cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A372271 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 6.

Original entry on oeis.org

2, 3, 8, 6, 1, 9, 1, 8, 6, 0, 8, 3, 1, 9, 6, 9, 0, 8, 6, 3, 0, 5, 0, 1, 7, 2, 1, 6, 8, 0, 7, 1, 1, 9, 3, 5, 4, 1, 8, 6, 1, 0, 6, 3, 0, 1, 4, 0, 0, 2, 1, 3, 5, 0, 1, 8, 1, 3, 9, 5, 1, 6, 4, 5, 7, 4, 2, 7, 4, 9, 3, 4, 2, 7, 5, 6, 3, 9, 8, 4, 2, 2, 4, 9, 2, 2, 4
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.238619186083196908630501721680711935418610630140021350181395...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[6, #] &, 4], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Smallest positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0.

A372272 Decimal expansion of the middle positive zero of the Legendre polynomial of degree 6.

Original entry on oeis.org

6, 6, 1, 2, 0, 9, 3, 8, 6, 4, 6, 6, 2, 6, 4, 5, 1, 3, 6, 6, 1, 3, 9, 9, 5, 9, 5, 0, 1, 9, 9, 0, 5, 3, 4, 7, 0, 0, 6, 4, 4, 8, 5, 6, 4, 3, 9, 5, 1, 7, 0, 0, 7, 0, 8, 1, 4, 5, 2, 6, 7, 0, 5, 8, 5, 2, 1, 8, 3, 4, 9, 6, 6, 0, 7, 1, 4, 3, 1, 0, 0, 9, 4, 4, 2, 8, 6
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.661209386466264513661399595019905347006448564395170070814526...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[6, #] &, 5], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Middle positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0.

A372273 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 6.

Original entry on oeis.org

9, 3, 2, 4, 6, 9, 5, 1, 4, 2, 0, 3, 1, 5, 2, 0, 2, 7, 8, 1, 2, 3, 0, 1, 5, 5, 4, 4, 9, 3, 9, 9, 4, 6, 0, 9, 1, 3, 4, 7, 6, 5, 7, 3, 7, 7, 1, 2, 2, 8, 9, 8, 2, 4, 8, 7, 2, 5, 4, 9, 6, 1, 6, 5, 2, 6, 6, 1, 3, 5, 0, 0, 8, 4, 4, 2, 0, 0, 1, 9, 6, 2, 7, 6, 2, 8, 8
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.932469514203152027812301554493994609134765737712289824872549...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[6, #] &, 6], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Largest positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0.

A372274 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 7.

Original entry on oeis.org

4, 0, 5, 8, 4, 5, 1, 5, 1, 3, 7, 7, 3, 9, 7, 1, 6, 6, 9, 0, 6, 6, 0, 6, 4, 1, 2, 0, 7, 6, 9, 6, 1, 4, 6, 3, 3, 4, 7, 3, 8, 2, 0, 1, 4, 0, 9, 9, 3, 7, 0, 1, 2, 6, 3, 8, 7, 0, 4, 3, 2, 5, 1, 7, 9, 4, 6, 6, 3, 8, 1, 3, 2, 2, 6, 1, 2, 5, 6, 5, 5, 3, 2, 8, 3, 1, 2
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.405845151377397166906606412076961463347382014099370126387043...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | this sequence, A372275, A372276 | A382688, A382689, A382690

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[7, #] &, 5], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    solve (x = 0.1, 0.5, 429*x^6 - 693*x^4 + 315*x^2 - 35) \\ A.H.M. Smeets, May 31 2025

Formula

Smallest positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.

A372275 Decimal expansion of the middle positive zero of the Legendre polynomial of degree 7.

Original entry on oeis.org

7, 4, 1, 5, 3, 1, 1, 8, 5, 5, 9, 9, 3, 9, 4, 4, 3, 9, 8, 6, 3, 8, 6, 4, 7, 7, 3, 2, 8, 0, 7, 8, 8, 4, 0, 7, 0, 7, 4, 1, 4, 7, 6, 4, 7, 1, 4, 1, 3, 9, 0, 2, 6, 0, 1, 1, 9, 9, 5, 5, 3, 5, 1, 9, 6, 7, 4, 2, 9, 8, 7, 4, 6, 7, 2, 1, 8, 0, 5, 1, 3, 7, 9, 2, 8, 2, 6
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.741531185599394439863864773280788407074147647141390260119955...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | A372274, this sequence, A372276 | A382688, A382689, A382690

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[7, #] &, 6], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    solve (x = 0.6, 0.8, 429*x^6 - 693*x^4 + 315*x^2 - 35) \\ A.H.M. Smeets, May 31 2025

Formula

Middle positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.

A372276 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 7.

Original entry on oeis.org

9, 4, 9, 1, 0, 7, 9, 1, 2, 3, 4, 2, 7, 5, 8, 5, 2, 4, 5, 2, 6, 1, 8, 9, 6, 8, 4, 0, 4, 7, 8, 5, 1, 2, 6, 2, 4, 0, 0, 7, 7, 0, 9, 3, 7, 6, 7, 0, 6, 1, 7, 7, 8, 3, 5, 4, 8, 7, 6, 9, 1, 0, 3, 9, 1, 3, 0, 6, 3, 3, 3, 0, 3, 5, 4, 8, 4, 0, 1, 4, 0, 8, 0, 5, 7, 3, 0
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.949107912342758524526189684047851262400770937670617783548769...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | A372274, A372275, this sequence | A382688, A382689, A382690

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[7, #] &, 7], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    solve (x = 0.8, 1.0, 429*x^6 - 693*x^4 + 315*x^ - 35) \\ A.H.M. Smeets, May 31 2025

Formula

Largest positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.

A001801 Coefficients of Legendre polynomials.

Original entry on oeis.org

3, 15, 105, 315, 6930, 18018, 90090, 218790, 2078505, 4849845, 22309287, 50702925, 1825305300, 4071834900, 18032411700, 39671305740, 347123925225, 755505013725, 3273855059475, 7064634602025, 121511715154830, 260382246760350, 1112542327066950, 2370198870707850, 20146690401016725
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
  • G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A004733.
Diagonal 3 of triangle A100258.

Programs

  • Magma
    A001801:= func< n | 3*Binomial(n+3,3)*Catalan(n+2)*2^(Valuation(Factorial(n+4),2)-n-4) >;
    [A001801(n): n in [0..30]]; // G. C. Greubel, Apr 26 2025
    
  • Mathematica
    A001801[n_]:= 3*2^(2*n+1)*Binomial[n+3/2, n]/2^DigitCount[n+4,2,1];
    Table[A001801[n], {n,0,40}] (* G. C. Greubel, Apr 26 2025 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(pollegendre(n+4),n)*2^valuation((n\2*2+4)!,2))
    
  • SageMath
    def A001801(n): return 3*2^(n-3)*binomial(n+3/2,n)*2^valuation(factorial(n+4), 2)
    print([A001801(n) for n in range(31)]) # G. C. Greubel, Apr 26 2025

Formula

a(n) = 3*2^(n-3)*binomial(n + 3/2, n)*2^A011371(n+4). - G. C. Greubel, Apr 26 2025

Extensions

More terms from Michael Somos, Oct 25 2002

A001800 Coefficients of Legendre polynomials.

Original entry on oeis.org

1, 3, 30, 70, 315, 693, 12012, 25740, 109395, 230945, 1939938, 4056234, 16900975, 35102025, 1163381400, 2404321560, 9917826435, 20419054425, 167890003050, 344616322050, 1412926920405, 2893136075115, 47342226683700, 96742811049300, 395033145117975
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
  • G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal 2 of triangle A100258.

Programs

  • Magma
    A001800:= func< n | (n+1)*(n+2)*Catalan(n+1)/2^(&+Intseq(n+2, 2)) >;
    [A001800(n): n in [0..30]]; // G. C. Greubel, Apr 25 2025
    
  • Maple
    wt:= proc(n) local m, r; m:=n; r:=0;
           while m>0 do r:= r+irem(m, 2, 'm') od; r
         end:
    a:= n-> (n+1) *binomial(2*n+2, n+1)/2^wt(n+2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 29 2013
  • Mathematica
    a[n_] := (n+1)*Binomial[2*n+2, n+1]/2^DigitCount[n+2, 2, 1]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 13 2014 *)
  • PARI
    a(n)=if(n<0,0,-polcoeff(pollegendre(n+2),n)*2^valuation((n\2*2)!,2))
    
  • SageMath
    def A001800(n): return (n+1)*binomial(2*n+2,n+1)//2^sum((n+2).digits(2))
    print([A001800(n) for n in range(31)]) # G. C. Greubel, Apr 25 2025

Formula

a(n) = (n+1) * C(2n+2, n+1) / 2^A000120(n+2).

Extensions

More terms from Michael Somos, Oct 25 2002

A178301 Triangle T(n,k) = binomial(n,k)*binomial(n+k+1,n+1) read by rows, 0 <= k <= n.

Original entry on oeis.org

1, 1, 3, 1, 8, 10, 1, 15, 45, 35, 1, 24, 126, 224, 126, 1, 35, 280, 840, 1050, 462, 1, 48, 540, 2400, 4950, 4752, 1716, 1, 63, 945, 5775, 17325, 27027, 21021, 6435, 1, 80, 1540, 12320, 50050, 112112, 140140, 91520, 24310, 1, 99, 2376, 24024, 126126, 378378, 672672, 700128, 393822, 92378
Offset: 0

Views

Author

Alford Arnold, May 30 2010

Keywords

Comments

Antidiagonal sums are given by A113682. - Johannes W. Meijer, Mar 24 2013
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial binomial(x+n,n)*binomial(x+n,n-1) in the basis made of the binomial(x+i,i). - F. Chapoton, Nov 01 2022
Chapoton's observation above is correct: the precise expansion is binomial(x+n,n)*binomial(x+n,n-1) = Sum_{k = 0..n-1} (-1)^k*T(n-1,n-1-k)*binomial(x+2*n-1-k,2*n-1-k), as can be verified using the WZ algorithm. For example, n = 4 gives binomial(x+4,4)*binomial(x+4,3) = 35*binomial(x+7,7) - 45*binomial(x+6,6) + 15*binomial(x+5,5) - binomial(x+4,4). - Peter Bala, Jun 24 2023

Examples

			n=0: 1;
n=1: 1,  3;
n=2: 1,  8,  10;
n=3: 1, 15,  45,   35;
n=4: 1, 24, 126,  224,   126;
n=5: 1, 35, 280,  840,  1050,   462;
n=6: 1, 48, 540, 2400,  4950,  4752,  1716;
n=7: 1, 63, 945, 5775, 17325, 27027, 21021, 6435;
		

Crossrefs

Programs

  • Maple
    A178301 := proc(n,k)
            binomial(n,k)*binomial(n+k+1,n+1) ;
    end proc: # R. J. Mathar, Mar 24 2013
    R := proc(n) add((-1)^(n+k)*(2*k+1)*orthopoly:-P(k,2*x+1)/(n+1), k=0..n) end:
    for n from 0 to 6 do seq(coeff(R(n), x, k), k=0..n) od; # Peter Luschny, Aug 25 2021
  • Mathematica
    Flatten[Table[Binomial[n,k]Binomial[n+k+1,n+1],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Aug 23 2014 *)
  • Maxima
    create_list(binomial(n,k)*binomial(n+k+1,n+1),n,0,12,k,0,n); /* Emanuele Munarini, Dec 16 2016 */
    
  • PARI
    R(n,x) = sum(k=0,n, (-1)^(n+k) * (2*k+1) * pollegendre(k,2*x+1)) / (n+1); \\ Max Alekseyev, Aug 25 2021

Formula

T(n,k) = A007318(n,k) * A178300(n+1,k+1).
From Peter Bala, Jun 18 2015: (Start)
n-th row polynomial R(n,x) = Sum_{k = 0..n} binomial(n,k)*binomial(n+k+1,n+1)*x^k = Sum_{k = 0..n} (-1)^(n+k)*binomial(n+1,k+1)*binomial(n+k+1,n+1)*(1 + x)^k.
Recurrence: (2*n - 1)*(n + 1)*R(n,x) = 2*(4*n^2*x + 2*n^2 - x - 1)*R(n-1,x) - (2*n + 1)(n - 1)*R(n-2,x) with R(0,x) = 1, R(1,x) = 1 + 3*x.
A182626(n) = -R(n-1,-2) for n >= 1. (End)
From Peter Bala, Jul 20 2015: (Start)
n-th row polynomial R(n,x) = Jacobi_P(n,0,1,2*x + 1).
(1 + x)*R(n,x) gives the row polynomials of A123160. (End)
G.f.: (1+x-sqrt(1-2*x+x^2-4*x*y))/(2*(1+y)*x*sqrt(1-2*x+x^2-4*x*y)). - Emanuele Munarini, Dec 16 2016
R(n,x) = Sum_{k=0..n} (-1)^(n+k)*(2*k+1)*P(k,2*x+1)/(n+1), where P(k,x) is the k-th Legendre polynomial (cf. A100258) and P(k,2*x+1) is the k-th shifted Legendre polynomial (cf. A063007). - Max Alekseyev, Jun 28 2018; corrected by Peter Bala, Aug 08 2021
Polynomial g(n,x) = R(n,-x)/(n+1) delivers the maximum of f(1)^2/(Integral_{x=0..1} f(x)^2 dx) over all polynomials f(x) with real coefficients and deg(f(x)) <= n. This maximum equals (n+1)^2. See dxdy.ru link. - Max Alekseyev, Jun 28 2018

A001802 Coefficients of Legendre polynomials.

Original entry on oeis.org

5, 35, 1260, 4620, 30030, 90090, 1021020, 2771340, 14549535, 37182145, 1487285800, 3650610600, 17644617900, 42075627300, 396713057400, 925663800600, 4281195077775, 9821565178425, 178970743251300, 405039050516100, 1822675727322450, 4079321865912150
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
  • G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal 4 of triangle A100258.

Programs

  • Magma
    A001802:= func< n | Binomial(n+4,4)*Catalan(n+3)*2^(Valuation(Factorial(n+6),2)-n-4) >;
    [A001802(n): n in [0..30]]; // G. C. Greubel, Apr 26 2025
    
  • Mathematica
    A001802[n_]:= 5*4^(n+1)*Binomial[n+5/2,n]/2^DigitCount[n+6,2,1];
    Table[A001802[n], {n,0,30}] (* G. C. Greubel, Apr 26 2025 *)
  • PARI
    a(n)= - polcoeff(pollegendre(n+6), n)*2^valuation((n\2*2+6)!, 2) \\ Michel Marcus, May 29 2013
    
  • SageMath
    def A001802(n): return 5*2^(n-4)*binomial(n+5/2,n)*2^valuation(factorial(n+6), 2)
    print([A001802(n) for n in range(31)]) # G. C. Greubel, Apr 26 2025

Formula

a(n) = 5*2^(n-4)*binomial(n+5/2, n)*2^A011371(n+6). - G. C. Greubel, Apr 26 2025

Extensions

More terms from Michel Marcus, Feb 02 2015
Previous Showing 11-20 of 24 results. Next