918, 648260, 1394328, 3528690, 4608800, 9358298, 14113470, 17077148, 24378288, 39426858, 60555180, 69195410, 100714868, 127012680, 141942878, 194693840, 237229188, 313639470, 442561238, 520209690, 562658408, 655294428
Offset: 1

Views

Author

Seiichi Manyama, Dec 31 2017

Keywords

Crossrefs

(1/2) * Sum_{|k|<=2*sqrt(p)} k^m*H(4*p-k^2): A000040 (m=0), A084920 (m=2), A297491 (m=4), this sequence (m=6), A297493 (m=8), A297494 (m=10).
Cf. A259825.

Programs

  • PARI
    b(n) = 5*n^4 - 9*n^2 - 5*n - 1;
    a(n) = b(prime(n)); \\ Michel Marcus, Jan 01 2018

Formula

Let b(n) = 5*n^4 - 9*n^2 - 5*n - 1.
a(n) = b(prime(n)).

A297493 a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^8*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime.

Original entry on oeis.org

129, 2444, 39714, 224664, 2214948, 5133114, 19734534, 34465980, 89757384, 286456170, 399954528, 969369474, 1620023118, 2055854724, 3207878544, 5850511794, 10003119540, 11817917898, 18893239884, 25249088088, 29012002734, 43064859120, 55130420604
Offset: 1

Views

Author

Seiichi Manyama, Dec 31 2017

Keywords

Crossrefs

(1/2) * Sum_{|k|<=2*sqrt(p)} k^m*H(4*p-k^2): A000040 (m=0), A084920 (m=2), A297491 (m=4), A297492 (m=6), this sequence (m=8), A297494 (m=10).
Cf. A259825.

Programs

  • PARI
    lista(nn) = forprime(p=2, nn, print1(14*p^5-28*p^3-20*p^2-7*p-1, ", ")); \\ Altug Alkan, Jan 01 2018

Formula

Let b(n) = 14*n^5 - 28*n^3 - 20*n^2 - 7*n - 1.
a(n) = b(prime(n)).
Previous Showing 11-20 of 34 results. Next