cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A221913 Array of coefficients of numerator polynomials (divided by x) of the n-th approximation of the continued fraction x/(1+x/(2+x/(3+...

Original entry on oeis.org

1, 2, 6, 1, 24, 6, 120, 36, 1, 720, 240, 12, 5040, 1800, 120, 1, 40320, 15120, 1200, 20, 362880, 141120, 12600, 300, 1, 3628800, 1451520, 141120, 4200, 30, 39916800, 16329600, 1693440, 58800, 630, 1, 479001600, 199584000, 21772800, 846720, 11760, 42
Offset: 1

Views

Author

Wolfdieter Lang, Feb 23 2013

Keywords

Comments

The row length sequence of this array is 1 + floor((n-1)/2) = A008619(n-1), n >= 1.
The array of denominators is found under A084950.
The continued fraction 0 + K_{k=1..infinity}(x/k) = x/(1+x/(2+x/(3+... has n-th approximation P(n,x)/Q(n,x). These polynomials satisfy the recurrence q(n,x) = n*q(n-1,x) + x*q(n-2,x), for q replaced by P or Q with inputs P(-1,x) = 1, P(0,x) = 0 and Q(-1,x) = 0 and Q(0,1) = 1. The present array provides the coefficients for Phat(n,x) := P(n,x)/x = sum(a(n,m)*x^m,m=0..floor((n-1)/2)), n >= 1. The recurrence is that of q(n,x) and the inputs are Phat(-1,x) = 1/x and Phat(0,x) =0. For the Q(n,x) coefficients see the companion array A084950. The solution with input q(-1,x) = a and q(0,x) = b is then, due to linearity, q(a,b;n,x) = a*x*Phat(n,x) + b*Q(n,x). The motivation to consider the q(n,x) recurrence stems from e-mails from Gary Detlefs, who considered integer x and various inputs and gave explicit formulas.
This array coincides with the SW-NE diagonals of the coefficient array |A066667| or A105278 (taken with offset [0,0]) of the generalized Laguerre polynomials n!*L(1,n,x) (parameter alpha = 1).
The entries a(n,m) have a combinatorial interpretation in terms of certain so-called labeled Morse code polynomials using dots (length 1) and dashes (of length 2). a(n,m) is the number of possibilities to decorate the n-1 positions 2,...,n with m dashes, m from {0,1,...,floor((n-1)/2)}, and n-1-2*m dots. A dot at position k has a label k and each dash between two neighboring positions has a label x. a(n,m) is the sum of these labeled Morse codes with m dashes after the label x^m has been divided out. E.g., a(6,2) = 6 + 4 + 2 = 12 from the 3 codes: dash dash dot, dash dot dash,and dot dash dash, or (23)(45)6, (23)4(56) and 2(34)(56), and labels (which are in general multiplicative) 6*x^2, 4*x^2 and 2*x^2, respectively.
For general Morse code polynomials (Euler's continuants) see the Graham et al. reference given in A221915, p. 302. - Wolfdieter Lang, Feb 28 2013
Row sums Phat(n,1) = A001053(n+1), n >= 1. Alternating row sums Phat(n,-1) = A058798(n), n >= 1.
From Wolfdieter Lang, Mar 06 2013 (Start)
The recurrence for q(n,x) given above, can be transformed to the one of Bessel functions given in Abramowitz-Stegun (see A103921 for the reference) in the first line of eq. 9.1.27 on p. 361 via i^n*q(n,x)/sqrt(x)^n = C(n+1,-i*2*sqrt(x)) with the imaginary unit i, where C can stand for BesselJ or BesselY. In order to fix the two inputs for the Q or Phat polynomials (given above) one uses a linear combination of these two independent solutions. The Wronskian eq. 9.1.16, p. 360, is used to simplify the coefficients. One can also use an alternative version based on eqs. 9.6.3 and 9.6.5, p. 375, to trade the J and Y polynomials for I and K.
This produces the two explicit formulas given below, and also the two versions given for Q in A084950.
(End)
For large order n the behavior of the row polynomials Phat(n,x) (see above) is known from the one of Bessel functions. See a comment on asymptotics under A084950. This leads then to the limit for Phat(n,x)/n! given in the formula section. The limit for the continued fraction mentioned in the name and above is also found in this comment on A084950. - Wolfdieter Lang, Mar 08 2013
This is the unsigned Lah triangle read by ascending antidiagonals. Conversely, reading the given triangle beginning at the left in descending steps yields a row of the unsigned Lah triangle. This can be verified immediately by means of the explicit formulas. For example, [T(5,0), T(6,1), T(7,2), T(8,3), T(9,4)] is row 5 of A105278. - Peter Luschny, Dec 07 2019

Examples

			The irregular triangle a(n,m)  begins:
n\m          0          1         2        3      4    5  6
1:           1
2:           2
3:           6          1
4:          24          6
5:         120         36         1
6:         720        240        12
7:        5040       1800       120        1
8:       40320      15120      1200       20
9:      362880     141120     12600      300     1
10:    3628800    1451520    141120     4200    30
11:   39916800   16329600   1693440    58800    63     1
12:  479001600   19958400  21772800   846720  11760   42
13: 6227020800 2634508800 299376000 12700800 211680 1176  1
...
Recurrence (short version): a(6,1) = 6*36 + 24 = 240.
Recurrence (long version): a(6,1) = 2*4*36 + 24 - 4*3*6 = 240.
a(6,1) = binomial(4,1)*5!/2! = 4*3*4*5 = 240.
		

Crossrefs

Programs

  • Mathematica
    row[n_] := x/ContinuedFractionK[x, i, {i, 0, n}] // Simplify // Together // Numerator // CoefficientList[#, x]& // Rest;
    row /@ Range[12] // Flatten (* Jean-François Alcover, Oct 28 2019 *)

Formula

Recurrence (short version): a(n,m) = n*a(n-1,m) + a(n-2,m-1), n>=2, a(1,1) =1, a(n,-1) = 0, a(n,m) = 0 if n < 2*m+1. From the recurrence for the Phat(n,x) polynomials given in a comment above.
Recurrence (long version): a(n,m) = 2*(n-1-m)*a(n-1,m) + a(n-2,m-1) - (n-1-m)*(n-2-m)*a(n-2,m), n >= 1, a(1,0) = 1, a(n,-1) = 0, a(n,m) = 0 if n < 2*m + 1. From the recurrence for the unsigned generalized Laguerre polynomial with parameter alpha = 1. This recurrence can be simplified to the preceding short version, because the following explicit form follows from the one for the generalized Laguerre coefficients (which, in turn, derives from the Rodrigues formula and the Leibniz rule). This proves the relation a(n,m) = |Lhat(1,n-1-m,m)|, with the coefficients |Lhat(1,n,m)| = |A066667(n,m)| of the unsigned n!*L(1,n,x) Laguerre polynomials (parameter alpha = 1).
a(n,m) = binomial(n-1-m,m)*(n-m)!/(m+1)!, n >= 1, 0 <= m <= floor((n-1)/2).
For the e.g.f.s of the column sequences see A105278 (here with different offset, which could be obtained by integration).
E.g.f. for row polynomials gPhat(z,x) := Sum_{z>=0} Phat(n,x)*z^n = Pi*(BesselJ(1, 2*i*sqrt(x)*sqrt(1-z))*BesselY(1, 2*i*sqrt(x)) - BesselY(1, (2*i)*sqrt(x)*sqrt(1-z))*BesselJ(1, 2*i*sqrt(x)))/sqrt(1-z) with Bessel functions and the imaginary unit i = sqrt(-1). Phat(0,x) = 0.
From Wolfdieter Lang, Mar 06 2013 (Start)
For the row polynomials one finds Phat(n,x) = Pi*(z/2)^n*(BesselY(1,z)* BesselJ(n+1,z) - BesselJ(1,z)*BesselY(n+1,z)) where z := -i*2*sqrt(x) and the i is the imaginary unit. An alternative form is Phat(n,x) = 2*(w/2)^n*(BesselI(1,w)*BesselK(n+1,w) + BesselK(1,w)*BesselI(n+1,w)*(-1)^(n+1)), n >= 1, where w := -2*sqrt(x). See a comment above for the derivation. (End)
Limit_{n -> oo} Phat(n,x)/n! = BesselI(1,2*sqrt(x))/sqrt(x). See a comment above. - Wolfdieter Lang, Mar 08 2013

A089231 Triangular array A066667 or A008297 unsigned and transposed.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 12, 36, 24, 1, 20, 120, 240, 120, 1, 30, 300, 1200, 1800, 720, 1, 42, 630, 4200, 12600, 15120, 5040, 1, 56, 1176, 11760, 58800, 141120, 141120, 40320, 1, 72, 2016, 28224, 211680, 846720, 1693440, 1451520, 362880
Offset: 1

Views

Author

Philippe Deléham, Dec 10 2003

Keywords

Comments

Row sums: A000262.
T(n, k) is also the number of nilpotent partial one-one bijections (of an n-element set) of height k (height(alpha) = |Im(alpha)|). - Abdullahi Umar, Sep 14 2008
T(n, k) is also the number of acyclic directed graphs on n labeled nodes with k-1 edges with all indegrees and outdegrees at most 1. - Felix A. Pahl, Dec 25 2012
For n > 1, the n-th derivative of exp(1/x) is of the form (exp(1/x)/x^(2*n))*(P(n-1,x)) where P(n-1,x) is a polynomial of degree n-1 with n terms. The term of degree k in P(n-1,x) has a coefficient given by T(n-1,k). Example: The third derivative of exp(1/x) is (exp(1/x)/x^6)*(1+6x+6x^2) and the 3rd row of this triangle is 1, 6, 6, which corresponds to this coefficients of the polynomial 1+6x+6x^2. - Derek Orr, Nov 06 2014
For another context for this array see the Callan (2008) article. - Ron L.J. van den Burg, Dec 12 2021

Examples

			1;
1,  2;
1,  6,    6;
1, 12,   36,    24;
1, 20,  120,   240,    120;
1, 30,  300,  1200,   1800,    720;
1, 42,  630,  4200,  12600,  15120,    5040;
1, 56, 1176, 11760,  58800, 141120,  141120,   40320;
1, 72, 2016, 28224, 211680, 846720, 1693440, 1451520, 362880;
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 203.

Crossrefs

Cf. A000262 (row sums), A008297, A066667, A144084, row mirror of A105278.

Programs

  • Maple
    P := n -> simplify(hypergeom([-n,-n+1],[],1/t));
    seq(print(seq(coeff(expand(t^k*P(k)),t,k-j+1),j=1..k)),k=1..n); # Peter Luschny, Oct 29 2014
  • Mathematica
    Table[(Binomial[n - 1, k - 1] Binomial[n, k - 1]/k) k!, {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jul 04 2016 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1((n+1)!*binomial(n,k)/(n-k+1)!, ", ");); print(););} \\ Michel Marcus, Jan 12 2016

Formula

T(n, k) = A001263(n, k)*k!; A001263 = triangle of Narayana.
T(n, k) = C(n, n-k+1)*(n-1)!/(n-k)! = Sum_{i=n-k+1..n} |S1(n, i)*S2(i, n-k+1)| , with S1, S2 the Stirling numbers.
From Derek Orr, Mar 12 2015: (Start)
Each row represents a polynomial:
P(1,x) = 1;
P(2,x) = 1 + 2x;
P(3,x) = 1 + 6x + 6x^2;
P(4,x) = 1 + 12x + 36x^2 + 24x^3;
...
They are related through P(n+1,x) = x^2*P'(n,x) - (1+2*n*x)*P(n,x) with P(1,x) = 1.
(End)
From Peter Bala, Jul 04 2016: (Start)
Working with an offset of 0:
G.f.: exp(x*t)*I_1(2*sqrt(x)) = 1 + (1 + 2*t)*x/(1!*2!) + (1 + 6*t + 6*t^2)*x^2/(2!*3!) + (1 + 12*t + 36*t^2 + 24*t^3)*x^3/(3!*4!) + ..., where I_1(x) = Sum_{n >= 0} (x/2)^(2*n)/(n!*(n+1)!) is a modified Bessel function of the first kind.
The row polynomials R(n,t) satisfy R(n,t + u) = Sum_{k = 0..n} T(n,k)*t^k*R(n-k,u).
R(n,t) = 1 + Sum_{k = 0..n-1} (-1)^(n-k+1)*(n+1)!/(k+1)!* binomial(n,k)*t^(n-k)*R(k,t). Cf. A144084. (End)
From Peter Bala, Oct 05 2019: (Start)
The following formulas use a column index k starting at 0:
E.g.f.: exp(x/(1 - t*x)) - 1 = x + (1 + 2*t)*x^2/2! + (1 + 6*t + 6*t^2)*x^3/3! + ....
Recurrence for row polynomials: R(n+1,t) = (1 + 2*n*t)R(n,t) - n*(n-1)*t^2*R(n-1,t), with R(1,t) = 1 and R(2,t) = 1 + 2*t.
R(n+1,t) equals the numerator polynomial of the finite continued fraction 1 + n*t/(1 + n*t/(1 + (n-1)*t/(1 + (n-1)*t/(1 + ... + 2*t/(1 + 2*t/(1 + t/(1 + t/(1)))))))). The denominator polynomial is the n-th row polynomial of A144084. (End)
T(n,k) = A105278(n,n-k). - Ron L.J. van den Burg, Dec 12 2021

Extensions

StackExchange link added by Felix A. Pahl, Dec 25 2012

A143497 Triangle of unsigned 2-Lah numbers.

Original entry on oeis.org

1, 4, 1, 20, 10, 1, 120, 90, 18, 1, 840, 840, 252, 28, 1, 6720, 8400, 3360, 560, 40, 1, 60480, 90720, 45360, 10080, 1080, 54, 1, 604800, 1058400, 635040, 176400, 25200, 1890, 70, 1, 6652800, 13305600, 9313920, 3104640, 554400, 55440, 3080, 88, 1
Offset: 2

Views

Author

Peter Bala, Aug 25 2008

Keywords

Comments

For a signed version of this triangle see A062137. The unsigned 2-Lah number L(2; n,k) gives the number of partitions of the set {1, 2, ..., n} into k ordered lists with the restriction that the elements 1 and 2 must belong to different lists. More generally, the unsigned r-Lah number L(r; n, k) gives the number of partitions of the set {1, 2, ..., n} into k ordered lists with the restriction that the elements 1, 2, ..., r belong to different lists. If r = 1 there is no restriction and we obtain the unsigned Lah numbers A105278. For other cases see A143498 (r=3) and A143499 (r=4). We make some remarks on the general case.
The unsigned r-Lah numbers occur as connection constants in the generalized Lah identity (x + 2*r - 1)*(x + 2*r)*...*(x + 2*r + n - r - 2) = Sum_{k=r..n} L(r; n, k)*(x - 1)*(x - 2)*...*(x - k + r) for n >= r and where any empty products are taken equal to 1 (for a bijective proof of the identity, follow the proof of [Petkovsek and Pisanski] but restrict the first r of the Argonauts to different paths).
The unsigned r-Lah numbers satisfy the same recurrence as the unsigned Lah numbers, namely, L(r; n, k) = (n + k - 1)*L(r; n - 1,k) + L(r; n - 1,k - 1), but with the boundary conditions: L(r; n, k) = 0 if n < r or if k < r; L(r; r, r) = 1. The recurrence has the explicit solution L(r; n, k) = ((n - r)!/(k - r)!)*binomial(n + r - 1, k + r - 1) for n, k >= r. It follows that the unsigned r-Lah numbers have 'vertical' generating functions for k >= r of the form Sum_{n>=k} L(r; n, k)*t^n/(n -r)! = 1/(k - r)!*t^k/(1 - t)^(k + r). This yields the e.g.f. for the array of unsigned r-restricted Lah numbers in the form: Sum_{n,k>=r} L(r; n, k)*x^k*t^n/(n-r)! = (x*t)^r * 1/(1 - t)^(2*r) * exp(x*t/(1 - t)) = (x*t)^r (1 + (2*r + x)*t + (2r*(2*r + 1) + 2*(2*r + 1)*x + x^2)*t^2/2! + ...).
The array of unsigned r-Lah numbers begins
1
2r 1
2r*(2r+1) 2*(2r+1) 1
2r*(2r+1)*(2r+2) 3*(2r+1)*(2r+2) 3*(2r+2) 1
...
and equals exp(D(r)), where D(r) is the array with the sequence (2*r, 2*(2*r + 1), 3*(2*r + 2), 4*(2*r + 3), ...) on the main subdiagonal and zeros everywhere else.
The unsigned r-Lah numbers are related to the r-Stirling numbers: the lower triangular array of unsigned r-Lah numbers may be expressed as the matrix product St1(r) * St2(r), where St1(r) and St2(r) denote the arrays of r-Stirling numbers of the first and second kind respectively. The theory of r-Stirling numbers is developed in [Broder]. See A143491 - A143496 for tables of r-Stirling numbers. An alternative factorization for the array is as St1 * P^(2r - 2) * St2, where P denotes Pascal's triangle, A007318, St1 is the triangle of unsigned Stirling numbers of the first kind, abs(A008275) and St2 denotes the triangle of Stirling numbers of the second kind, A008277 (apply Theorem 10 of [Neuwirth]).
The array of unsigned r-Lah numbers is an example of the fundamental matrices sketched in A133314. So redefining the offset as n=0, given matrices A and B with A(n, k) = T(n, k)*a(n - k) and B(n, k) = T(n, k)*b(n - k), then A*B = C where C(n, k) = T(n,k)*[a(.) + b(.)]^(n - k), umbrally. An e.g.f. for the row polynomials of A is exp(x*t) exp{-x*t*[a*t/(a*t - 1)]}/(1 - a*t)^4 = exp(x*t) exp[(.)!*Laguerre(., 3, -x*t)* a(.)*t)], umbrally. - Tom Copeland, Sep 19 2008

Examples

			Triangle begins:
=========================================
n\k |     2     3     4     5     6     7
----+------------------------------------
  2 |     1
  3 |     4     1
  4 |    20    10     1
  5 |   120    90    18     1
  6 |   840   840   252    28     1
  7 |  6720  8400  3360   560    40     1
 ...
T(4,3) = 10. The ten partitions of {1,2,3,4} into 3 ordered lists such that the elements 1 and 2 lie in different lists are: {1}{2}{3,4} and {1}{2}{4,3}, {1}{3}{2,4} and {1}{3}{4,2}, {1}{4}{2,3} and {1}{4}{3,2}, {2}{3}{1,4} and {2}{3}{4,1}, {2}{4}{1,3} and {2}{4}{3,1}. The remaining two partitions {3}{4}{1,2} and {3}{4}{2,1} are not allowed because the elements 1 and 2 belong to the same block.
		

Crossrefs

Cf. A001715 (column 2), A007318, A008275, A008277, A061206 (column 3), A062137, A062141 - A062144 ( column 4 to column 7), A062146 (alt. row sums), A062147 (row sums), A105278 (unsigned Lah numbers), A143491, A143494, A143498, A143499.

Programs

  • GAP
    T:=Flat(List([2..10],n->List([2..n],k->(Factorial(n-2)/Factorial(k-2))*Binomial(n+1,k+1)))); # Muniru A Asiru, Nov 27 2018
  • Maple
    T := (n, k) -> ((n-2)!/(k-2)!)*binomial(n+1, k+1):
    for n from 2 to 11 do seq(T(n, k), k = 2..n) od;
  • Mathematica
    T[n_, k_] := (n-2)!/(k-2)!*Binomial[n+1, k+1]; Table[T[n, k], {n,2,10}, {k,2,n}] // Flatten (* Amiram Eldar, Nov 27 2018 *)
  • Maxima
    create_list((n - 2)!/(k - 2)!*binomial(n + 1, k + 1), n, 2, 12, k, 2, n); /* Franck Maminirina Ramaharo, Nov 27 2018 */
    

Formula

T(n, k) = ((n - 2)!/(k - 2)!)*C(n+1, k+1), for n, k >= 2.
Recurrence: T(n, k) = (n + k - 1)*T(n-1, k) + T(n-1, k-1) for n, k >= 2, with the boundary conditions: T(n, k) = 0 if n < 2 or k < 2; T(2, 2) = 1.
E.g.f. for column k: Sum_{n>=k} T(n, k)*t^n/(n - 2)! = 1/(k - 2)!*t^k/(1 - t)^(k+2) for k >= 2.
E.g.f: Sum_{n=2..inf} Sum_{k=2..n} T(n, k)*x^k*t^n/(n - 2)! = (x*t)^2/(1 - t)^4* exp(x*t/(1 - t)) = (x*t)^2*(1 + (4 + x)*t + (20 + 10*x + x^2)*t^2/2! + ... ).
Generalized Lah identity: (x + 3)*(x + 4)*...*(x + n) = Sum_{k = 2..n} T(n, k)*(x - 1)*(x - 2)*...*(x - k + 2).
The polynomials 1/n!*Sum_{k=2..n+2} T(n+2, k)*(-x)^(k - 2) for n >= 0 are the generalized Laguerre polynomials Laguerre(n,3,x). See A062137.
Array = A143491 * A143494 = abs(A008275) * (A007318)^2 * A008277 (apply Theorem 10 of [Neuwirth]). Array equals exp(D), where D is the array with the quadratic sequence (4, 10, 18, 28, ...) on the main subdiagonal and zeros elsewhere.
After adding 1 to the head of the main diagonal and a zero to each of the subdiagonals, the n-th diagonal may be generated as coefficients of (1/n!) [D^(-1) tDt t^(-3)D t^3]^n exp(x*t), where D is the derivative w.r.t. t and D^(-1) t^j/j! = t^(j + 1)/(j + 1)!. E.g., n = 2 generates 20*x*t^3/3! + 90*x^2*t^4/4! + 252*x^3* t^5/5! + ... . For the general unsigned r-Lah number array, replace the threes by (2*r - 1) in the operator. The e.g.f. of the row polynomials is then exp[D^(-1) tDt t^(-(2*r-1))D t^(2*r - 1)] exp(x*t), with offset n = 0. - Tom Copeland, Sep 21 2008

A059110 Triangle T = A007318*A271703; T(n,m)= Sum_{i=0..n} L'(n,i)*binomial(i,m), m=0..n.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 13, 21, 9, 1, 73, 136, 78, 16, 1, 501, 1045, 730, 210, 25, 1, 4051, 9276, 7515, 2720, 465, 36, 1, 37633, 93289, 85071, 36575, 8015, 903, 49, 1, 394353, 1047376, 1053724, 519456, 137270, 20048, 1596, 64, 1, 4596553, 12975561
Offset: 0

Views

Author

Vladeta Jovovic, Jan 04 2001

Keywords

Comments

L'(n,i) are unsigned Lah numbers (cf. A008297): L'(n,i)=n!/i!*binomial(n-1,i-1) for i >= 1, L'(0,0)=1, L'(n,0)=0 for n>0. T(n,0)=A000262(n); T(n,2)=A052852(n). Row sums A052897.
Exponential Riordan array [e^(x/(1-x)),x/(1-x)]. - Paul Barry, Apr 28 2007
From Wolfdieter Lang, Jun 22 2017: (Start)
The inverse matrix T^(-1) is exponential Riordan (aka Sheffer) (e^(-x), x/(1+x)): T^(-1)(n, m) = (-1)^(n-m)*A271705(n, m).
The a- and z-sequences of this Sheffer (aka exponential Riordan) matrix are a = [1,1,repeat(0)] and z(n) = (-1)^(n+1)*A028310(n)/A000027(n-1) with e.g.f. ((1+x)/x)*(1-exp(-x)). For a- and z-sequences see a W. Lang link under A006232 with references. (End)

Examples

			The triangle T = A007318*A271703 starts:
n\m       0        1        2       3       4      5     6    7  8 9 ...
0:        1
1:        1        1
2:        3        4        1
3:       13       21        9       1
4:       73      136       78      16       1
5:      501     1045      730     210      25      1
6:     4051     9276     7515    2720     465     36     1
7:    37633    93289    85071   36575    8015    903    49    1
8:   394353  1047376  1053724  519456  137270  20048  1596   64  1
9:  4596553 12975561 14196708 7836276 2404206 427518 44436 2628 81 1
... reformatted. - _Wolfdieter Lang_, Jun 22 2017
E.g.f. for T(n, 2) = 1/2!*(x/(1-x))^2*e^(x/(x-1)) = 1*x^2/2 + 9*x^3/3! + 78*x^4/4! + 730*x^5/5! + 7515*x^6/6 + ...
From _Wolfdieter Lang_, Jun 22 2017: (Start)
The z-sequence starts: [1, 1/2, -2/3, 3/4, -4/5, 5/6, -6/7, 7/8, -8/9, ...
T recurrence: T(3, 0) = 3*(1*T(2,0) + (1/2)*T(2, 1) + (-2/3)*T(2 ,1)) = 3*(3 + (1/2)*4 - (2/3)) = 13; T(3, 1) = 3*(T(2, 0)/1 + T(2, 1)) = 3*(3 + 4) = 21.
Meixner type recurrence for R(2, x): (D - D^2)*(3 + 4*x + x^2) = 4 + 2*x - 2 = 2*(1 + x), (D = d/dx).
General Sheffer recurrence for R(2, x): (1+x)*(1 + 2*D + D^2)*(1 + x) = (1+x)*(1 + x + 2) = 3 + 4*x + x^2. (End)
		

Crossrefs

Programs

  • GAP
    Concatenation([1],Flat(List([1..10],n->List([0..n],m->Sum([0..n],i-> Factorial(n)/Factorial(i)*Binomial(n-1,i-1)*Binomial(i,m)))))); # Muniru A Asiru, Jul 25 2018
    
  • Magma
    A059110:= func< n,k | n eq 0 select 1 else Factorial(n-1)*Binomial(n,k)*Evaluate(LaguerrePolynomial(n-1, 1-k), -1) >;
    [A059110(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 23 2021
  • Maple
    Lprime := proc(n,i)
        if n = 0 and i = 0 then
            1;
        elif k = 0 then
            0 ;
        else
            n!/i!*binomial(n-1,i-1) ;
        end if;
    end proc:
    A059110 := proc(n,k)
        add(Lprime(n,i)*binomial(i,k),i=0..n) ;
    end proc: # R. J. Mathar, Mar 15 2013
  • Mathematica
    (* First program *)
    lp[n_, i_] := Binomial[n-1, i-1]*n!/i!; lp[0, 0] = 1; t[n_, m_] := Sum[lp[n, i]*Binomial[i, m], {i, 0, n}]; Table[t[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Mar 26 2013 *)
    (* Second program *)
    A059110[n_, k_]:= If[n==0, 1, (n-1)!*Binomial[n, k]*LaguerreL[n-1, 1-k, -1]];
    Table[A059110[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 23 2021 *)
  • Sage
    def A059110(n, k): return 1 if n==0 else factorial(n-1)*binomial(n, k)*gen_laguerre(n-1, 1-k, -1)
    flatten([[A059110(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 23 2021
    

Formula

E.g.f. for column m: (1/m!)*(x/(1-x))^m*e^(x/(x-1)), m >= 0.
From Wolfdieter Lang, Jun 22 2017: (Start)
E.g.f. for row polynomials in powers of x (e.g.f. of the triangle): exp(z/(1-z))* exp(x*z/(1-z)) (exponential Riordan).
Recurrence: T(n, 0) = Sum_{j=0} z(j)*T(n-1, j), n >= 1, with z(n) = (-1)^(n+1)*A028310(n), T(0, 0) = 1, T(n, m) = 0 n < m, T(n, m) = n*(T(n-1, m-1)/m + T(n-1, m)), n >= m >= 1 (from the z- and a-sequence, see a comment above).
Meixner type recurrence for the (monic) row polynomials R(n, x) = Sum_{m=0..n} T(n, m)*x^m: Sum_{k=0..n-1} (-1)^k*D^(k+1)*R(n, x) = n*R(n-1, x), n >=1, R(0, x) = 1, with D = d/dx.
General Sheffer recurrence: R(n, x) = (x+1)*(1+D)^2*R(n-1, x), n >=1, R(0, x) = 1.
(End)
P_n(x) = L_n(1+x) = n!*Lag_n(-(1+x);1), where P_n(x) are the row polynomials of this entry; L_n(x), the Lah polynomials of A105278; and Lag_n(x;1), the Laguerre polynomials of order 1. These relations follow from the relation between the iterated operator (x^2 D)^n and ((1+x)^2 D)^n with D = d/dx. - Tom Copeland, Jul 18 2018
From G. C. Greubel, Feb 23 2021: (Start)
T(n, k) = (n-1)!*binomial(n, k)*LaguerreL(n-1, 1-k, -1) with T(0, 0) = 1.
Sum_{k=0..n} T(n, k) = A052897(n). (End)

A143498 Triangle of unsigned 3-Lah numbers.

Original entry on oeis.org

1, 6, 1, 42, 14, 1, 336, 168, 24, 1, 3024, 2016, 432, 36, 1, 30240, 25200, 7200, 900, 50, 1, 332640, 332640, 118800, 19800, 1650, 66, 1, 3991680, 4656960, 1995840, 415800, 46200, 2772, 84, 1, 51891840, 69189120, 34594560, 8648640, 1201200, 96096, 4368
Offset: 3

Views

Author

Peter Bala, Aug 25 2008

Keywords

Comments

For a signed version of this triangle see A062138. This is the case r = 3 of the unsigned r-Lah numbers L(r;n,k). The unsigned 3-Lah numbers count the partitions of the set {1,2,...,n} into k ordered lists with the restriction that the elements 1, 2 and 3 belong to different lists. For other cases see A105278 (r = 1), A143497 (r = 2 and comments on the general case) and A143499 (r = 4).
The unsigned 3-Lah numbers are related to the 3-Stirling numbers: the lower triangular array of unsigned 3-Lah numbers may be expressed as the matrix product St1(3) * St2(3), where St1(3) = A143492 and St2(3) = A143495 are the arrays of 3-Stirling numbers of the first and second kind respectively. An alternative factorization for the array is as St1 * P^4 * St2, where P denotes Pascal's triangle, A007318, St1 is the triangle of unsigned Stirling numbers of the first kind, abs(A008275) and St2 denotes the triangle of Stirling numbers of the second kind, A008277.

Examples

			Triangle begins
n\k|......3......4......5......6......7......8
==============================================
3..|......1
4..|......6......1
5..|.....42.....14......1
6..|....336....168.....24......1
7..|...3024...2016....432.....36......1
8..|..30240..25200...7200....900.....50......1
...
T(4,3) = 6. The partitions of {1,2,3,4} into 3 ordered lists, such that the elements 1, 2 and 3 lie in different lists, are: {1}{2}{3,4} and {1}{2}{4,3}, {1}{3}{2,4} and {1}{3}{4,2}, {2}{3}{1,4} and {2}{3}{4,1}.
		

Crossrefs

Cf. A001725 (column 3), A007318, A008275, A008277, A062138, A062148 - A062152 (column 4 to column 8), A062191 (alt. row sums), A062192 (row sums), A105278 (unsigned Lah numbers), A143492, A143495, A143497, A143499.

Programs

  • Magma
    /* As triangle */ [[Factorial(n-3)/Factorial(k-3)*Binomial(n+2, k+2): k in [3..n]]: n in [3.. 15]]; // Vincenzo Librandi, Nov 27 2018
  • Maple
    with combinat: T := (n, k) -> (n-3)!/(k-3)!*binomial(n+2,k+2): for n from 3 to 12 do seq(T(n, k), k = 3..n) end do;
  • Mathematica
    T[n_, k_] := (n-3)!/(k-3)!*Binomial[n+2, k+2]; Table[T[n, k], {n, 3, 10}, {k, 3, n}] // Flatten (* Amiram Eldar, Nov 26 2018 *)

Formula

T(n,k) = (n-3)!/(k-3)!*binomial(n+2,k+2) for n,k >= 3.
Recurrence: T(n,k) = (n+k-1)*T(n-1,k) + T(n-1,k-1) for n,k >= 3, with the boundary conditions: T(n,k) = 0 if n < 3 or k < 3; T(3,3) = 1.
E.g.f. for column k: Sum_{n >= k} T(n,k)*t^n/(n-3)! = 1/(k-3)!*t^k/(1-t)^(k+3) for k >= 3.
E.g.f: Sum_{n = 3..inf} Sum_{k = 3..n} T(n,k)*x^k*t^n/(n-3)! = (x*t)^3/(1-t)^6*exp(x*t/(1-t)) = (x*t)^3*(1 + (6+x)*t +(42+14*x+x^2)*t^2/2! + ... ).
Generalized Lah identity: (x+5)*(x+6)*...*(x+n+1) = Sum_{k = 3..n} T(n,k)*(x-1)*(x-2)*...*(x-k+3).
The polynomials 1/n!*Sum_{k = 3..n+3} T(n+3,k)*(-x)^(k-3) for n >= 0 are the generalized Laguerre polynomials Laguerre(n,5,x). See A062138.
Array = A143492 * A143495 = abs(A008275) * ( A007318 )^4 * A008277 (apply Theorem 10 of [Neuwirth]). Array equals exp(D), where D is the array with the quadratic sequence (6,14,24,36, ... ) on the main subdiagonal and zeros everywhere else.

A235706 (I + A132440)^3: Coefficients for normalized generalized Laguerre polynomials n!*Lag(n, 3-n, -x).

Original entry on oeis.org

1, 3, 1, 6, 6, 1, 6, 18, 9, 1, 0, 24, 36, 12, 1, 0, 0, 60, 60, 15, 1, 0, 0, 0, 120, 90, 18, 1, 0, 0, 0, 0, 210, 126, 21, 1, 0, 0, 0, 0, 0, 336, 168, 24, 1, 0, 0, 0, 0, 0, 0, 504, 216, 27, 1, 0, 0, 0, 0, 0, 0, 0, 720, 270, 30, 1
Offset: 0

Views

Author

Tom Copeland, Apr 20 2014

Keywords

Comments

The associated Laguerre polynomials n!*Lag(n,3-n,-x) are related to the rook polynomials of a rectangular 3 X n chessboard by R(3,n,x) = n!*x^n*Lag(n,3-n,-1/x), which are also the matching polynomials, or generating function of the number of k-edge matchings, of the complete bipartite graph K(m,n), or biclique (cf. Wikipedia for details).
The formulas here and below can be naturally extended with 3 replaced by any positive integer m. For m = 1 and 2, see unsigned A132013 and A132014. The formulas there can be extrapolated to apply to this matrix.

Examples

			Triangle begins:
  1;
  3,  1;
  6,  6,  1;
  6, 18,  9,  1;
  0, 24, 36, 12,  1;
  0,  0, 60, 60, 15, 1;
  ...
		

Crossrefs

Cf. A007318, A008306 for a generalization, A132013, A132014, A132440, A238363, A238385.
....................................
With 0th row: 1
n-th row: n!*Lag(n,3-n,-x)
....................................
1st: 1!*Lag(1,2,-x) = A062139(1,k,-x)
2nd: 2!*Lag(2,1,-x) = A105278(2,k,x)
3rd: 3!*Lag(3,0,-x) = A021009(3,k,-x)
4th: 4!*Lag(4,-1,-x) = A111596(4,k,-x)
5th: 5!*Lag(5,-2,-x) = cf. x^2*A062139(3,k,x)
6th: 6!*Lag(6,-3,-x) = cf. x^3*A062137(3,k,-x)
....................................
n-th row: x^(n-3)*3!*Lag(3,n-3,-x)
....................................
1st: x^(-2)*3!Lag(3,-2,-x) = cf. x^(-2)*[x^2*A062139(1,k,x)]
2nd: x^(-1)*3!Lag(3,-1,-x) = x^(-1)*A111596(3,k,-x)
3rd: x^0*3!Lag(3,0,-x) = x^0*A021009(3,k,-x)
4th: x^1*3!Lag(3,1,-x) = x^1*A105278(3,k,x)
5th: x^2*3!Lag(3,2,-x) = x^2*A062139(3,k,-x)
6th: x^3*3!Lag(3,3,-x) = x^3*A062137(3,k,-x)

Programs

  • Magma
    /* As triangle */ [[Binomial(3, n-k)*Factorial(n)/Factorial(k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 28 2017
  • Mathematica
    Table[Binomial[3, n - k] n! / k!, {n, 0, 9}, {k, 0, n}]//Flatten (* Vincenzo Librandi, Jul 28 2017 *)
  • PARI
    T(n,k) = binomial(3,n-k)*n!/k!
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 28 2017
    
  • PARI
    row(n) = Vecrev(n!*pollaguerre(n, 3-n, -x)); \\ Michel Marcus, Feb 06 2021
    

Formula

T(n,k) = binomial(3,n-k)*n!/k! = binomial(n,k)*3!/(3-n+k)!.
E.g.f.: exp(y*x)(1+y)^3, so this is an Appell sequence of polynomials with lowering operator L= D= d/dx and raising operator R = x + 3/(1+D).
E.g.f. of inverse matrix is exp(x*y)/(1+y)^3.
Multiply the n-th diagonal of the Pascal matrix A007318 by d(0)=1, d(1)=3, d(2)=6, d(3)=6, and d(n)=0 for n>3 to obtain T.
Row polynomials: n!*Lag(n,3-n,-x) = x^(n-3)*3!*Lag(3,n-3,-x) =
(3!/(3-n)!)*K(-n,3-n+1,-x) where K is Kummer's confluent hypergeometric function (as a limit of n+c as c tends to zero).
T = (I + A132440)^3 = exp[3*(A238385-I)]. I = identity matrix.
Operationally, n!Lag(n,3-n,-:xD:) = x^(n-3)*:Dx:^n*x^(3-n) = x^(-3)*:xD:^n*x^3 = n!*binomial(xD+3,n) = n!*binomial(3,n)*K(-n,3-n+1,-:xD:) where :AB:^n = A^n*B^n for any two operators.
n-th row polynomial: n!*Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*Lag(k,3,-x). - Peter Bala, Jul 25 2021

A156992 Triangle T(n,k) = n!*binomial(n-1, k-1) for 1 <= k <= n, read by rows.

Original entry on oeis.org

1, 2, 2, 6, 12, 6, 24, 72, 72, 24, 120, 480, 720, 480, 120, 720, 3600, 7200, 7200, 3600, 720, 5040, 30240, 75600, 100800, 75600, 30240, 5040, 40320, 282240, 846720, 1411200, 1411200, 846720, 282240, 40320, 362880, 2903040, 10160640, 20321280, 25401600, 20321280, 10160640, 2903040, 362880
Offset: 1

Views

Author

Roger L. Bagula, Feb 20 2009

Keywords

Comments

Partition {1,2,...,n} into m subsets, arrange (linearly order) the elements within each subset, then arrange the subsets. - Geoffrey Critzer, Mar 05 2010
From Dennis P. Walsh, Nov 26 2011: (Start)
Number of ways to arrange n different books in a k-shelf bookcase leaving no shelf empty.
There are n! ways to arrange the books in one long line. With ni denoting the number of books for shelf i, we have n = n1 + n2 + ... + nk. Since the number of compositions of n with k summands is binomial(n-1,k-1), we obtain T(n,k) = n!*binomial(n-1,k-1) for the number of ways to arrange the n books on the k shelves.
Equivalently, T(n,k) is the number of ways to stack n different alphabet blocks into k labeled stacks.
Also, T(n,k) is the number of injective functions f:[n]->[n+k] such that (i) the pre-image of (n+j) exists for j=1..k and (ii) f has no fixed points, that is, for all x, f(x) does not equal x.
T(n,k) is the number of labeled, rooted forests that have (i) exactly k roots, (ii) each root labeled larger than any nonroot, (iii) each root with exactly one child node, (iv) n non-root nodes, and (v) at most one child node for each node in the forest.
(End)
Essentially, the triangle given by (2,1,3,2,4,3,5,4,6,5,7,6,8,7,9,8,...) DELTA (2,1,3,2,4,3,5,4,6,5,7,6,8,7,9,8,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 29 2011
T(n,j+k) = Sum_{i=j..n-k} binomial(n,i)*T(i,j)*T(n-i,k). - Dennis P. Walsh, Nov 29 2011

Examples

			The triangle starts:
      1;
      2,      2;
      6,     12,      6;
     24,     72,     72,      24;
    120,    480,    720,     480,     120;
    720,   3600,   7200,    7200,    3600,    720;
   5040,  30240,  75600,  100800,   75600,  30240,   5040;
  40320, 282240, 846720, 1411200, 1411200, 846720, 282240, 40320;
From _Dennis P. Walsh_, Nov 26 2011: (Start)
T(3,2) = 12 since there are 12 ways to arrange books b1, b2, and b3 on shelves <shelf1><shelf2>:
   <b1><b2,b3>, <b1><b3,b2>, <b2><b1,b3>, <b2><b3,b1>,
   <b3><b1,b2>, <b3><b2,b1>, <b2,b3><b1>, <b3,b2><b1>,
   <b1,b3><b2>, <b3,b1><b2>, <b1,b2><b3>, <b2,b1><b3>.
(End)
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 98

Crossrefs

Cf. A002866 (row sums).
Column 1 = A000142. Column 2 = A001286 * 2! = A062119. Column 3 = A001754 * 3!. Column 4 = A001755 * 4!. Column 5 = A001777 * 5!. Column 6 = A001778 * 6!. Column 7 = A111597 * 7!. Column 8 = A111598 * 8!. Cf. A105278. - Geoffrey Critzer, Mar 05 2010
T(2n,n) gives A123072.

Programs

  • Magma
    [Factorial(n)*Binomial(n-1,k-1): k in [1..n], n in [1..10]]; // G. C. Greubel, May 10 2021
    
  • Maple
    seq(seq(n!*binomial(n-1,k-1),k=1..n),n=1..10); # Dennis P. Walsh, Nov 26 2011
    with(PolynomialTools): p := (n,x) -> (n+1)!*hypergeom([-n],[],-x);
    seq(CoefficientList(simplify(p(n,x)),x),n=0..5); # Peter Luschny, Apr 08 2015
  • Mathematica
    Table[n!*Binomial[n-1, k-1], {n,10}, {k,n}]//Flatten
  • Sage
    flatten([[factorial(n)*binomial(n-1,k-1) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, May 10 2021

Formula

E.g.f. for column k is (x/(1-x))^k. - Geoffrey Critzer, Mar 05 2010
T(n,k) = A000142(n)*A007318(n-1,k-1). - Dennis P. Walsh, Nov 26 2011
Coefficient triangle of the polynomials p(n,x) = (n+1)!*hypergeom([-n],[],-x). - Peter Luschny, Apr 08 2015

A248045 (2*(n-1))! * (2*n-1)! / (n * (n-1)!^3).

Original entry on oeis.org

1, 6, 120, 4200, 211680, 13970880, 1141620480, 111307996800, 12614906304000, 1629845894476800, 236475822507724800, 38072607423743692800, 6735922851893114880000, 1299070835722243584000000, 271245990498804460339200000, 60962536364606302461235200000
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 30 2014

Keywords

Comments

Central terms in triangles of Lah numbers: a(n) = - A008297(2*n-1,n) = A105278(2*n-1,n) = A000891(n-1)*A000142(n) = A000894(n-1)*A000142(n-1).
a(n) = n * A204515(n-1). - Reinhard Zumkeller, Oct 19 2014

Crossrefs

Cf. A187535 (Central Lah numbers).

Programs

  • Haskell
    a248045 n = a000891 (n - 1) * a000142 n

Formula

n*a(n) = 4*(2*n-1)*(2*n-3)*a(n-1). - R. J. Mathar, Oct 07 2014

A143499 Triangle of unsigned 4-Lah numbers.

Original entry on oeis.org

1, 8, 1, 72, 18, 1, 720, 270, 30, 1, 7920, 3960, 660, 44, 1, 95040, 59400, 13200, 1320, 60, 1, 1235520, 926640, 257400, 34320, 2340, 78, 1, 17297280, 15135120, 5045040, 840840, 76440, 3822, 98, 1, 259459200, 259459200, 100900800, 20180160, 2293200
Offset: 4

Views

Author

Peter Bala, Aug 25 2008

Keywords

Comments

This is the case r = 4 of the unsigned r-Lah numbers L(r;n,k). The unsigned 4-Lah numbers count the partitions of the set {1,2,...,n} into k ordered lists with the restriction that the elements 1, 2, 3 and 4 belong to different lists. For other cases see A105278 (r = 1), A143497 (r = 2 and comments on the general case) and A143498 (r = 3).
The unsigned 4-Lah numbers are related to the 4-Stirling numbers: the lower triangular array of unsigned 4-Lah numbers may be expressed as the matrix product St1(4) * St2(4), where St1(4) = A143493 and St2(4) = A143496 are the arrays of 4-restricted Stirling numbers of the first and second kind respectively. An alternative factorization for the array is as St1 * P^6 * St2, where P denotes Pascal's triangle, A007318, St1 is the triangle of unsigned Stirling numbers of the first kind, abs(A008275) and St2 denotes the triangle of Stirling numbers of the second kind, A008277.

Examples

			Triangle begins
n\k|......4......5......6......7......8......9
==============================================
4..|......1
5..|......8......1
6..|.....72.....18......1
7..|....720....270.....30......1
8..|...7920...3960....660.....44......1
9..|..95040..59400..13200...1320.....60......1
...
T(5,4) = 8. The partitions of {1,2,3,4,5} into 4 ordered lists, such that the elements 1, 2, 3 and 4 lie in different lists, are: {1}{2}{3}{4,5} and {1}{2}{3}{5,4}, {1}{2}{4}{3,5} and {1}{2}{4}{5,3}, {1}{3}{4}{2,5} and {1}{3}{4}{5,2}, {2}{3}{4}{1,5} and {2}{3}{4}{5,1}.
		

Crossrefs

Cf. A007318, A008275, A008277, A049388 (column 4), A105278 (unsigned Lah numbers), A143493, A143496, A143497, A143498.

Programs

  • Maple
    with combinat: T := (n, k) -> (n-4)!/(k-4)!*binomial(n+3,k+3): for n from 4 to 13 do seq(T(n, k), k = 4..n) end do;
  • Mathematica
    T[n_, k_] := (n-4)!/(k-4)!*Binomial[n+3, k+3]; Table[T[n, k], {n, 4, 10}, {k, 4, n}] // Flatten (* Amiram Eldar, Nov 26 2018 *)

Formula

T(n,k) = (n-4)!/(k-4)!*binomial(n+3,k+3), n,k >= 4.
Recurrence: T(n,k) = (n+k-1)*T(n-1,k) + T(n-1,k-1) for n,k >= 4, with the boundary conditions: T(n,k) = 0 if n < 4 or k < 4; T(4,4) = 1.
E.g.f. for column k: Sum_{n >= k} T(n,k)*t^n/(n-4)! = 1/(k-4)!*t^k/(1-t)^(k+4) for k >= 4.
E.g.f: Sum_{n = 4..inf} Sum_{k = 4..n} T(n,k)*x^k*t^n/(n-4)! = (x*t)^4/(1-t)^8*exp(x*t/(1-t)) = (x*t)^4*(1 + (8+x)*t +(72+18*x+x^2)*t^2/2! + ...).
Generalized Lah identity: (x+7)*(x+8)*...*(x+n+2) = Sum_{k = 4..n} T(n,k)*(x-1)*(x-2)*...*(x-k+4).
The polynomials 1/n!*Sum_{k = 4..n+4} T(n+4,k)*(-x)^(k-4) for n >= 0 are the generalized Laguerre polynomials Laguerre(n,7,x).
Array = A132493* A143496 = abs(A008275) * ( A007318 )^6 * A008277 (apply Theorem 10 of [Neuwirth]). Array equals exp(D), where D is the array with the quadratic sequence (8,18,30,44, ... ) on the main subdiagonal and zeros everywhere else.

A048786 Triangle of coefficients of certain exponential convolution polynomials.

Original entry on oeis.org

1, 8, 1, 96, 24, 1, 1536, 576, 48, 1, 30720, 15360, 1920, 80, 1, 737280, 460800, 76800, 4800, 120, 1, 20643840, 15482880, 3225600, 268800, 10080, 168, 1, 660602880, 578027520, 144506880, 15052800, 752640, 18816, 224, 1
Offset: 1

Views

Author

Keywords

Comments

i) p(n,x) := sum(a(n,m)*x^m,m=1..n), p(0,x) := 1, are monic polynomials satisfying p(n,x+y)= sum(binomial(n,k)*p(k,x)*p(n-k,y),k=0..n), (exponential convolution polynomials). ii) In the terminology of the umbral calculus (see reference) p(n,x) are called associated to f(t)= t/(1+4*t). iii) a(n,1)= A034177(n).
Also the Bell transform of A034177. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
Also the fourth power of the unsigned Lah triangular matrix A105278. - Shuhei Tsujie, May 18 2019
Also the number of k-dimensional flats of the extended Shi arrangement of dimension n consisting of hyperplanes x_i - x_j = d (1 <= i < j <= n, -3 <= d <= 4). - Shuhei Tsujie, May 18 2019

Examples

			Triangle begins:
      1;
      8,     1;
     96,    24,    1;
   1536,   576,   48,  1;
  30720, 15360, 1920, 80, 1;
  ...
		

References

  • S. Roman, The Umbral Calculus, Academic Press, New York, 1984

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> 4^n*(n+1)!, 9); # Peter Luschny, Jan 28 2016
  • Mathematica
    rows = 8;
    t = Table[4^n*(n+1)!, {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)

Formula

a(n, m) = n!*4^(n-m)*binomial(n-1, m-1)/m!, n >= m >= 1; a(n, m) := 0, m>n; a(n, m) = (n!/m!)*A038231(n-1, m-1) = 4^(n-m)*A008297(n, m) (Lah-triangle).

Extensions

T(8,4) corrected by Jean-François Alcover, Jun 22 2018
Previous Showing 21-30 of 43 results. Next