cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 62 results. Next

A035469 Triangle read by rows, the Bell transform of the triple factorial numbers A007559(n+1) without column 0.

Original entry on oeis.org

1, 4, 1, 28, 12, 1, 280, 160, 24, 1, 3640, 2520, 520, 40, 1, 58240, 46480, 11880, 1280, 60, 1, 1106560, 987840, 295960, 40040, 2660, 84, 1, 24344320, 23826880, 8090880, 1296960, 109200, 4928, 112, 1, 608608000, 643843200
Offset: 1

Views

Author

Keywords

Comments

Previous name was: Triangle of numbers related to triangle A035529; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297 and A035342.
a(n,m) enumerates unordered n-vertex m-forests composed of m plane increasing quartic (4-ary) trees. Proof based on the a(n,m) recurrence. See a D. Callan comment on the m=1 case A007559. See also the F. Bergeron et al. reference, especially Table 1, first row and Example 1 for the e.g.f. for m=1. - Wolfdieter Lang, Sep 14 2007
For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Triangle starts:
     {1}
     {4,    1}
    {28,   12,    1}
   {280,  160,   24,    1}
  {3640, 2520,  520,   40,    1}
		

References

  • F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1922, pp. 24-48.

Crossrefs

a(n, m)=: S2(4, n, m) is the fourth triangle of numbers in the sequence S2(1, n, m) := A008277(n, m) (Stirling 2nd kind), S2(2, n, m) := A008297(n, m) (Lah), S2(3, n, m) := A035342(n, m). a(n, 1)= A007559(n).
Row sums: A049119(n), n >= 1.
Cf. A094638.

Programs

Formula

a(n, m) = Sum_{j=m..n} |A051141(n, j)|*S2(j, m) (matrix product), with S2(j, m):=A008277(j, m) (Stirling2 triangle). Priv. comm. to Wolfdieter Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the general comment on products of Jabotinsky matrices given under A035342.
a(n, m) = n!*A035529(n, m)/(m!*3^(n-m)); a(n+1, m) = (3*n+m)*a(n, m) + a(n, m-1), n >= m >= 1; a(n, m) := 0, n < m; a(n, 0) := 0, a(1, 1)=1;
E.g.f. of m-th column: ((-1+(1-3*x)^(-1/3))^m)/m!.
From Peter Bala, Nov 25 2011: (Start)
E.g.f.: G(x,t) = exp(t*A(x)) = 1 + t*x + (4*t+t^2)*x^2/2! + (28*t + 12*t^2 + t^3)*x^3/3! + ..., where A(x) = -1 + (1-3*x)^(-1/3) satisfies the autonomous differential equation A'(x) = (1+A(x))^4.
The generating function G(x,t) satisfies the partial differential equation t*(dG/dt+G) = (1-3*x)*dG/dx, from which follows the recurrence given above.
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^4*d/dx. Cf. A008277 (D = (1+x)*d/dx), A105278 (D = (1+x)^2*d/dx), A035342 (D = (1+x)^3*d/dx) and A049029 (D = (1+x)^5*d/dx).
(End)
Dobinski-type formula for the row polynomials: R(n,x) = exp(-x)*Sum_{k>=0} k*(k+3)*(k+6)*...*(k+3*(n-1))*x^k/k!. - Peter Bala, Jun 23 2014

Extensions

New name from Peter Luschny, Jan 19 2016

A008276 Triangle of Stirling numbers of first kind, s(n, n-k+1), n >= 1, 1 <= k <= n. Also triangle T(n,k) giving coefficients in expansion of n!*binomial(x,n)/x in powers of x.

Original entry on oeis.org

1, 1, -1, 1, -3, 2, 1, -6, 11, -6, 1, -10, 35, -50, 24, 1, -15, 85, -225, 274, -120, 1, -21, 175, -735, 1624, -1764, 720, 1, -28, 322, -1960, 6769, -13132, 13068, -5040, 1, -36, 546, -4536, 22449, -67284, 118124, -109584, 40320, 1, -45
Offset: 1

Views

Author

Keywords

Comments

n-th row of the triangle = charpoly of an (n-1) X (n-1) matrix with (1,2,3,...) in the diagonal and the rest zeros. - Gary W. Adamson, Mar 19 2009
From Daniel Forgues, Jan 16 2016: (Start)
For n >= 1, the row sums [of either signed or absolute values] are
Sum_{k=1..n} T(n,k) = 0^(n-1),
Sum_{k=1..n} |T(n,k)| = T(n+1,1) = n!. (End)
The moment generating function of the probability density function p(x, m=q, n=1, mu=q) = q^q*x^(q-1)*E(x, q, 1)/(q-1)!, with q >= 1, is M(a, m=q, n=1, mu=q) = Sum_{k=0..q}(A000312(q) / A000142(q-1)) * A008276(q, k) * polylog(k, a) / a^q , see A163931 and A274181. - Johannes W. Meijer, Jun 17 2016
Triangle of coefficients of the polynomial x(x-1)(x-2)...(x-n+1), also denoted as falling factorial (x)n, expanded into decreasing powers of x. - _Ralf Stephan, Dec 11 2016

Examples

			3!*binomial(x,3) = x*(x-1)*(x-2) = x^3 - 3*x^2 + 2*x.
Triangle begins
  1;
  1,  -1;
  1,  -3,   2;
  1,  -6,  11,   -6;
  1, -10,  35,  -50,  24;
  1, -15,  85, -225, 274, -120;
...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. (Addison-Wesley, 1994), p. 257.

Crossrefs

See A008275 and A048994, which are the main entries for this triangle of numbers.
See A008277 triangle of Stirling numbers of the second kind, S2(n,k).

Programs

  • Haskell
    a008276 n k = a008276_tabl !! (n-1) !! (k-1)
    a008276_row n = a008276_tabl !! (n-1)
    a008276_tabl = map init $ tail a054654_tabl
    -- Reinhard Zumkeller, Mar 18 2014
    
  • Maple
    seq(seq(coeff(expand(n!*binomial(x,n)),x,j),j=n..1,-1),n=1..15); # Robert Israel, Jan 24 2016
    A008276 := proc(n, k): combinat[stirling1](n, n-k+1) end: seq(seq(A008276(n, k), k=1..n), n=1..9); # Johannes W. Meijer, Jun 17 2016
  • Mathematica
    len = 47; m = Ceiling[Sqrt[2*len]]; t[n_, k_] = StirlingS1[n, n-k+1]; Flatten[Table[t[n, k], {n, 1, m}, {k, 1, n}]][[1 ;; len]] (* Jean-François Alcover, May 31 2011 *)
    Flatten@Table[CoefficientList[Product[1-k x, {k, 1, n}], x], {n, 0, 8}] (* Oliver Seipel, Jun 14 2024 *)
    Flatten@Table[Coefficient[Product[x-k, {k, 0, n-1}], x, Reverse@Range[n]], {n, Range[9]}] (* Oliver Seipel, Jun 14 2024, after  Ralf Stephan *)
  • PARI
    T(n,k)=if(n<1,0,n!*polcoeff(binomial(x,n),n-k+1))
    
  • PARI
    T(n,k)=if(n<1,0,n!*polcoeff(polcoeff(y*(1+y*x+x*O(x^n))^(1/y),n),k))
    
  • Sage
    def T(n,k): return falling_factorial(x,n).expand().coefficient(x,n-k+1) # Ralf Stephan, Dec 11 2016

Formula

n!*binomial(x, n) = Sum_{k=1..n-1} T(n, k)*x^(n-k).
|A008276(n, k)| = T(n-1, k-1) where T(n, k) is the triangle, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...]; A008276(n, k) = T(n-1, k-1) where T(n, k) is the triangle, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [ -1, -1, -2, -2, -3, -3, -4, -4, -5, -5, ...]. Here DELTA is the operator defined in A084938. - Philippe Deléham, Dec 30 2003
|T(n, k)| = Sum_{m=0..n} A008517(k, m+1)*binomial(n+m, 2*(k-1)), n >= k >= 1. A008517 is the second-order Eulerian triangle. See the Graham et al. reference p. 257, eq. (6.44).
A094638 formula for unsigned T(n, k).
|T(n, k)| = Sum_{m=0..min(k-1, n-k)} A112486(k-1, m)*binomial(n-1, k-1+m) if n >= k >= 1, else 0. - Wolfdieter Lang, Sep 12 2005, see A112486.
|T(n, k)| = (f(n-1, k-1)/(2*(k-1))!)* Sum_{m=0..min(k-1, n-k)} A112486(k-1, m)*f(2*(k-1), k-1-m)*f(n-k, m) if n >= k >= 1, else 0, where f(n, k) stands for the falling factorial n*(n-1)*...*(n-(k-1)) and f(n, 0):=1. - Wolfdieter Lang, Sep 12 2005, see A112486.
With P(n,t) = Sum_{k=0..n-1} T(n,k+1) * t^k = (1-t)*(1-2*t)*...*(1-(n-1)t) and P(0,t) = 1, exp(P(.,t)*x) = (1+t*x)^(1/t) . Compare A094638. T(n,k+1) = (1/k!) (D_t)^k (D_x)^n ( (1+t*x)^(1/t) - 1 ) evaluated at t=x=0 . - Tom Copeland, Dec 09 2007
Product_{i=1..n} (x-i) = Sum_{k=0..n} T(n,k)*x^k. - Reinhard Zumkeller, Dec 29 2007
E.g.f.: Sum_{n>=0} (Sum_{k=0..n} T(n,n-k)*t^k)/n!) = Sum_{n>=0} (x)n * t^k/n! = exp(x * log(1+t)), with (x)_n the n-th falling factorial polynomial. - _Ralf Stephan, Dec 11 2016
Sum_{j=0..m} T(m, m-j)*s2(j+k+1, m) = m^k, where s2(j, m) are Stirling numbers of the second kind. - Tony Foster III, Jul 25 2019
For n>=2, Sum_{k=1..n} k*T(n,k) = (-1)^(n-1)*(n-2)!. - Zizheng Fang, Dec 27 2020

A193091 Augmentation of the triangular array A158405. See Comments.

Original entry on oeis.org

1, 1, 3, 1, 6, 14, 1, 9, 37, 79, 1, 12, 69, 242, 494, 1, 15, 110, 516, 1658, 3294, 1, 18, 160, 928, 3870, 11764, 22952, 1, 21, 219, 1505, 7589, 29307, 85741, 165127, 1, 24, 287, 2274, 13355, 61332, 224357, 638250, 1217270, 1, 27, 364, 3262, 21789, 115003
Offset: 0

Views

Author

Clark Kimberling, Jul 30 2011

Keywords

Comments

Suppose that P is an infinite triangular array of numbers:
p(0,0)
p(1,0)...p(1,1)
p(2,0)...p(2,1)...p(2,2)
p(3,0)...p(3,1)...p(3,2)...p(3,3)...
...
Let w(0,0)=1, w(1,0)=p(1,0), w(1,1)=p(1,1), and define
W(n)=(w(n,0), w(n,1), w(n,2),...w(n,n-1), w(n,n)) recursively by W(n)=W(n-1)*PP(n), where PP(n) is the n X (n+1) matrix given by
...
row 0 ... p(n,0) ... p(n,1) ...... p(n,n-1) ... p(n,n)
row 1 ... 0 ..... p(n-1,0) ..... p(n-1,n-2) .. p(n-1,n-1)
row 2 ... 0 ..... 0 ............ p(n-2,n-3) .. p(n-2,n-2)
...
row n-1 . 0 ..... 0 ............. p(2,1) ..... p(2,2)
row n ... 0 ..... 0 ............. p(1,0) ..... p(1,1)
...
The augmentation of P is here introduced as the triangular array whose n-th row is W(n), for n>=0. The array P may be represented as a sequence of polynomials; viz., row n is then the vector of coefficients: p(n,0), p(n,1),...,p(n,n), from p(n,0)*x^n+p(n,1)*x^(n-1)+...+p(n,n). For example, (C(n,k)) is represented by ((x+1)^n); using this choice of P (that is, Pascal's triangle), the augmentation of P is calculated one row at a time, either by the above matrix products or by polynomial substitutions in the following manner:
...
row 0 of W: 1, by decree
row 1 of W: 1 augments to 1,1
...polynomial version: 1 -> x+1
row 2 of W: 1,1 augments to 1,3,2
...polynomial version: x+1 -> (x^2+2x+1)+(x+1)=x^2+3x+2
row 3 to W: 1,3,2 augments to 1,6,11,6
...polynomial version:
x^2+3x+2 -> (x+1)^3+3(x+1)^2+2(x+1)=(x+1)(x+2)(x+3)
...
Examples of augmented triangular arrays:
(p(n,k)=1) augments to A009766, Catalan triangle.
Catalan triangle augments to A193560.
Pascal triangle augments to A094638, Stirling triangle.
A002260=((k+1)) augments to A023531.
A154325 augments to A033878.
A158405 augments to A193091.
((k!)) augments to A193092.
A094727 augments to A193093.
A130296 augments to A193094.
A004736 augments to A193561.
...
Regarding the specific augmentation W=A193091: w(n,n)=A003169.
From Peter Bala, Aug 02 2012: (Start)
This is the table of g(n,k) in the notation of Carlitz (p. 124). The triangle enumerates two-line arrays of positive integers
............a_1 a_2 ... a_n..........
............b_1 b_2 ... b_n..........
such that
1) max(a_i, b_i) <= min(a_(i+1), b_(i+1)) for 1 <= i <= n-1
2) max(a_i, b_i) <= i for 1 <= i <= n
3) max(a_n, b_n) = k.
See A071948 and A211788 for other two-line array enumerations.
(End)

Examples

			The triangle P, at A158405, is given by rows
  1
  1...3
  1...3...5
  1...3...5...7
  1...3...5...7...9...
The augmentation of P is the array W starts with w(0,0)=1, by definition of W.
Successive polynomials (rows of W) arise from P as shown here:
  ...
  1->x+3, so that W has (row 1)=(1,3);
  ...
  x+3->(x^2+3x+5)+3*(x+3), so that W has (row 2)=(1,6,14);
  ...
  x^2+6x+14->(x^3+3x^2+5x+7)+6(x^2+3x+5)+14(x+3), so that (row 3)=(1,9,37,79).
  ...
First 7 rows of W:
  1
  1    3
  1    6    14
  1    9    37    79
  1   12    69   242    494
  1   15   110   516   1658    3294
  1   18   160   928   3870   11764   22952
		

Crossrefs

Programs

  • Mathematica
    p[n_, k_] := 2 k + 1
    Table[p[n, k], {n, 0, 5}, {k, 0, n}] (* A158405 *)
    m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
    TableForm[m[4]]
    w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
    v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
    v[n_] := v[n - 1].m[n]
    TableForm[Table[v[n], {n, 0, 6}]] (* A193091 *)
    Flatten[Table[v[n], {n, 0, 9}]]

Formula

From Peter Bala, Aug 02 2012: (Start)
T(n,k) = (n-k+1)/n*Sum_{i=0..k} C(n+1,n-k+i+1)*C(2*n+i+1,i) for 0 <= k <= n.
Recurrence equation: T(n,k) = Sum_{i=0..k} (2*k-2*i+1)*T(n-1,i).
(End)

A238363 Coefficients for the commutator for the logarithm of the derivative operator [log(D),x^n D^n]=d[(xD)!/(xD-n)!]/d(xD) expanded in the operators :xD:^k.

Original entry on oeis.org

1, -1, 2, 2, -3, 3, -6, 8, -6, 4, 24, -30, 20, -10, 5, -120, 144, -90, 40, -15, 6, 720, -840, 504, -210, 70, -21, 7, -5040, 5760, -3360, 1344, -420, 112, -28, 8, 40320, -45360, 25920, -10080, 3024, -756, 168, -36, 9, -362880, 403200, -226800, 86400, -25200, 6048, -1260, 240, -45, 10
Offset: 1

Views

Author

Tom Copeland, Feb 25 2014

Keywords

Comments

Let D=d/dx and [A,B]=A·B-B·A. Then each row corresponds to the coefficients of the operators :xD:^k = x^k D^k in the expansion of the commutator [log(D),:xD:^n]=[-log(x),:xD:^n]=sum(k=0 to n-1, a(n,k) :xD:^k). The e.g.f. is derived from [log(D), exp(t:xD:)]=[-log(x), exp(t:xD:)]= log(1+t)exp(t:xD:), using the shift property exp(t:xD:)f(x)=f((1+t)x).
The reversed unsigned array is A111492.
See the mathoverflow link and link therein to an associated mathstackexchange question for other formulas for log(D). In addition, R_x = log(D) = -log(x) + c - sum[n=1 to infnty, (-1)^n 1/n :xD:^n/n!]=
-log(x) + Psi(1+xD) = -log(x) + c + Ein(:xD:), where c is the Euler-Mascheroni constant, Psi(x), the digamma function, and Ein(x), a breed of the exponential integrals (cf. Wikipedia). The :xD:^k ops. commute; therefore, the commutator reduces to the -log(x) term.
Also the n-th row corresponds to the expansion of d[(xD)!/(xD-n)!]/d(xD) = d[:xD:^n]/d(xD) in the operators :xD:^k, or, equivalently, the coefficients of x in d[z!/(z-n)!]/dz=d[St1(n,z)]]/dz evaluated umbrally with z=St2(.,x), i.e., z^n replaced by St2(n,x), where St1(n,x) and St2(n,x) are the signed and unsigned Stirling polynomials of the first (A008275) and second (A008277) kinds. The derivatives of the unsigned St1 are A028421. See examples. This formalism follows from the relations between the raising and lowering operators presented in the MathOverflow link and the Pincherle derivative. The results can be generalized through the operator relations in A094638, which are related to the celebrated Witt Lie algebra and pseudodifferential operators / symbols, to encompass other integral arrays.
A002741(n)*(-1)^(n+1) (row sums), A002104(n)*(-1)^(n+1) (alternating row sums). Column sequences: A133942(n-1), A001048(n-1), A238474, ... - Wolfdieter Lang, Mar 01 2014
Add an additional head row of zeros to the lower triangular array and denote it as T (with initial indexing in columns and rows being 0). Let dP = A132440, the infinitesimal generator for the Pascal matrix, and I, the identity matrix, then exp(T)=I+dP, i.e., T=log(I+dP). Also, (T_n)^n=0, where T_n denotes the n X n submatrix, i.e., T_n is nilpotent of order n. - Tom Copeland, Mar 01 2014
Any pair of lowering and raising ops. L p(n,x) = n·p(n-1,x) and R p(n,x) = p(n+1,x) satisfy [L,R]=1 which implies (RL)^n = St2(n,:RL:), and since (St2(·,u))!/(St2(·,u)-n)!= u^n, when evaluated umbrally, d[(RL)!/(RL-n)!]/d(RL) = d[:RL:^n]/d(RL) is well-defined and gives A238363 when the LHS is reduced to a sum of :RL:^k terms, exactly as for L=d/dx and R=x above. (Note that R_x above is a raising op. different from x, with associated L_x=-xD.) - Tom Copeland, Mar 02 2014
For relations to colored forests, disposition of flags on flagpoles, and the colorings of the vertices of the complete graphs K_n, encoded in their chromatic polynomials, see A130534. - Tom Copeland, Apr 05 2014
The unsigned triangle, omitting the main diagonal, gives A211603. See also A092271. Related to the infinitesimal generator of A008290. - Peter Bala, Feb 13 2017

Examples

			The first few row polynomials are
p(1,x)=  1
p(2,x)= -1 + 2x
p(3,x)=  2 - 3x + 3x^2
p(4,x)= -6 + 8x - 6x^2 + 4x^3
p(5,x)= 24 -30x +20x^2 -10x^3 + 5x^4
...........
For n=3: z!/(z-3)!=z^3-3z^2+2z=St1(3,z) with derivative 3z^2-6z+2, and
3·St2(2,x)-6·St2(1,x)+2=3(x^2+x)-6x+2=3x^2-3x+2=p(3,x). To see the relation to the operator formalism, note that (xD)^k=St2(k,:xD:) and (xD)!/(xD-k)!=[St2(·,:xD:)]!/[St2(·,:xD:)-k]!= :xD:^k.
The triangle a(n,k) begins:
n\k       0       1       2      3      4     5      6    7   8   9 ...
1:        1
2:       -1       2
3:        2      -3       3
4:       -6       8      -6      4
5:       24     -30      20    -10      5
6:     -120     144     -90     40    -15     6
7:      720    -840     504   -210     70   -21      7
8:    -5040    5760   -3360   1344   -420   112    -28    8
9:    40320  -45360   25920 -10080   3024  -756    168  -36   9
10: -362880  403200 -226800  86400 -25200  6048  -1260  240 -45  10
... formatted by _Wolfdieter Lang_, Mar 01 2014
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := (-1)^(n-k-1)*n!/((n-k)*k!); Table[a[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 09 2015 *)

Formula

a(n,k) = (-1)^(n-k-1)*n!/((n-k)*k!) for k=0 to (n-1).
E.g.f.: log(1+t)*exp(x*t).
E.g.f.for unsigned array: -log(1-t)*exp(x*t).
The lowering op. for the row polynomials is L=d/dx, i.e., L p(n,x) = n*p(n-1,x).
An e.g.f. for an unsigned related version is -log(1+t)*exp(x*t)/t= exp(t*s(·,x)) with s(n,x)=(-1)^n * p(n+1,-x)/(n+1). Let L=d/dx and R= x-(1/((1-D)log(1-D))+1/D),then R s(n,x)= s(n+1,x) and L s(n,x)= n*s(n-1,x), defining a special Sheffer sequence of polynomials, an Appell sequence. So, R (-1)^(n-1) p(n,-x)/n = (-1)^n p(n+1,-x)/(n+1).
From Tom Copeland, Apr 17 2014: (Start)
Dividing each diagonal by its first element (-1)^(n-1)*(n-1)! yields the reverse of A104712.
Multiply each n-th diagonal of the Pascal lower triangular matrix by x^n and designate the result as A007318(x) = P(x). Then with dP = A132440, M = padded A238363 = A238385-I, I = identity matrix, and (B(.,x))^n = B(n,x) = the n-th Bell polynomial Bell(n,x) of A008277,
A) P(x)= exp(x*dP) = exp[x*(e^M-I)] = exp[M*B(.,x)] = (I+dP)^B(.,x), and
B) P(:xD:)=exp(dP:xD:)=exp[(e^M-I):xD:]=exp[M*B(.,:xD:)]=exp[M*xD]=
(1+dP)^(xD) with action P(:xD:)g(x) = exp(dP:xD:)g(x) = g[(I+dP)*x].
C) P(x)^m = P(m*x). P(2x) = A038207(x) = exp[M*B(.,2x)], face vectors of n-D hypercubes. (End)
From Tom Copeland, Apr 26 2014: (Start)
M = padded A238363 = A238385-I
A) = [St1]*[dP]*[St2] = [padded A008275]*A132440*A048993
B) = [St1]*[dP]*[St1]^(-1)
C) = [St2]^(-1)*[dP]*[St2]
D) = [St2]^(-1)*[dP]*[St1]^(-1),
where [St1]=padded A008275 just as [St2]=A048993=padded A008277.
E) P(x) = [St2]*exp(x*M)*[St1] = [St2]*(I + dP)^x*[St1].
F) exp(x*M) = [St1]*P(x)*[St2] = (I + dP)^x,
where (I + dP)^x = sum(k>=0, C(x,k)*dP^k).
Let the row vector Rv=(c0 c1 c2 c3 ...) and the column vector Cv(x)=(1 x x^2 x^3 ...)^Transpose. Form the power series V(x)= Rv * Cv(x) and W(y) := V(x.) evaluated umbrally with (x.)^n = x_n = (y)_n = y!/(y-n)!. Then
G) U(:xD:) = dV(:xD:)/d(xD) = dW(xD)/d(xD) evaluated with (xD)^n = Bell(n,:xD:),
H) U(x) = dV(x.)/dy := dW(y)/dy evaluated with y^n=y_n=Bell(n,x), and
I) U(x) = Rv * M * Cv(x). (Cf. A132440, A074909.) (End)
The Bernoulli polynomials Ber_n(x) are related to the polynomials q_n(x) = p(n+1,x) / (n+1) with the e.g.f. [log(1+t)/t] e^(xt) (cf. s_n (x) above) as Ber_n(x) = St2_n[q.(St1.(x))], umbrally, or [St2]*[q]*[St1], in matrix form. Since q_n(x) is an Appell sequence of polynomials, q_n(x) = [log(1+D_x)/D_x]x^n. - Tom Copeland, Nov 06 2016

Extensions

Pincherle formalism added by Tom Copeland, Feb 27 2014

A143491 Unsigned 2-Stirling numbers of the first kind.

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 24, 26, 9, 1, 120, 154, 71, 14, 1, 720, 1044, 580, 155, 20, 1, 5040, 8028, 5104, 1665, 295, 27, 1, 40320, 69264, 48860, 18424, 4025, 511, 35, 1, 362880, 663696, 509004, 214676, 54649, 8624, 826, 44, 1, 3628800, 6999840, 5753736, 2655764
Offset: 2

Views

Author

Peter Bala, Aug 20 2008

Keywords

Comments

Essentially the same as A136124 but with column numbers differing by one. See A049444 for a signed version of this array. The unsigned 2-Stirling numbers of the first kind count the permutations of the set {1,2,...,n} into k disjoint cycles, with the restriction that the elements 1 and 2 belong to distinct cycles. This is the particular case r = 2 of the unsigned r-Stirling numbers of the first kind, which count the permutations of the set {1,2,...,n} into k disjoint cycles, with the restriction that the numbers 1, 2, ..., r belong to distinct cycles. The case r = 1 gives the usual unsigned Stirling numbers of the first kind, abs(A008275); for other cases see A143492 (r = 3) and A143493 (r = 4). The corresponding 2-Stirling numbers of the second kind can be found in A143494.
In general, the lower unitriangular array of unsigned r-Stirling numbers of the first kind (with suitable offsets in the row and column indexing) equals the matrix product St1 * P^(r-1), where St1 is the array of unsigned Stirling numbers of the first kind, abs(A008275) and P is Pascal's triangle, A007318. The theory of r-Stirling numbers of both kinds is developed in [Broder]. For details of the related r-Lah numbers see A143497.
This sequence also represents the number of permutations in the alternating group An of length k, where the length is taken with respect to the generators set {(12)(ij)}. For a bijective proof of the relation between these numbers and the 2-Stirling numbers of the first kind see the Rotbart link. - Aviv Rotbart, May 05 2011
With offset n=0,k=0 : triangle T(n,k), read by rows, given by [2,1,3,2,4,3,5,4,6,5,...] DELTA [1,0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 29 2011
With offset n=0 and k=0, this is the Sheffer triangle (1/(1-x)^2,-log(1-x)) (in the umbral notation of S. Roman's book this would be called Sheffer for (exp(-2*t),1-exp(-t))). See the e.g.f. given below. Compare also with the e.g.f. for the signed version A049444. - Wolfdieter Lang, Oct 10 2011
Reversed rows correspond to the Betti numbers of the moduli space M(0,n) of smooth Riemann surfaces (see Murri link). - Tom Copeland, Sep 19 2012

Examples

			Triangle begins
  n\k|.....2.....3.....4.....5.....6.....7
  ========================================
  2..|.....1
  3..|.....2.....1
  4..|.....6.....5.....1
  5..|....24....26.....9.....1
  6..|...120...154....71....14.....1
  7..|...720..1044...580...155....20.....1
  ...
T(4,3) = 5. The permutations of {1,2,3,4} with 3 cycles such that 1 and 2 belong to different cycles are: (1)(2)(3 4), (1)(3)(24), (1)(4)(23), (2)(3)(14) and (2)(4)(13). The remaining possibility (3)(4)(12) is not allowed.
From _Aviv Rotbart_, May 05 2011: (Start)
Example of the alternating group permutations numbers:
Triangle begins
  n\k|.....0.....1.....2.....3.....4.....5.....6.....7
  ====================================================
  2..|.....1
  3..|.....1.....2
  4..|.....1.....5.....6
  5..|.....1.....9....26....24
  6..|.....1....14....71...154...120
  7..|.....1....20...155...580..1044..720
A(n,k) = number of permutations in An of length k, with respect to the generators set {(12)(ij)}. For example, A(2,0)=1 (only the identity is there), for A4, the generators are {(12)(13),(12)(14),(12,23),(12)(24),(12)(34)}, thus we have A(4,1)=5 (exactly 5 generators), the permutations of length 2 are:
   (12)(13)(12)(13) = (312)
   (12)(13)(12)(14) = (41)(23)
   (12)(13)(12)(24) = (432)(1)
   (12)(13)(12)(34) = (342)(1)
   (12)(23)(12)(24) = (13)(24)
   (12)(14)(12)(14) = (412)(3)
Namely, A(4,2)=6. Together with the identity [=(12)(12), of length 0. therefore A(4,0)=1] we have 12 permutations, comprising all A4 (4!/2=12). (End)
		

Crossrefs

Cf. A001705 - A001709 (column 3..7), A001710 (row sums), A008275, A049444 (signed version), A136124, A143492, A143493, A143494, A143497.
Cf. A094638.

Programs

  • Maple
    with combinat: T := (n, k) -> (n-2)! * add((n-j-1)*abs(stirling1(j,k-2))/j!,j = k-2..n-2): for n from 2 to 10 do seq(T(n, k), k = 2..n) end do;
  • Mathematica
    t[n_, k_] := (n-2)!*Sum[(n-j-1)*Abs[StirlingS1[j, k-2]]/j!, {j, k-2, n-2}]; Table[t[n, k], {n, 2, 11}, {k, 2, n}] // Flatten (* Jean-François Alcover, Apr 16 2013, after Maple *)

Formula

T(n,k) = (n-2)! * Sum_{j = k-2 .. n-2} (n-j-1)*|stirling1(j,k-2)|/j!.
Recurrence relation: T(n,k) = T(n-1,k-1) + (n-1)*T(n-1,k) for n > 2, with boundary conditions: T(n,1) = T(1,n) = 0, for all n; T(2,2) = 1; T(2,k) = 0 for k > 2.
Special cases: T(n,2) = (n-1)!; T(n,3) = (n-1)!*(1/2 + 1/3 + ... + 1/(n-1)).
T(n,k) = Sum_{2 <= i_1 < ... < i_(n-k) < n} (i_1*i_2*...*i_(n-k)). For example, T(6,4) = Sum_{2 <= i < j < 6} (i*j) = 2*3 + 2*4 + 2*5 + 3*4 + 3*5 + 4*5 = 71.
Row g.f.: Sum_{k = 2..n} T(n,k)*x^k = x^2*(x+2)*(x+3)*...*(x+n-1).
E.g.f. for column (k+2): Sum_{n>=k} T(n+2,k+2)*x^n/n! = (1/k!)*(1/(1-x)^2)*(log(1/(1-x)))^k.
E.g.f.: (1/(1-t))^(x+2) = Sum_{n>=0} Sum_{k = 0..n} T(n+2,k+2)*x^k*t^n/n! = 1 + (2+x)*t/1! + (6+5*x+x^2)*t^2/2! + ... .
This array is the matrix product St1 * P, where St1 denotes the lower triangular array of unsigned Stirling numbers of the first kind, abs(A008275) and P denotes Pascal's triangle, A007318. The row sums are n!/2 ( A001710 ). The alternating row sums are (n-2)!.
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a - j), then T(n-1,i) = |f(n,i,2)|, for n=1,2,...; i=0..n. - Milan Janjic, Dec 21 2008
From Gary W. Adamson, Jul 19 2011: (Start)
n-th row of the triangle = top row of M^(n-2), M = a reversed variant of the (1,2) Pascal triangle (Cf. A029635); as follows:
2, 1, 0, 0, 0, 0, ...
2, 3, 1, 0, 0, 0, ...
2, 5, 4, 1, 0, 0, ...
2, 7, 9, 5, 1, 0, ...
... (End)
The reversed, row polynomials of this entry multiplied by (1+x) are the row polynomials of A094638. E.g., (1+x)(1+5x+6x^2) = (1+6x+11x^2+6x^3). - Tom Copeland, Dec 11 2016

A099731 This table shows the coefficients of sum formulas of n-th Fibonacci numbers (A000045). The k-th row (k>=1) contains T(i,k) for i=1 to k, where k=[2*n+1+(-1)^(n-1)]/4 and T(i,k) satisfies F(n)= Sum_{i=1..k} T(i,k) * n^(k-i)/(k-1)!.

Original entry on oeis.org

1, 1, -1, 1, -5, 10, 1, -12, 59, -90, 1, -22, 203, -830, 1320, 1, -35, 525, -3985, 15374, -23640, 1, -51, 1135, -13665, 93544, -342324, 523440, 1, -70, 2170, -37870, 399889, -2542540, 8997540, -13633200, 1, -92, 3794, -90440, 1356929, -13076588, 78896236, -271996080, 409852800, 1, -117, 6198, -193410
Offset: 1

Views

Author

André F. Labossière, Nov 08 2004

Keywords

Examples

			F(13)=233; substituting n=13 in the formula of the k-th row we obtain k=7 and the coefficients
T(i,7) will be the following: 1,-51,1135,-13665,93544,-342324,523440,
=> F(13) = [13^6-51*13^5+1135*13^4-13665*13^3+93544*13^2-342324*13+523440]/6! = 233.
		

Crossrefs

A075181 Coefficients of certain polynomials (rising powers).

Original entry on oeis.org

1, 2, 1, 6, 6, 2, 24, 36, 22, 6, 120, 240, 210, 100, 24, 720, 1800, 2040, 1350, 548, 120, 5040, 15120, 21000, 17640, 9744, 3528, 720, 40320, 141120, 231840, 235200, 162456, 78792, 26136, 5040, 362880, 1451520, 2751840, 3265920, 2693880, 1614816
Offset: 1

Views

Author

Wolfdieter Lang, Sep 19 2002

Keywords

Comments

This is the unsigned triangle A048594 with rows read backwards.
The row polynomials p(n,y) := Sum_{m=0..n-1}a(n,m)*y^m, n>=1, are obtained from (log(x)*(-x*log(x))^n)*(d^n/dx^n)(1/log(x)), n>=1, after replacement of log(x) by y.
The gcd of row n is A075182(n). Row sums give A007840(n), n>=1.
The columns give A000142 (factorials), A001286 (Lah), 2* A075183, 2*A075184, 4*A075185, 4!*A075186, 4!*A075187 for m=0..6.
Coefficients T(n,k) of the differential operator expansion
[x^(1+y)D]^n = x^(n*y)[T(n,1)* (xD)^n / n! + y * T(n,2)* (xD)^(n-1) / (n-1)! + ... + y^(n-1) * T(n,n) * (xD)], where D = d/dx. Note that (xD)^n = Bell(n,:xD:), where (:xD:)^n = x^n * D^n and Bell(n,x) are the Bell / Touchard polynomials. See A094638. - Tom Copeland, Aug 22 2015

Examples

			Triangle starts:
1;
2,1;
6,6,2;
24,36,22,6;
...
n=2: (x^2*log(x)^3)*(d^2/d^x^2)(1/log(x)) = 2 + log(x).
		

Crossrefs

Programs

  • Maple
    seq(seq(k!*abs(Stirling1(n,k)),k=n..1,-1),n=1..10); # Robert Israel, Jul 12 2015
  • Mathematica
    Table[ Table[ k!*StirlingS1[n, k] // Abs, {k, 1, n}] // Reverse, {n, 1, 9}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
  • PARI
    {T(n, k)= if(k<0 || k>=n, 0, (-1)^k* stirling(n, n-k)* (n-k)!)} /* Michael Somos Apr 11 2007 */

Formula

a(n, m) = (n-m)!*|S1(n, n-m)|, n>=m+1>=1, else 0, with S1(n, m) := A008275(n, m) (Stirling1).
a(n, m) = (n-m)*a(n-1, m)+(n-1)*a(n-1, m-1), if n>=m+1>=1, a(n, -1) := 0 and a(1, 0)=1, else 0.

A101032 Table (read by rows) giving the coefficients of sum formulas of n-th Lucas numbers (A000204). The k-th row (k>=1) contains T(i,k) for i=1 to k, where k=[2*n+1+(-1)^(n-1)]/4 and T(i,k) satisfies L(n) = Sum_{i=1..k} T(i,k) * n^(k-i) / (k-1)!.

Original entry on oeis.org

1, 1, 1, 1, -1, 2, 1, -6, 17, 6, 1, -14, 83, -142, 24, 1, -25, 265, -1235, 2314, 120, 1, -39, 655, -5565, 24184, -41556, 720, 1, -56, 1372, -18200, 137599, -556304, 944628, 5040, 1, -76, 2562, -48664, 560049, -3884524, 15021068, -24875376, 40320, 1, -99, 4398, -113022, 1829793, -19043451
Offset: 1

Views

Author

André F. Labossière, Nov 30 2004

Keywords

Examples

			L(13)=521; substituting n=13 in the formula of the k-th row we obtain k=7 and the coefficients
T(i,7) will be the following: 1,-39,655,-5565,24184,-41556,720,
=> L(13) = [13^6-39*13^5+655*13^4-5565*13^3+24184*13^2-41556*13+720]/6! = 521.
		

Crossrefs

A004117 Numerators of expansion of (1-x)^(-1/3).

Original entry on oeis.org

1, 1, 2, 14, 35, 91, 728, 1976, 5434, 135850, 380380, 1071980, 9111830, 25933670, 74096200, 637227320, 1832028545, 5280552865, 137294374490, 397431084050, 1152550143745, 10043651252635, 29217894553120, 85112997176480
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is also the numerator of beta(n+1/3,2/3)*sqrt(27)/(2*Pi). - Groux Roland, May 17 2011

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Binomial[-1/3,n] (-1)^n],{n,0,40}] (* Vincenzo Librandi, Jun 13 2012 *)
  • PARI
    a(n)=prod(k=1,n,3*k-2)/n!*3^sum(k=1,n,valuation(k,3))

Formula

(1/n!) * 3^A054861(n) * Product_{k=0..n-1} (3k+1). - Ralf Stephan, Mar 13 2004
Numerators in (1-3t)^(-1/3) = 1 + t + 2*t^2 + (14/3)*t^3 + (35/3)*t^4 + (91/3)*t^5 + (728/9)*t^6 + (1976/9)*t^7 + (5434/9)*t^8 + ... = 1 + t + 4*t^2/2! + 28*t^3/3! + 280*t^4/4! + 3640*t^5/5! + 58240*t^6/6! + ... = e.g.f. for triple factorials A007559 (cf. A094638). - Tom Copeland, Dec 04 2013

Extensions

Typo in formula fixed by Pontus von Brömssen, Nov 25 2008

A094639 Partial sums of squares of Catalan numbers (A000108).

Original entry on oeis.org

1, 2, 6, 31, 227, 1991, 19415, 203456, 2248356, 25887400, 307993016, 3763786812, 47032778956, 598933188956, 7751562502556, 101741582076581, 1351906409905481, 18159677984049581, 246298405721739581
Offset: 0

Views

Author

André F. Labossière, May 27 2004

Keywords

Comments

Koshy and Salmassi give an elementary proof that the only prime Catalan numbers are A000108(2) = 2 and A000108(3) = 5. Franklin T. Adams-Watters showed that the only semiprime Catalan number is A000108(4) = 14. The subsequence of primes in the partial sum of squares of Catalan numbers begins: 2, 31, 227, 101741582076581. [Jonathan Vos Post, May 27 2010]
Conjecture: For any positive integer n, the polynomial P_n(x) = sum_{k = 0}^n(C_k)^2*x^k (with C_k = binomial(2k, k)/(k+1)) is irreducible over the field of rational numbers. [Zhi-Wei Sun, Mar 23 2013]

Crossrefs

Programs

  • Mathematica
    Accumulate[CatalanNumber[Range[0,20]]^2] (* Harvey P. Dale, May 01 2011 *)

Formula

a(n) = Sum_{k=0..n} ((2k)!/(k!)^2/(k+1))^2. - Alexander Adamchuk, Feb 16 2008
Sum_{i=1..n} [c(i)]^2 = Sum_{i=1..n} [C(2*i-2, i-1)/i]^2 = (1/(n-1)!)^2 * [ n^C(2*n-4, 1) + {2*C(n-1, 2)}*n^(2*n-5) + {C(n-2, 0) + 4*C(n-2, 1) + 13*C(n-2, 2) + 22*C(n-2, 3) + 12*C(n-2, 4)}*n^C(2*n-6, 1) + {12*C(n-3, 1) + 152*C(n-3, 2) + 458*C(n-3, 3) + 640*C(n-3, 4) + 440*C(n-3, 5) + 120*C(n-3, 6)}*n^(2*n-7) + {40*C(n-4, 0) + 313*C(n-4, 1) + 2332*C(n-4, 2) + 9536*C(n-4, 3) + 21409*C(n-4, 4) + 28068*C(n-4, 5) + 21700*C(n-4, 6) + 9240*C(n-4, 7) + 1680*C(n-4, 8) + ... + C(n-3, 0)*((n-1)!)^2 ].
Recurrence: (n+1)^2*a(n) = (17*n^2 - 14*n + 5)*a(n-1) - 4*(2*n - 1)^2*a(n-2). - Vaclav Kotesovec, Jul 01 2016
a(n) ~ 2^(4*n+4) /(15*Pi*n^3). - Vaclav Kotesovec, Jul 01 2016
Previous Showing 21-30 of 62 results. Next