cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A060540 Square array read by antidiagonals downwards: T(n,k) = (n*k)!/(k!^n*n!), (n>=1, k>=1), the number of ways of dividing nk labeled items into n unlabeled boxes with k items in each box.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 10, 15, 1, 1, 35, 280, 105, 1, 1, 126, 5775, 15400, 945, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1, 6435, 66512160, 96197645544, 5194672859376, 4509264634875, 36212176000, 2027025, 1
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Comments

The Copeland link gives the associations of this entry with the operator calculus of Appell Sheffer polynomials, the combinatorics of simple set partitions encoded in the Faa di Bruno formula for composition of analytic functions (formal Taylor series), the Pascal matrix, and the geometry of the n-dimensional simplices (hypertriangles, or hypertetrahedra). These, in turn, are related to simple instances of the application of the exponential formula / principle / schema giving the number of not-necessarily-connected objects composed from an ensemble of connected objects. - Tom Copeland, Jun 09 2021

Examples

			Array begins:
  1,   1,       1,          1,             1,                 1, ...
  1,   3,      10,         35,           126,               462, ...
  1,  15,     280,       5775,        126126,           2858856, ...
  1, 105,   15400,    2627625,     488864376,       96197645544, ...
  1, 945, 1401400, 2546168625, 5194672859376, 11423951396577720, ...
  ...
		

Crossrefs

Main diagonal is A057599.
Related to A057599, see also A096126 and A246048.
Cf. A060358, A361948 (includes row/col 0).
Cf. A000217, A000292, A000332, A000389, A000579, A000580, A007318, A036040, A099174, A133314, A132440, A135278 (associations in Copeland link).

Programs

  • Mathematica
    T[n_, k_] := (n*k)!/(k!^n*n!);
    Table[T[n-k+1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 29 2018 *)
  • PARI
    { i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060540.txt", i++, " ", (n*k)!/(k!^n*n!))); ) } \\ Harry J. Smith, Jul 06 2009

Formula

T(n,k) = (n*k)!/(k!^n*n!) = T(n-1,k)*A060543(n,k) = A060538(n,k)/k!.
T(n,k) = Product_{j=2..n} binomial(j*k-1,k-1). - M. F. Hasler, Aug 22 2014

Extensions

Definition reworded by M. F. Hasler, Aug 23 2014

A001464 Expansion of e.g.f. exp(-x - (1/2)*x^2).

Original entry on oeis.org

1, -1, 0, 2, -2, -6, 16, 20, -132, -28, 1216, -936, -12440, 23672, 138048, -469456, -1601264, 9112560, 18108928, -182135008, -161934624, 3804634784, -404007680, -83297957568, 92590134208, 1906560847424, -4221314202624, -45349267830400, 159324751301248
Offset: 0

Views

Author

Keywords

Comments

From Robert Israel, Apr 27 2017: (Start)
(-1)^n*a(n) is (the number of even involutions) - (the number of odd involutions) in the symmetric group S_n.
a(n) == (-1)^n (mod A069834(n-1)) for n >= 3.
a(n) is divisible by n-2 and by A200675(n+2). (End)

Examples

			G.f. = 1 - x + 2*x^3 - 2*x^4 - 6*x^5 + 16*x^6 + 20*x^7 - 132*x^8 + ...
		

References

  • Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, Dover Publications, New York, 1945, page 32.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(-x-x^2/2) ))); // G. C. Greubel, Sep 03 2023
    
  • Maple
    f:= gfun:-rectoproc({a(n)=-a(n-1)-(n-1)*a(n-2), a(0)=1,a(1)=-1},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Apr 27 2017
    a := n -> (-1)^n*2^((n-1)/2)*KummerU((1-n)/2, 3/2, 1/2): seq(simplify(a(n)), n=0..28); # Peter Luschny, Apr 30 2017
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[-x-1/2 x^2],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Sep 16 2011 *)
    a[ n_] := If[ n < 0, 0, HermiteH[ n, Sqrt[1/2]] (-Sqrt[1/2])^n]; (* Michael Somos, Jan 24 2014 *)
    a[ n_] := If[ n < 0, 0, (-1)^n Sum[ (-1)^k Binomial[ n, 2 k] (2 k - 1)!!, {k, 0, n/2}]]; (* Michael Somos, Jan 24 2014 *)
    Table[(-1)^(n + 1)*DifferenceRoot[Function[{y, m}, {y[1 + m] == y[m] - (n - m) y[m - 1], y[0] == 0, y[1] == 1, y[2] == 1}]][n], {n, 1, 30}] (* Benedict W. J. Irwin, Nov 03 2016 *)
  • PARI
    Vec( serlaplace( exp( -x -(1/2)*x^2 + O(x^66) ) ) ) /* Joerg Arndt, Oct 13 2012 */
    
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sum(k=0, n\2, (-1/2)^k * n! / (k! * (n - 2*k)!)))}; /* Michael Somos, Jan 24 2014 */
    
  • SageMath
    def A001464_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-x-x^2/2) ).egf_to_ogf().list()
    A001464_list(40) # G. C. Greubel, Sep 03 2023

Formula

From Benoit Cloitre, May 01 2003: (Start)
a(n) = -h(n, -1) where h(n, x) is the Hermite polynomial h(n, x) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n, 2*k)*Product_{i=0..k} (2*i-1)*x^(n-2*k).
a(n) = (-1)^n*Sum_{k=0..floor(n/2)} (-1)^k*C(n, 2*k)*(2k-1)!!. (End)
a(n) = -a(n-1) - (n-1)*a(n-2); a(0)=1, a(1)=-1. - Matthew J. White (mattjameswhite(AT)hotmail.com), Mar 01 2006
From Sergei N. Gladkovskii, Oct 12 2012, Nov 04 2012, Apr 17 2013, Nov 13 2013: (Start)
Continued fractions:
G.f.: 1/(U(0) + x) where U(k) = 1 + x*(k+1) - x*(k+1)/(1 + x/U(k+1)).
G.f.: 1/U(0) where U(k) = 1 + x + x^2*(k+1)/U(k+1).
G.f.: 1/Q(0) where Q(k) = 1 + x*k + x/(1 - x*(k+1)/Q(k+1)).
G.f.: T(0)/(1+x) where T(k) = 1 - x^2*(k+1)/(x^2*(k+1) + (1+x)^2/T(k+1)). (End)
From Michael Somos, Jan 24 2014: (Start)
Binomial transform is [1, 0, -1, 0, 3, 0, -15, 0, 105, ...] where A001147 = [1, 1, 3, 15, 105, ...].
Hankel transform is [1, -1, -2, 12, 288, -34560, -24883200, ...] where A000178 = [1, 1, 2, 12, 288, 34560, 24883200, ...].
0 = a(n) * (-a(n+1) - a(n+2) - a(n+3)) + a(n+1) * (a(n+1) + a(n+2)) for all n in Z. (End)
a(n) = -(-1)^n*y(n,n), where y(m+1,n) = y(m,n) - (n-m)*y(m-1,n), with y(0,n)=0, y(1,n)=y(2,n)=1 for all n. - Benedict W. J. Irwin, Nov 03 2016
a(n) = (-1)^n*2^((n-1)/2)*KummerU((1-n)/2, 3/2, 1/2). - Peter Luschny, Apr 30 2017
a(n) = Sum_{k=0..n} 2^k * Stirling1(n,k) * Bell_k(-1/2), where Bell_n(x) is n-th Bell polynomial. - Seiichi Manyama, Jan 31 2024

Extensions

a(12) and a(13) corrected by Simon Plouffe

A066325 Coefficients of unitary Hermite polynomials He_n(x).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -3, 0, 1, 3, 0, -6, 0, 1, 0, 15, 0, -10, 0, 1, -15, 0, 45, 0, -15, 0, 1, 0, -105, 0, 105, 0, -21, 0, 1, 105, 0, -420, 0, 210, 0, -28, 0, 1, 0, 945, 0, -1260, 0, 378, 0, -36, 0, 1, -945, 0, 4725, 0, -3150, 0, 630, 0, -45, 0, 1, 0, -10395, 0, 17325, 0, -6930, 0, 990, 0, -55, 0, 1
Offset: 0

Views

Author

Christian G. Bower, Dec 14 2001

Keywords

Comments

Also number of involutions on n labeled elements with k fixed points times (-1)^(number of 2-cycles).
Also called normalized Hermite polynomials.
He_n(x) := H_n(x/sqrt(2)) / sqrt(2)^n, with the coefficients of H_n(x) given in A060821. See the Maple program. - Wolfdieter Lang, Jan 13 2020

Examples

			Triangle begins:
    1;
    0,     1;
   -1,     0,   1;
    0,    -3,   0,    1;
    3,     0,  -6,    0,   1;
    0,    15,   0,  -10,   0,   1;
  -15,     0,  45,    0, -15,   0,  1;
    0,  -105,   0,  105,   0, -21,  0, 1;
  ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 89,94 (2.3.41,54).

Crossrefs

Row sums: A001464 (with different signs).
Row sums of absolute values: A000085.
Absolute values are given in A099174.
Cf. A159834, A001147, A060821 (Hermite H_n(x)).

Programs

  • Maple
    Q:= [seq(orthopoly[H](n,x/sqrt(2))/2^(n/2), n=0..20)]:
    seq(seq(coeff(Q[n+1],x,k),k=0..n),n=0..20); # Robert Israel, Jan 01 2016
    # Alternative:
    T := proc(n,k) option remember; if k > n then 0 elif n = k then 1 else
    (T(n, k+2)*(k+2)*(k+1))/(k-n) fi end:
    seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # Peter Luschny, Jan 08 2023
  • Mathematica
    H[0, x_] = 1; H[1, x_] := x; H[n_, x_] := H[n, x] = x*H[n-1, x] - (n-1)*H[n-2, x] // Expand; Table[CoefficientList[H[n, x], x], {n, 0, 11}] // Flatten (* Jean-François Alcover, May 11 2015 *)
  • PARI
    for(n=0, 12, for(k=0,n, print1(if(Mod(n-k,2)==0, (-2)^((k-n)/2)*n!/(k!*((n-k)/2)!), 0), ", "))) \\ G. C. Greubel, Nov 23 2018
  • Python
    from sympy import Poly
    from sympy.abc import x
    def H(n, x): return 1 if n==0 else x if n==1 else x*H(n - 1, x) - (n - 1)*H(n - 2, x)
    def a(n): return Poly(H(n, x), x).all_coeffs()[::-1]
    for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
    
  • Sage
    def A066325_row(n):
        T = [0]*(n+1)
        if n==1: return [1]
        for m in (1..n-1):
            a,b,c = 1,0,0
            for k in range(m,-1,-1):
                r = a - (k+1)*c
                if k < m : T[k+2] = u;
                a,b,c = T[k-1],a,b
                u = r
            T[1] = u;
        return T[1:]
    for n in (1..11): A066325_row(n)  # Peter Luschny, Nov 01 2012
    
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(exp(-x^2/2), x, 8, True) # Peter Luschny, Nov 23 2018
    

Formula

T(n, k) = (-2)^((k-n)/2)*n!/(k!*((n-k)/2)!) for n-k even, 0 otherwise.
E.g.f. of row polynomials {He_n(y)}: A(x, y) = exp(x*y - x^2/2).
The umbral compositional inverses (cf. A001147) of the polynomials He(n,x) are given by the same polynomials unsigned, A099174. - Tom Copeland, Nov 15 2014
Exp(-D^2/2) x^n = He_n(x) = p_n(x+1) with D = d/dx and p_n(x), the row polynomials of A159834. These are an Appell sequence of polynomials with lowering and raising operators L = D and R = x - D. - Tom Copeland, Jun 26 2018

A137286 Triangle of coefficients of a version of the Hermite polynomials defined by P(x, n) = x*P(x, n - 1) - n*P(x, n - 2).

Original entry on oeis.org

1, 0, 1, -2, 0, 1, 0, -5, 0, 1, 8, 0, -9, 0, 1, 0, 33, 0, -14, 0, 1, -48, 0, 87, 0, -20, 0, 1, 0, -279, 0, 185, 0, -27, 0, 1, 384, 0, -975, 0, 345, 0, -35, 0, 1, 0, 2895, 0, -2640, 0, 588, 0, -44, 0, 1, -3840, 0, 12645, 0, -6090, 0, 938, 0, -54, 0, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 14 2008

Keywords

Comments

From R. J. Mathar, Jun 09 2008: (Start)
Hochstadt defines the standard Hermite polynomials of A066325 via H(x,n+1)=x*H(x,n)-n*H(x,n-1); note the index shift relative to the definition in the current sequence.
As a consequence, the polynomials defined here are orthogonal with weight exp(-x^2/2) in a restricted sense than the usual Hermite Polynomials, i.e. the integral of P(x,n)*P(x,m)*exp(-x^2/2) over x=-infinity..infinity vanishes for m=n-1 (mod 2), as for any system of polynomials with separated even and odd functions, but not for the general case of m<>n as with the Hermite polynomials H(x,n) or other classical polynomials. (End)

Examples

			{1},
{0, 1},
{-2, 0, 1},
{0, -5, 0, 1},
{8, 0, -9, 0, 1},
{0, 33, 0, -14, 0, 1},
{-48, 0, 87, 0, -20, 0, 1},
{0, -279, 0, 185, 0, -27, 0, 1},
{384, 0, -975, 0, 345, 0, -35, 0, 1},
{0, 2895, 0, -2640, 0, 588, 0, -44, 0, 1},
{-3840, 0, 12645, 0, -6090, 0, 938, 0, -54, 0, 1}
		

References

  • Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 198, pp. 8, 42-43.

Crossrefs

Cf. A066325.
Cf. A099174.

Programs

  • Mathematica
    P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; Table[ExpandAll[P[x, n]], {n, 0, 10}]; a = Table[CoefficientList[P[x, n], x], {n, 0, 10}]; Flatten[a]
  • PARI
    polx(n) = if (n == 0, 1, if (n == 1, x, x*polx(n - 1) - n*polx(n - 2)));
    tabl(nn) = {for (n = 0, nn, pol = polx (n); for (i = 0, n, print1(polcoeff(pol, i), ", ");); print(););} \\ Michel Marcus, Feb 12 2014
    
  • Python
    from sympy import Poly
    from sympy.abc import x
    def P(x, n): return 1 if n==0 else x if n==1 else x*P(x, n - 1) - n*P(x, n - 2)
    def a(n): return Poly(P(x, n), x).all_coeffs()[::-1]
    for n in range(11): print(a(n)) # Indranil Ghosh, May 26 2017

Formula

P(x,0)=1; P(x,1)=x; P(x, n) = x*P(x, n - 1) - n*P(x, n - 2)

Extensions

Edited by N. J. A. Sloane, Jul 01 2008

A130757 Triangular table of coefficients of Laguerre-Sonin polynomials n!*2^n*Lag(n,x/2,1/2) of order 1/2.

Original entry on oeis.org

1, 3, -1, 15, -10, 1, 105, -105, 21, -1, 945, -1260, 378, -36, 1, 10395, -17325, 6930, -990, 55, -1, 135135, -270270, 135135, -25740, 2145, -78, 1, 2027025, -4729725, 2837835, -675675, 75075, -4095, 105, -1, 34459425, -91891800, 64324260, -18378360, 2552550, -185640, 7140, -136
Offset: 0

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

These polynomials appear in the radial l=0 (s) wave functions of the isotropic three-dimensional harmonic quantum oscillator with the dimensionless variable x=(r/L)^2 with r>=0 and L^2=h/(m*f0). h is Planck's constant and m and f0 are the mass and the frequency of the oscillator.
From Tom Copeland, Dec 13 2015: (Start)
See A099174 for relations to the Hermite polynomials and the link in A176230 for operator relations. The infinitesimal generator for this matrix contains A014105.
The row polynomials are P(n,x) = 2^n n! Lag(n,x/2,1/2), where Lag(n,x,q) is the associated Laguerre polynomial of order q, with raising operator R = -x^(-2) [x^(3/2) (1 - 2D)]^2 = 3 - x + (4x - 6) D - 4x D^2 with D = d/dx, i.e., R P(n,x) - P(n+1,x). A matrix reresentation of R acting on an o.g.f. (formal power series) is given by the transpose of the production matrix below. The diagonal corresponds to (3 + 4 xD) x^n = (3 + 4n) x^n; the upper diagonal, to -x x^n = -x^(n+1); and the lower diagonal, to (-6 - 4 xD) D x^n = -n (6 + 4(n-1)) x^(n-1), the sequence A002943. See A176230 for a similar relation.
The triangles of Bessel numbers entries A122848, A049403, A096713, A104556 contain these polynomials as even or odd rows. Also the aerated version A099174 and A066325. Reversed, these entries are A100861, A144299, A111924.
(End)
Exponential Riordan array [1/(1-2x)^(3/2), -x/(1-2x)]. - Paul Barry, Mar 07 2017

Examples

			[1]; [3,-1]; [15,-10,1]; [105,-105,21,-1]; [945,-1260,378,-36,1]; ...
		

Crossrefs

Cf. A021009 (Coefficient table of n!*L(n, 0, x)).
Row sums (signed) give A131441. Row sums (unsigned) give A066224.

Programs

  • Maple
    seq(seq(n!*2^(n-m)*(-1)^m*binomial(n+1/2,n-m)/m!,m=0..n),n=0..10); # Robert Israel, Dec 25 2015
  • Mathematica
    Table[n! (2^(n - m)) ((-1)^m) Binomial[n + 1/2, n - m]/m!, {n, 0, 8}, {m, 0, n}] // Flatten (* Michael De Vlieger, Dec 24 2015 *)

Formula

a(n,m) = n!*(2^(n-m))*L(1/2,n,m) with L(1/2,n,m) = ((-1)^m)*binomial(n+1/2,n-m)/m!, n >= m >= 0, otherwise 0.
Let IP be the lower triangular matrix with its first subdiagonal equal to the first subdiagonal (cf. A014105) of this entry's unsigned matrix M and with all other elements equal to zero. Then IP is the infinitesimal generator of M, i.e., M = exp(IP). - Tom Copeland, Dec 12 2015
From Tom Copeland, Dec 14 2015: (Start)
Production matrix is
3, -1;
-6, 7, -1;
0, -20, 11, -1;
0, 0, -42, 15, -1;
0, 0, 0, -72, 19, -1;
0, 0, 0, 0, -110, 23, -1;
0, 0, 0, 0, 0, -156, 27, -1;
0, 0, 0, 0, 0, 0, -210, 31, -1;
0, 0, 0, 0, 0, 0, 0, -272, 35, -1;
... (End)

Extensions

Title formula corrected by Tom Copeland, Dec 12 2015

A067147 Triangle of coefficients for expressing x^n in terms of Hermite polynomials.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 6, 0, 1, 12, 0, 12, 0, 1, 0, 60, 0, 20, 0, 1, 120, 0, 180, 0, 30, 0, 1, 0, 840, 0, 420, 0, 42, 0, 1, 1680, 0, 3360, 0, 840, 0, 56, 0, 1, 0, 15120, 0, 10080, 0, 1512, 0, 72, 0, 1, 30240, 0, 75600, 0, 25200, 0, 2520, 0, 90, 0, 1
Offset: 0

Views

Author

Christian G. Bower, Jan 03 2002

Keywords

Comments

x^n = (1/2^n) * Sum_{k=0..n} a(n,k)*H_k(x).
These polynomials, H_n(x), are an Appell sequence, whose umbral compositional inverse sequence HI_n(x) consists of the same polynomials signed with the e.g.f. e^{-t^2} e^{xt}. Consequently, under umbral composition H_n(HI.(x)) = x^n = HI_n(H.(x)). Other differently scaled families of Hermite polynomials are A066325, A099174, and A060821. See Griffin et al. for a relation to the Catalan numbers and matrix integration. - Tom Copeland, Dec 27 2020

Examples

			Triangle begins with:
    1;
    0,   1;
    2,   0,   1;
    0,   6,   0,   1;
   12,   0,  12,   0,   1;
    0,  60,   0,  20,   0,   1;
  120,   0, 180,   0,  30,   0,   1;
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801. (Table 22.12)

Crossrefs

Row sums give A047974. Columns 0-2: A001813, A000407, A001814. Cf. A048854, A060821.

Programs

  • Magma
    [[Round(Factorial(n)*(1+(-1)^(n+k))/(2*Factorial(k)*Gamma((n-k+2)/2))): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jun 09 2018
  • Maple
    T := proc(n, k) (n - k)/2; `if`(%::integer, (n!/k!)/%!, 0) end:
    for n from 0 to 11 do seq(T(n, k), k=0..n) od; # Peter Luschny, Jan 05 2021
  • Mathematica
    Table[n!*(1+(-1)^(n+k))/(2*k!*Gamma[(n-k+2)/2]), {n,0,20}, {k,0,n}]// Flatten (* G. C. Greubel, Jun 09 2018 *)
  • PARI
    T(n, k) = round(n!*(1+(-1)^(n+k))/(2*k! *gamma((n-k+2)/2)))
    for(n=0,20, for(k=0,n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jun 09 2018
    
  • PARI
    {T(n,k) = if(k<0 || nMichael Somos, Jan 15 2020 */
    

Formula

E.g.f. (rel to x): A(x, y) = exp(x*y + x^2).
Sum_{ k>=0 } 2^k*k!*T(m, k)*T(n, k) = T(m+n, 0) = |A067994(m+n)|. - Philippe Deléham, Jul 02 2005
T(n, k) = 0 if n-k is odd; T(n, k) = n!/(k!*((n-k)/2)!) if n-k is even. - Philippe Deléham, Jul 02 2005
T(n, k) = n!/(k!*2^((n-k)/2)*((n-k)/2)!)*2^((n+k)/2)*(1+(-1)^(n+k))/2^(k+1).
T(n, k) = A001498((n+k)/2, (n-k)/2)2^((n+k)/2)(1+(-1)^(n+k))/2^(k+1). - Paul Barry, Aug 28 2005
Exponential Riordan array (e^(x^2),x). - Paul Barry, Sep 12 2006
G.f.: 1/(1-x*y-2*x^2/(1-x*y-4*x^2/(1-x*y-6*x^2/(1-x*y-8*x^2/(1-... (continued fraction). - Paul Barry, Apr 10 2009
The n-th row entries may be obtained from D^n(exp(x*t)) evaluated at x = 0, where D is the operator sqrt(1+4*x)*d/dx. - Peter Bala, Dec 07 2011
As noted in the comments this is an Appell sequence of polynomials, so the lowering and raising operators defined by L H_n(x) = n H_{n-1}(x) and R H_{n}(x) = H_{n+1}(x) are L = D_x, the derivative, and R = D_t log[e^{t^2} e^{xt}] |{t = D_x} = x + 2 D_x, and the polynomials may also be generated by e^{-D^2} x^n = H_n(x). - _Tom Copeland, Dec 27 2020

A344678 Coefficients for normal ordering of (x + D)^n and for the unsigned, probabilist's (or Chebyshev) Hermite polynomials H_n(x+y).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 3, 3, 1, 1, 4, 6, 6, 12, 4, 3, 6, 1, 1, 5, 10, 10, 30, 10, 15, 30, 5, 15, 10, 1, 1, 6, 15, 15, 60, 20, 45, 90, 15, 90, 60, 6, 15, 45, 15, 1, 1, 7, 21, 21, 105, 35, 105, 210, 35, 315, 210, 21, 105, 315, 105, 7, 105, 105, 21, 1
Offset: 0

Views

Author

Tom Copeland, May 26 2021

Keywords

Comments

This irregular triangular array contains the integer coefficients of the normal ordering of the expansions of the differential operator R = (x + D)^n with D = d/dx. This operator is the raising/creation operator for the unsigned, modified Hermite polynomials H_n(x) of A099174; i.e., R H_n(x) = H_{n+1}(x). The lowering/annihilation operator L is D; i.e, L H_n(x) = D H_n(x) = n H_{n-1}(x).
Generalizing to the ladder operators for S_n(x) a general Sheffer polynomial sequence, (L + R)^n 1 = H_n(S.(x)), where the umbral composition is defined by H_n(S.(x)) = (h. + S.(x))^n = Sum_{k = 0..n} binomial(n,k) h_{n-k} S_k(x), where h_n are the Taylor series coefficients of e^{t^2/2}; i.e., e^{h.t} = e^{t^2/2}.
Another interpretation is that the n-th row contains the coefficients of the terms in the normal ordering of the 2^n permutations of two binary symbols given by (L + R)^n under the Leibniz condition LR = RL + 1 equivalent to the commutator relation [L,R] = LR - RL = 1. For example, (x + D)^2 = xx + xD + Dx + DD = x^2 + 2 xD + 1 + D^2.
As in the examples, the coefficients are ordered as those for the terms x^k D^m, ordered first from higher k to lower k and subordinately from lower m to higher m.
The number sequences associated to these polynomials are intimately related to the complete graphs K_n, which have n vertices and (n-1) edges. H_n(x) are the independence polynomials for K_n. The moments, h_n, of the H_n(x) Appell polynomials are the aerated double factorials A001147, the number of perfect matchings in the complete graph K_{n}, zero for odd n. The row lengths, A002620, give the number of maximal strokes on the complete graph K_n. The triangular numbers--the sum of two consecutive row lengths--give the number of edges of K_n. The row sums, A005425, are the number of matchings of the corona K'_n of the complete graph K_n and the complete graph K_1. K_n can be viewed as the projection onto a plane of the edges of the regular (n-1)-dimensional simplex, whose face polynomials are (x+1)^n - 1 (cf. A135278 and A074909).
The coefficients represent the combinatorics of a switchboard problem in which among n subscribers, a subscriber may talk to one of the others, someone on an outside line, or not at all--no conference calls allowed. E.g., the coefficient 12 for H_4(x+y) is the number of ways among 4 subscribers that a pair of subscribers can talk to each other while another is on an outside line and the remaining subscriber is disconnected. The coefficient 3 for the polynomial corresponds to the number of ways two pairs of subscribers can talk among themselves. This can be regarded as a dinner table problem also where a diner may exchange positions with another diner; remain seated; or get up, change plans, and sit back down in the same chair--no more than one exchange per diner.
From Peter Luschny, May 28 2021: (Start)
If we write the monomials of the row polynomials in degree-lexicographic order, we observe: The coefficient triangle appears as a series of concatenated subtriangles. The first one is Pascal's triangle A007318. Appending the rows of triangle A094305 begins in row 2. In row 4, the next triangle starts, which is A344565. This scheme seems to go on indefinitely. [This is now set out in A344911.] (End)
From Tom Copeland, May 29 2021: (Start)
Simplex model: H_n(x+y) = (h. + x + y)^n with h_n the aerated odd double factorials (h_0 = 1, h_1 = 0, h_2 = 1, h_3 = 0, h_4 = 3, h_5 = 0, h_6 = 15, ...), the number of perfect matchings for the n vertices of the (n-1)-Dimensional simplices, i.e., the hypertriangles, or hypertetrahedrons. This multinomial enumerates permutations of three families of objects--vertices labeled with either x or y, or perfect (pair) matchings of the unlabeled vertices for the n vertices of the (n-1)-D simplex. For example, (x+D)^2 = xx + xD + Dx + D^2 = x^2 + 2xD + D^2 + 1 corresponds to H_2(x+y) = (h.+ x + y)^2 = h_0 (x+y)^2 + 2 h_1 (x+y) + h_2 = x^2 + 2xy + y^2 + 1, which, in turn, corresponds to a line segment, the 1-D simplex, with both vertices labeled with x's; or one with an x, the other a y; or both vertices labeled with y's; or one unlabeled matched pair. The exponent k of x^k y^m represents the number of these vertices to which an x is assigned, and m, those with a y assigned. The remaining unlabeled vertices (a sub-simplex) form an independent edge set of (single color) colored edges, i.e., no colored edge is touching another colored edge (a perfect matching for the sub-simplex) nor the vertices assigned an x or y. Accordingly, the coefficients for k=m=0 represent the number of ways to assign a perfect matching to the simplex--zero for simplices with an odd number of vertices and the odd double factorials (1, 3, 15, 105, ...) for the simplices with an even number. For the simplices with an odd number of vertices, the coefficients for k+m=1 are the odd double factorials. (Note the polynomials are invariant upon interchange of the variables x and y.) (End)

Examples

			(x + D)^0 = 1,
(x + D)^1 = x + D,
(x + D)^2 = x^2 + 2 x D + 1 + D^2,
(x + D)^3 = x^3 + 3 x^2 D + 3 x + 3 x D^2 + 3 D + D^3,
(x + D)^4 = x^4 + 4 x^3 D + 6 x^2 + 6 x^2 D^2 + 12 x D + 4 x D^3 + 3 + 6 D^2 + D^4.
(x + D)^5 = x^5 + 5 x^4 D + 10 x^3 + 10 x^3 D^2 + 30 x^2 D + 10 x^2 D^3 + 15 x + 30 x D^2 + 5 x D^4 + 15 D + 10 D^3 + D^5
H_6(x + y) = x^6 + 6 x^5 y + 15 x^4 + 15 x^4 y^2 + 60 x^3 y + 20 x^3 y^3 + 45 x^2 + 90 x^2 y^2 + 15 x^2 y^4 + 90 x y + 60 x y^3 + 6 x y^5 + 15 + 45 y^2 + 15 y^4 + y^6
H_7(x + y) = x^7 + 7 x^6 y + 21 x^5 + 21 x^5 y^2 + 105 x^4 y + 35 x^4 y^3 + 105 x^3 + 210 x^3 y^2 + 35 x^3 y^4 + 315 x^2 y + 210 x^2 y^3 + 21 x^2 y^5 + 105 x + 315 x y^2 + 105 x y^4 + 7 x y^6 + 105 y + 105 y^3 + 21 y^5 + y^7
		

Crossrefs

Programs

  • Mathematica
    Last /@ CoefficientRules[#, {x, y}] & /@ Table[Simplify[(-y)^n (-2)^(-n/2) HermiteH[n, (x + 1/y)/Sqrt[-2]]], {n, 0, 7}] // Flatten (* Andrey Zabolotskiy, Mar 08 2024 *)

Formula

The bivariate e.g.f. is e^{t^2/2} e^{t(x + y)} = Sum_{n >= 0} H_n(x+y) t^n/n! = e^{t H.(x+y)} = e^{t (x + H.(y))}, as described below.
The coefficient of x^k D^m is n! h_{n-k-m} / [(n-k-m)! k! m!] with 0 <= k,m <= n and (k+m) <= n with h_n, as defined in the comments, aerated A001147.
Row lengths, r(n): 1, 2, 4, 6, 9, 12, 16, 20, 25, ... A002620(n).
Row sums: A005425 = 1, 2, 5, 14, 43, 142, ... .
The recursion H_{n+1}(x+y) = (x+y) H_n(x+y) + n H_{n-1}(x+y) follows from the differential raising and lowering operations of the Hermite polynomials.
The Baker-Campbell-Hausdorff-Dynkin expansion leads to the disentangling relation e^{t (x + D)} = e^{t^2/2} e^{tx} e^{tD} from which the formula above for the coefficients may be derived via differentiation with respect to t.
The row bivariate polynomials P_n(x,y) with y a commutative analog of D, or L, have the e.g.f. e^{-xy} e^{t(x + D)} e^{xy} = e^{-xy} e^{t^2/2} e^{tx} e{tD} e^{xy} = e^{t^2/2} e^{t(x + y)} = e^{t(h. + x + y)} = e^{t (x + H.(y))} = e^{t H.(x +y)}, so P_n(x,y) = H_n(x + y) = (x + H.(y))^n, the Hermite polynomials mentioned in the comments along with the umbral composition. The row sums are H_n(2), listed in A005425. For example, P_3(x,y) = (x + H.(y))^3 = x^3 H_0(y) + 3 x^2 H_1(y) + 3 x H_2(y) + H_3(y) = H_3(x+y) = (x+y)^3 + 3(x+y) = x^3 + 3 x^2 y + 3 x + 3 x y^2 + 3 y + y^2.
Alternatively, P_n(x,y) = H_n(x+y) = (z + d/dz)^n 1 with z replaced by (x+y) after the repeated differentiations since (x + D)^n 1 = H_n(x).
With initial index 1, the lengths r(n) of the rows of nonzero coefficients are the same as those for the polynomials given by 1 + (x+y)^2 + (x+y)^4 + ... + (x+y)^n for n even and for those for (x+y)^1 + (x+y)^3 + ... + (x+y)^n for n odd since the Hermite polynomials are even or odd polynomials. Consequently, r(n)= O(n) = 1 + 2 + 4 + ... n for n odd and r(n) = E(n) = 2 + 4 + ... + n for n even, so O(n) = ((n+1)/2)^2 and E(n) = (n/2)((n/2)+1) = n(n+2)/4 = 2 T(n/2) where T(k) are the triangular numbers defined by T(k) = 0 + 1 + 2 + 3 + ... + k = A000217(k). E(n) corresponds to A002378. Additionally, r(n) + r(n+1) = 1 + 2 + 3 + ... + n+1 = T(n+1).
From Tom Copeland, May 31 2021: (Start)
e^{D^2/2} = e^{h.D}, so e^{D^2/2} x^n = e^{h. D} x^n = (h. + x)^n = H_n(x) and e^{D^2/2} (x+y)^n = e^{h. D} (x+y)^n = (h. + x + y)^n = H_n(x+y).
From the Appell Sheffer polynomial calculus, the umbral compositional inverse of the sequence H_n(x+y), i.e., the sequence HI_n(x+y) such that H_n(HI.(x+y)) = (h. + HI.(x+y))^n = (h. + hi. + x + y)^n = (x+y)^n, is determined by e^{-t^2/2} = e^{hi. t}, so hi_n = -h_n and HI_n(x+y) = (-h. + x + y)^n = (-1)^n (h. - x - y)^n = (-1)^n H_n(-(x+y)). Then H_n(-H.(-(x+y))) = (x+y)^n.
In addition, HI_n(x) = (x - D) HI_{n-1}(x) = (x - D)^n 1 = e^{-D^2/2} x^n = e^{hi. D} x^n = e^{-h. D} x^n with the e.g.f. e^{-t^2/2} e^{xt}.
The umbral compositional inversion property follows from x^n = e^{-D^2/2} e^{D^2/2} x^n = e^{-D^2/2} H_n(x) = H_n(HI.(x)) = e^{D^2/2} e^{-D^2/2} x^n = HI_n(H.(x)). (End)
The umbral relations above reveal that H_n(x+y) = (h. + x + y)^n = Sum_{k = 0..n} binomial(n,k) h_k (x+y)^{n-k}, which gives, e.g., for n = 3, H_3(x+y) = h_0 * (x+y)^3 + 3 h_1 * (x+y)^2 + 3 h_2 * (x+y) + h_3 = (x+y)^3 + 3 (x+y), the n-th through 0th rows of the Pascal matrix embedded within the n-th row of the Pascal matrix modulated by h_k. - Tom Copeland, Jun 01 2021
Varvak gives the coefficients of x^(n-m-k) D^{m-k} as n! / ( 2^k k! (n-k-m)! (m-k)! ), referring to them as the Weyl binomial coefficients, and derives them from rook numbers on Ferrers boards. (No mention of Hermite polynomials nor matchings on simplices are made.) Another combinatorial model and equivalent formula are presented in Blasiak and Flajolet (p. 16). References to much earlier work are given in both papers. - Tom Copeland, Jun 03 2021

A176230 Exponential Riordan array [1/sqrt(1-2x), x/(1-2x)].

Original entry on oeis.org

1, 1, 1, 3, 6, 1, 15, 45, 15, 1, 105, 420, 210, 28, 1, 945, 4725, 3150, 630, 45, 1, 10395, 62370, 51975, 13860, 1485, 66, 1, 135135, 945945, 945945, 315315, 45045, 3003, 91, 1, 2027025, 16216200, 18918900, 7567560, 1351350, 120120, 5460, 120, 1, 34459425
Offset: 0

Views

Author

Paul Barry, Apr 12 2010

Keywords

Comments

Row sums are A066223. Reverse of A119743. Inverse is alternating sign version.
Diagonal sums are essentially A025164.
From Tom Copeland, Dec 13 2015: (Start)
See A099174 for relations to the Hermite polynomials and the link for operator relations, including the infinitesimal generator containing A000384.
Row polynomials are 2^n n! Lag(n,-x/2,-1/2), where Lag(n,x,q) is the associated Laguerre polynomial of order q.
The triangles of Bessel numbers entries A122848, A049403, A096713, A104556 contain these polynomials as even or odd rows. Also the aerated version A099174 and A066325. Reversed, these entries are A100861, A144299, A111924.
Divided along the diagonals by the initial element (A001147) of the diagonal, this matrix becomes the even rows of A034839.
(End)
The first few rows appear in expansions related to the Dedekind eta function on pp. 537-538 of the Chan et al. link. - Tom Copeland, Dec 14 2016

Examples

			Triangle begins
        1,
        1,        1,
        3,        6,        1,
       15,       45,       15,       1,
      105,      420,      210,      28,       1,
      945,     4725,     3150,     630,      45,      1,
    10395,    62370,    51975,   13860,    1485,     66,    1,
   135135,   945945,   945945,  315315,   45045,   3003,   91,   1,
  2027025, 16216200, 18918900, 7567560, 1351350, 120120, 5460, 120, 1
Production matrix is
  1,  1,
  2,  5,  1,
  0, 12,  9,  1,
  0,  0, 30, 13,  1,
  0,  0,  0, 56, 17,   1,
  0,  0,  0,  0, 90,  21,   1,
  0,  0,  0,  0,  0, 132,  25,   1,
  0,  0,  0,  0,  0,   0, 182,  29,  1,
  0,  0,  0,  0,  0,   0,   0, 240, 33, 1.
		

Crossrefs

Programs

  • Maple
    ser := n -> series(KummerU(-n, 1/2, x), x, n+1):
    seq(seq((-2)^(n-k)*coeff(ser(n), x, k), k=0..n), n=0..8); # Peter Luschny, Jan 18 2020
  • Mathematica
    t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); u[n_, k_] := t[2 n, k + n]; Table[ u[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jan 14 2011 *)

Formula

Number triangle T(n,k) = (2n)!/((2k)!(n-k)!2^(n-k)).
T(n,k) = A122848(2n,k+n). - R. J. Mathar, Jan 14 2011
[x^(1/2)(1+2D)]^2 p(n,x)= p(n+1,x) and [D/(1+2D)]p(n,x)= n p(n-1,x) for the row polynomials of T, with D=d/dx. - Tom Copeland, Dec 26 2012
E.g.f.: exp[t*x/(1-2x)]/(1-2x)^(1/2). - Tom Copeland , Dec 10 2013
The n-th row polynomial R(n,x) is given by the type B Dobinski formula R(n,x) = exp(-x/2)*Sum_{k>=0} (2*k+1)*(2*k+3)*...*(2*k+1+2*(n-1))*(x/2)^k/k!. Cf. A113278. - Peter Bala, Jun 23 2014
The raising operator in my 2012 formula expanded is R = [x^(1/2)(1+2D)]^2 = 1 + x + (2 + 4x) D + 4x D^2, which in matrix form acting on an o.g.f. (formal power series) is the transpose of the production array below. The linear term x is the diagonal of ones after transposition. The main diagonal comes from (1 + 4xD) x^n = (1 + 4n) x^n. The last diagonal comes from (2 D + 4 x D^2) x^n = (2 + 4 xD) D x^n = n * (2 + 4(n-1)) x^(n-1). - Tom Copeland, Dec 13 2015
T(n, k) = (-2)^(n-k)*[x^k] KummerU(-n, 1/2, x). - Peter Luschny, Jan 18 2020

A094074 Coefficients arising in combinatorial field theory.

Original entry on oeis.org

1, 5, 129, 7485, 755265, 116338005, 25263540225, 7328358482445, 2730934406225025, 1269262202389906725, 718835160819268317825, 486853691847850902700125, 388278919916351519293663425
Offset: 0

Views

Author

N. J. A. Sloane, May 01 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (2n)! SeriesCoefficient[(1-x^2)^(-1/2) Exp[2x^2/(1-x^2)], {x, 0, 2n}];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Nov 11 2018 *)

Formula

a(n) = (2n)!/(2^n*n!) * h(2n, 2), with h(n, x) the polynomials in A099174.
E.g.f.: Sum_{n>=0} a(n)*x^(2n)/(2n)! = (1-x^2)^(-1/2) * exp(2x^2/(1-x^2)).

Extensions

Edited and extended by Ralf Stephan, Oct 14 2004.

A111062 Triangle T(n, k) = binomial(n, k) * A000085(n-k), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 10, 16, 12, 4, 1, 26, 50, 40, 20, 5, 1, 76, 156, 150, 80, 30, 6, 1, 232, 532, 546, 350, 140, 42, 7, 1, 764, 1856, 2128, 1456, 700, 224, 56, 8, 1, 2620, 6876, 8352, 6384, 3276, 1260, 336, 72, 9, 1, 9496, 26200, 34380, 27840, 15960, 6552, 2100, 480, 90, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 07 2005

Keywords

Comments

Triangle related to A000085.
Riordan array [exp(x(2+x)/2),x]. - Paul Barry, Nov 05 2008
Array is exp(S+S^2/2) where S is A132440 the infinitesimal generator for Pascal's triangle. T(n,k) gives the number of ways to choose a subset of {1,2,...,n} of size k and then partitioning the remaining n-k elements into sets each of size 1 or 2. Cf. A122832. - Peter Bala, May 14 2012
T(n,k) is equal to the number of R-classes (equivalently, L-classes) in the D-class consisting of all rank k elements of the partial Brauer monoid of degree n. - James East, Aug 17 2015

Examples

			Rows begin:
     1;
     1,    1;
     2,    2,    1;
     4,    6,    3,    1;
    10,   16,   12,    4,    1;
    26,   50,   40,   20,    5,    1;
    76,  156,  150,   80,   30,    6,   1;
   232,  532,  546,  350,  140,   42,   7,  1;
   764, 1856, 2128, 1456,  700,  224,  56,  8, 1;
  2620, 6876, 8352, 6384, 3276, 1260, 336, 72, 9, 1;
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is:
  1, 1,
  1, 1, 1,
  0, 2, 1, 1,
  0, 0, 3, 1, 1,
  0, 0, 0, 4, 1, 1,
  0, 0, 0, 0, 5, 1, 1,
  0, 0, 0, 0, 0, 6, 1, 1,
  0, 0, 0, 0, 0, 0, 7, 1, 1,
  0, 0, 0, 0, 0, 0, 0, 8, 1, 1 (End)
From _Peter Bala_, Feb 12 2017: (Start)
The infinitesimal generator has integer entries and begins
  0
  1  0
  1  2  0
  0  3  3  0
  0  0  6  4  0
  0  0  0 10  5  0
  0  0  0  0 15  6  0
  ...
and is the generalized exponential Riordan array [x + x^2/2!,x].(End)
		

Crossrefs

Cf. A099174, A133314, A159834 (inverse matrix).

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->(Factorial(n)/Factorial(k))*Sum([0..n-k],j->Binomial(j,n-k-j)/(Factorial(j)*2^(n-k-j)))))); # Muniru A Asiru, Jun 29 2018
  • Mathematica
    a[n_] := Sum[(2 k - 1)!! Binomial[n, 2 k], {k, 0, n/2}]; Table[Binomial[n, k] a[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 20 2015, after Michael Somos at A000085 *)
  • Sage
    def A111062_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+M[n-1,k]+(k+1)*M[n-1,k+1]
        return M
    A111062_triangle(9) # Peter Luschny, Sep 19 2012
    

Formula

Sum_{k>=0} T(m, k)*T(n, k)*k! = T(m+n, 0) = A000085(m+n).
Sum_{k=0..n} T(n, k) = A005425(n).
Apparently satisfies T(n,m) = T(n-1,m-1) + T(n-1,m) + (m+1) * T(n-1,m+1). - Franklin T. Adams-Watters, Dec 22 2005 [corrected by Werner Schulte, Feb 12 2025]
T(n,k) = (n!/k!)*Sum_{j=0..n-k} C(j,n-k-j)/(j!*2^(n-k-j)). - Paul Barry, Nov 05 2008
G.f.: 1/(1-xy-x-x^2/(1-xy-x-2x^2/(1-xy-x-3x^2/(1-xy-x-4x^2/(1-... (continued fraction). - Paul Barry, Apr 23 2009
T(n,k) = C(n,k)*Sum_{j=0..n-k} C(n-k,j)*(n-k-j-1)!! where m!!=0 if m is even. - James East, Aug 17 2015
From Tom Copeland, Jun 26 2018: (Start)
E.g.f.: exp[t*p.(x)] = exp[t + t^2/2] e^(x*t).
These polynomials (p.(x))^n = p_n(x) are an Appell sequence with the lowering and raising operators L = D and R = x + 1 + D, with D = d/dx, such that L p_n(x) = n * p_(n-1)(x) and R p_n(x) = p_(n+1)(x), so the formalism of A133314 applies here, giving recursion relations.
The transpose of the production matrix gives a matrix representation of the raising operator R.
exp(D + D^2/2) x^n= e^(D^2/2) (1+x)^n = h_n(1+x) = p_n(x) = (a. + x)^n, with (a.)^n = a_n = A000085(n) and h_n(x) the modified Hermite polynomials of A099174.
A159834 with the e.g.f. exp[-(t + t^2/2)] e^(x*t) gives the matrix inverse for this entry with the umbral inverse polynomials q_n(x), an Appell sequence with the raising operator x - 1 - D, such that umbrally composed q_n(p.(x)) = x^n = p_n(q.(x)). (End)

Extensions

Corrected by Franklin T. Adams-Watters, Dec 22 2005
10th row added by James East, Aug 17 2015
Previous Showing 11-20 of 24 results. Next