cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A277120 Number of branching factorizations of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 11, 1, 3, 3, 15, 1, 11, 1, 11, 3, 3, 1, 45, 2, 3, 5, 11, 1, 19, 1, 51, 3, 3, 3, 62, 1, 3, 3, 45, 1, 19, 1, 11, 11, 3, 1, 195, 2, 11, 3, 11, 1, 45, 3, 45, 3, 3, 1, 113, 1, 3, 11, 188, 3, 19, 1, 11, 3, 19, 1, 345, 1, 3, 11, 11, 3
Offset: 1

Views

Author

Michel Marcus, Oct 01 2016

Keywords

Comments

Per the formula, a(n) = 1 at prime n. As the sequence extends, additional values become more frequent than 1. These values can be characterized, for example, a(n) = 19 is seen at n corresponding to A007304, a(n) = 3 is seen at n corresponding to A006881, a(n) = 113 is seen at n corresponding to A085987. - Bill McEachen, Dec 28 2023
From Antti Karttunen, Jan 02 2024: (Start)
The value of a(n) depends only on the prime signature of n. In other words, for all i, j >= 1, it holds that A101296(i) = A101296(j) => a(i) = a(j). Moreover, it seems that the converse proposition also holds, that for all i, j >= 1, a(i) = a(j) => A101296(i) = A101296(j), i.e., for each distinct prime signature there exists a distinct value of a(n). This has been empirically checked up to the first 21001 prime signatures in A025487 (see A366884), and can be proved if one can show that the latter sequence (equally: A366377) is injective. If this conjecture holds, it would imply an unlimited number of statements like those given in the previous comment (see the formula section of A101296).
Questions: Are there any terms of the form 10k+4 or 10k+6? What is the asymptotic density of terms of the form 10k+5 (those ending with digit "5")? Compare to the data shown in A366884.
For squarefree n > 1, a(n) is never even, and apparently, never a multiple of five. See comments in A052886.
(End)

Examples

			In this scheme, the following factorizations of 12 are counted as distinct: 12, 2 x 6, 2 x (2 x 3), 2 x (3 x 2), 3 x 4, 3 x (2 x 2), 4 x 3, (2 x 2) x 3, 6 x 2, (2 x 3) x 2, (3 x 2) x 2, thus a(12) = 11. - _Antti Karttunen_, Nov 02 2016, based on the illustration given at page 14 of Knopfmacher & Mays paper.
The following factorizations of 30 are counted as distinct: 30, 2 x 15, 15 x 2, 3 x 10, 10 x 3, 5 x 6, 6 x 5, 2 x (3 x 5), 2 x (5 x 3), 3 x (2 x 5), 3 x (5 x 2), 5 x (2 x 3), 5 x (3 x 2), (2 x 3) x 5, (2 x 5) x 3, (3 x 2) x 5, (3 x 5) x 2, (5 x 2) x 3, (5 x 3) x 2, thus a(30) = 19. - _Antti Karttunen_, Jan 02 2024
		

Crossrefs

After n=1 differs from A104725 for the next time at n=32, where a(32) = 51, while A104725(32) = 52.

Programs

  • C
    #include 
    #define MAX 10000
    /* Number of branching factorizations of n. */
    unsigned long n, m, a, b, p, x, nbr[MAX];
    int main(void)
    {
      for (x=n=1; nDaniel Mondot, Oct 01 2016 */
    
  • Mathematica
    v[n_] := v[n] = If[n == 1, 0, 1 + Sum[If[d == 1 || d^2 > n, 0, If[d^2 == n, 1, 2]*v[d]*v[n/d]], {d, Divisors[n]}]]; Table[v[n], {n, 1, 100}] (* Vaclav Kotesovec, Jan 13 2024, after Antti Karttunen *)
  • PARI
    A277120(n) = if(1==n, 0, 1+sumdiv(n, d, if((1==d)||(d*d)>n,0,if((d*d)==n,1,2)*A277120(d)*A277120(n/d)))); \\ Antti Karttunen, Nov 02 2016, after Daniel Mondot's C-program above.
    
  • PARI
    seq(n)={my(v=vector(n)); for(n=2, n, v[n] = 1 + sumdiv(n, d, v[d]*v[n/d])); v} \\ Andrew Howroyd, Nov 17 2018

Formula

a(1) = 0; for n > 1, a(n) = 1 + Sum_{d|n, 1 < d < n} a(d)*a(n/d). - Antti Karttunen, Nov 02 2016, after Daniel Mondot's C program, simplified Dec 30 2023.
For all n >= 1, a(prime^n) = A007317(n), and a(product of n distinct primes) = A052886(n). - Antti Karttunen, Dec 31 2023

Extensions

More terms from Daniel Mondot, Oct 01 2016

A179642 Product of exactly 5 primes, 3 of which are distinct.

Original entry on oeis.org

120, 168, 180, 252, 264, 270, 280, 300, 312, 378, 396, 408, 440, 450, 456, 468, 520, 552, 588, 594, 612, 616, 680, 684, 696, 700, 702, 728, 744, 750, 760, 828, 882, 888, 918, 920, 945, 952, 980, 984, 1026, 1032, 1044, 1064, 1100, 1116, 1128, 1144, 1160
Offset: 1

Views

Author

Keywords

Examples

			120=2^3*3*5, 168=2^3*3*7, 180=2^2*3^2*5, 252=2^2*3^2*7, 264=2^3*3*11, 270=2*3^3*5
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,3} || Sort[Last/@FactorInteger[n]]=={1,2,2}; Select[Range[2000], f]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,(lim\6)^(1/3),forprime(q=2,sqrt(lim\p^3),if(p==q,next);t=p^3*q;forprime(r=q+1,lim\t,if(p==r,next);listput(v,t*r))));forprime(p=2,sqrt(lim\12),forprime(q=p+1,sqrt(lim\p^2\2),t=(p*q)^2;forprime(r=2,lim\t,if(p==r||q==r,next);listput(v,t*r))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 19 2011

A182855 Numbers that require exactly five iterations to reach a fixed point under the x -> A181819(x) map.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 364, 372, 378, 380, 396, 408, 414, 420, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492, 495
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

In each case, 2 is the fixed point that is reached (1 is the other fixed point of the x -> A181819(x) map).
Includes all integers whose prime signature a) contains two or more distinct numbers, and b) contains no number that occurs the same number of times as any other number. The first member of this sequence that does not fit that description is 75675600, whose prime signature is (4,3,2,2,1,1).
A full characterization is: Numbers whose prime signature (1) has not all equal multiplicities but (2) the numbers of distinct parts appearing with each distinct multiplicity are all equal. For example, the prime signature of 2520 is {1,1,2,3}, which satisfies (1) but fails (2), as the numbers of distinct parts appearing with each distinct multiplicity are 1 (with multiplicity 2, the part being 1) and 2 (with multiplicity 1, the parts being 2 and 3). Hence the sequence does not contain 2520. - Gus Wiseman, Jan 02 2019

Examples

			1. 180 requires exactly five iterations under the x -> A181819(x) map to reach a fixed point (namely, 2).  A181819(180) = 18;  A181819(18) = 6; A181819(6) = 4; A181819(4) = 3;  A181819(3) = 2 (and A181819(2) = 2).
2. The prime signature of 180 (2^2*3^2*5) is (2,2,1).
a. Two distinct numbers appear in (2,2,1) (namely, 1 and 2).
b. Neither 1 nor 2 appears in (2,2,1) the same number of times as any other number that appears there.
		

Crossrefs

Numbers n such that A182850(n) = 5. See also A182853, A182854.
Subsequence of A059404 and A182851. Includes A085987 and A179642 as subsequences.

Programs

  • Mathematica
    Select[Range[1000],With[{sig=Sort[Last/@FactorInteger[#]]},And[!SameQ@@Length/@Split[sig],SameQ@@Length/@Union/@GatherBy[sig,Length[Position[sig,#]]&]]]&] (* Gus Wiseman, Jan 02 2019 *)

A255231 The number of factorizations n = Product_i b_i^e_i, where all bases b_i are distinct, and all exponents e_i are distinct >=1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 6, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 3
Offset: 1

Views

Author

Saverio Picozzi, Feb 18 2015

Keywords

Comments

Not multiplicative: a(48) = a(2^4*3) = 5 <> a(2^4)*a(3) = 4*1 = 4. - R. J. Mathar, Nov 05 2016

Examples

			From _R. J. Mathar_, Nov 05 2016: (Start)
a(4)=2: 4^1 = 2^2.
a(8)=2: 8^1 = 2^3.
a(9)=2: 9^1 = 3^2.
a(12)=2: 12^1 = 2^2*3^1.
a(16)=4: 16^1 = 4^2 = 2^2*4^1 = 2^4.
a(18)=2: 18^1 = 2*3^2.
a(20)=2: 20^1 = 2^2*5^1.
a(24)=3: 24^1 = 2^2*6^1 = 2^3*3^1.
a(32)=5: 32^1 = 2^1*4^2 = 2^2*8^1 = 2^3*4^1 = 2^5.
a(36)=4: 36^1 = 6^2 = 3^2*4^1 = 2^2*9^1.
a(48)=5: 48^1 = 3^1*4^2 = 2^2*12^1 = 2^3*6^1 = 2^4*3^1.
a(60)=2 : 60^1 = 2^2*15^1.
a(64)=7: 64^1 = 8^2 = 4^3 = 2^2*16^1 = 2^3*8^1 = 2^4*4^1 = 2^6.
a(72)=6 : 72^1 = 3^2*8^1 = 2^1*6^2 = 2^2*18^1 = 2^3*9^1 = 2^3*3^2.
(End)
		

Crossrefs

Cf. A000688 (b_i not necessarily distinct).

Programs

  • Maple
    # Count solutions for products if n = dvs_i^exps(i) where i=1..pividx are fixed
    Apiv := proc(n,dvs,exps,pividx)
        local dvscnt, expscopy,i,a,expsrt,e ;
        dvscnt := nops(dvs) ;
        a := 0 ;
        if pividx > dvscnt then
            # have exhausted the exponent list: leave of the recursion
            # check that dvs_i^exps(i) is a representation
            if n = mul( op(i,dvs)^op(i,exps),i=1..dvscnt) then
                # construct list of non-0 exponents
                expsrt := [];
                for i from 1 to dvscnt do
                    if op(i,exps) > 0 then
                        expsrt := [op(expsrt),op(i,exps)] ;
                    end if;
                end do;
                # check that list is duplicate-free
                if nops(expsrt) = nops( convert(expsrt,set)) then
                    return 1;
                else
                    return 0;
                end if;
            else
                return 0 ;
            end if;
        end if;
        # need a local copy of the list to modify it
        expscopy := [] ;
        for i from 1 to nops(exps) do
            expscopy := [op(expscopy),op(i,exps)] ;
        end do:
        # loop over all exponents assigned to the next base in the list.
        for e from 0 do
            candf := op(pividx,dvs)^e ;
            if modp(n,candf) <> 0 then
                break;
            end if;
            # assign e to the local copy of exponents
            expscopy := subsop(pividx=e,expscopy) ;
            a := a+procname(n,dvs,expscopy,pividx+1) ;
        end do:
        return a;
    end proc:
    A255231 := proc(n)
        local dvs,dvscnt,exps ;
        if n = 1 then
            return 1;
        end if;
        # candidates for the bases are all divisors except 1
        dvs := convert(numtheory[divisors](n) minus {1},list) ;
        dvscnt := nops(dvs) ;
        # list of exponents starts at all-0 and is
        # increased recursively
        exps := [seq(0,e=1..dvscnt)] ;
        # take any subset of dvs for the bases, i.e. exponents 0 upwards
        Apiv(n,dvs,exps,1) ;
    end proc:
    seq(A255231(n),n=1..120) ; # R. J. Mathar, Nov 05 2016

Formula

a(n)=1 for all n in A005117. a(n)=2 for all n in A001248 and for all n in A054753 and for all n in A085987 and for all n in A030078. a(n)=3 for all n in A065036. a(n)=4 for all n in A085986 and for all n in A030514. a(n)=5 for all n in A178739, all n in A179644 and for all n in A050997. a(n)=6 for all n in A143610, all n in A162142 and all n in A178740. a(n)=7 for all n in A030516. a(n)=9 for all n in A189988 and all n in A189987. a(n)=10 for all n in A092759. a(n) = 11 for all n in A179664. a(n)=12 for all n in A179646. - R. J. Mathar, Nov 05 2016, May 20 2017

Extensions

Values corrected. Incorrect comments removed. - R. J. Mathar, Nov 05 2016

A179689 Numbers with prime signature {7,2}, i.e., of form p^7*q^2 with p and q distinct primes.

Original entry on oeis.org

1152, 3200, 6272, 8748, 15488, 21632, 36992, 46208, 54675, 67712, 107163, 107648, 123008, 175232, 215168, 236672, 264627, 282752, 312500, 359552, 369603, 445568, 476288, 574592, 632043, 645248, 682112, 703125, 789507, 798848, 881792, 1013888
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+ `if` (n=1, 1, a(n-1))
            while sort (map (x-> x[2], ifactors(k)[2]), `>`)<>[7, 2]
          do od; k
        end:
    seq (a(n), n=1..32);  # Alois P. Heinz, Jan 23 2011
  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,7}; Select[Range[10^6], f]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\4)^(1/7), t=p^7;forprime(q=2, sqrt(lim\t), if(p==q, next);listput(v,t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A179689(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(isqrt(x//p**7)) for p in primerange(integer_nthroot(x,7)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(7) - P(9) = A085548 * A085967 - A085969 = 0.001741..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

Extensions

Title edited by Daniel Forgues, Jan 22 2011

A179696 Numbers with prime signature {7,1,1}, i.e., of form p^7*q*r with p, q and r distinct primes.

Original entry on oeis.org

1920, 2688, 4224, 4480, 4992, 6528, 7040, 7296, 8320, 8832, 9856, 10880, 11136, 11648, 11904, 12160, 14208, 14720, 15232, 15744, 16512, 17024, 18048, 18304, 18560, 19840, 20352, 20608, 21870, 22656, 23424, 23680, 23936, 25728, 25984, 26240, 26752, 27264
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+ `if` (n=1, 1, a(n-1))
            while sort (map (x-> x[2], ifactors(k)[2]), `>`)<>[7, 1, 1]
          do od; k
        end:
    seq (a(n), n=1..40); # Alois P. Heinz, Jan 23 2011
  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,7}; Select[Range[30000], f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\6)^(1/7), t1=p^7;forprime(q=2, lim\t1, if(p==q, next);t2=t1*q;forprime(r=q+1, lim\t2, if(p==r,next);listput(v,t2*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primerange, primepi, integer_nthroot
    def A179696(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**7)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(integer_nthroot(x,7)[0]+1))+sum(primepi(x//p**8) for p in primerange(integer_nthroot(x,8)[0]+1))-primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Extensions

Title edited by Daniel Forgues, Jan 22 2011

A178212 Nonsquarefree numbers divisible by exactly three distinct primes.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 396, 408, 414, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2010

Keywords

Examples

			60 is in the sequence because it is not squarefree and it is divisible by three distinct primes: 2, 3, 5.
72 is not in the sequence, because although it is not squarefree, it is divisible by only two distinct primes: 2 and 3.
		

Crossrefs

A subsequence of A033987.
A085987 is a subsequence.
Subsequence of A375055, which differs starting at a(43) = 440 > A375055(43) = 420.

Programs

  • Haskell
    a178212 n = a178212_list !! (n-1)
    a178212_list = filter f [1..] where
       f x = length (a027748_row x) == 3 && any (> 1) (a124010_row x)
    -- Reinhard Zumkeller, Apr 03 2015
  • Mathematica
    nsD3Q[n_] := Block[{fi = FactorInteger@ n}, Length@ fi == 3 && Plus @@ Last /@ fi > 3]; Select[ Range@ 494, nsD3Q] (* Robert G. Wilson v, Feb 09 2012 *)
    Select[Range[500], PrimeNu[#] == 3 && PrimeOmega[#] > 3 &] (* Alonso del Arte, Mar 23 2015, based on a comment from Robert G. Wilson v, Feb 09 2012; requires Mathematica 7.0+ *)
  • PARI
    is_A178212(n)={ omega(n)==3 & bigomega(n)>3 }
    for(n=1,999,is_A178212(n) & print1(n",")) \\ M. F. Hasler, Feb 09 2012
    

Formula

A001221(a(n)) = 3; A001222(a(n)) > 3; A000005(n) >= 12;
a(n) = A123712(n) for n <= 52, possibly more.

A179694 Numbers of the form p^6*q^3 where p and q are distinct primes.

Original entry on oeis.org

1728, 5832, 8000, 21952, 85184, 91125, 125000, 140608, 250047, 314432, 421875, 438976, 778688, 941192, 970299, 1560896, 1601613, 1906624, 3176523, 3241792, 3581577, 4410944, 5000211, 5088448, 5359375, 6644672
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={3,6}; Select[Range[10^6], f]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\8)^(1/6), t=p^6;forprime(q=2, (lim\t)^(1/3), if(p==q, next);listput(v,t*q^3))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A179694(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**6,3)[0]) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Sum_{n>=1} 1/a(n) = P(3)*P(6) - P(9) = A085541 * A085966 - A085969 = 0.000978..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
a(n) = A054753(n)^3. - R. J. Mathar, May 05 2023

A179702 Numbers of the form p^4*q^5 where p and q are two distinct primes.

Original entry on oeis.org

2592, 3888, 20000, 50000, 76832, 151875, 253125, 268912, 468512, 583443, 913952, 1361367, 2576816, 2672672, 3557763, 4170272, 5940688, 6940323, 7503125, 8954912, 10504375, 13045131, 20295603, 22632992, 22717712, 29552672, 30074733
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A046312 and of A137493. - R. J. Mathar, Jul 27 2010

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Sort[Last /@ FactorInteger @n] == {4, 5}; Select[ Range@ 31668000, fQ] (* fixed by Robert G. Wilson v, Aug 26 2010 *)
    lst = {}; Do[ If[p != q, AppendTo[lst, Prime@p^4*Prime@q^5]], {p, 12}, {q, 10}]; Take[ Sort@ Flatten@ lst, 27] (* Robert G. Wilson v, Aug 26 2010 *)
    Take[Union[First[#]^4 Last[#]^5&/@Flatten[Permutations/@Subsets[ Prime[ Range[30]],{2}],1]],30] (* Harvey P. Dale, Jan 01 2012 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\16)^(1/5), t=p^5;forprime(q=2, (lim\t)^(1/4), if(p==q, next);listput(v,t*q^4))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A179702(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**5,4)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = P(4)*P(5) - P(9) = A085964 * A085965 - A085969 = 0.000748..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

Extensions

Edited and extended by Ray Chandler and R. J. Mathar, Jul 26 2010

A179983 Positive integers m such that, if k appears in m's prime signature, k-1 appears at least as often as k (for any integer k > 1).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90
Offset: 1

Views

Author

Matthew Vandermast, Jan 15 2011

Keywords

Comments

Numbers m such that A181819(m) is a term of A025487.

Examples

			The prime signature of 20 = 2^2*5 is (2,1). Since the largest number appearing in 20's prime signature is 2, and 1 appears as many times as 2, 20 is a member of this sequence.
		

Crossrefs

Includes all squarefree numbers (A005117); also includes all members of A054753, A085987, A163569, A182862, A182863.

Programs

  • Maple
    isA179983 := proc(n)
        local es,me,k ;
        # list of exponents in prime signature
        es := [seq(op(2,pe), pe =ifactors(n)[2])] ;
        # maximum exponent
        me := max(op(es)) ;
        for k from me to 2 by -1 do
            if numboccur(es,k-1) < numboccur(es,k) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    for n from 1 to 100 do
        if isA179983(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Mar 21 2023
  • Mathematica
    q[n_] := Module[{t = SortBy[Tally[FactorInteger[n][[;; , 2]]], First], t1, t2}, t1 = t[[;; , 1]]; t2 = t[[;; , 2]]; Sort[t1] == Range[Length[t1]] && Max[Differences[t2]] < 1]; Select[Range[100], q] (* Amiram Eldar, Aug 04 2024 *)
Previous Showing 11-20 of 33 results. Next