cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 95 results. Next

A003152 A Beatty sequence: a(n) = floor(n*(1+1/sqrt(2))).

Original entry on oeis.org

1, 3, 5, 6, 8, 10, 11, 13, 15, 17, 18, 20, 22, 23, 25, 27, 29, 30, 32, 34, 35, 37, 39, 40, 42, 44, 46, 47, 49, 51, 52, 54, 56, 58, 59, 61, 63, 64, 66, 68, 69, 71, 73, 75, 76, 78, 80, 81, 83, 85, 87, 88, 90, 92, 93, 95, 97, 99, 100, 102, 104, 105, 107, 109, 110, 112, 114, 116
Offset: 1

Views

Author

Keywords

Comments

Numbers with an even number of trailing 0's in their minimal representation in terms of the positive Pell numbers (A317204). - Amiram Eldar, Mar 16 2022
The indices of the squares in the sequence of squares and twice squares: A028982(a(n)) = n^2. - Amiram Eldar, Apr 13 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A003151.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - N. J. A. Sloane, Mar 09 2021
Bisections: A001952, A001954.

Programs

  • Magma
    [Floor(n*(1+1/Sqrt(2))): n in [1..70]]; // Vincenzo Librandi, Dec 26 2015
    
  • Maple
    Digits := 100: t := evalf(1+sin(Pi/4)): A:= n->floor(t*n): seq(floor((t*n)),n=1..68); # Zerinvary Lajos, Mar 27 2009
  • Mathematica
    Table[Floor[n (1 + 1/Sqrt[2])], {n, 70}] (* Vincenzo Librandi, Dec 26 2015 *)
  • PARI
    a(n)=n+sqrtint(2*n^2)\2 \\ Charles R Greathouse IV, Jan 25 2022
    
  • Python
    from math import isqrt
    def A003152(n): return n+isqrt(n**2>>1) # Chai Wah Wu, May 24 2025

A127473 a(n) = phi(n)^2.

Original entry on oeis.org

1, 1, 4, 4, 16, 4, 36, 16, 36, 16, 100, 16, 144, 36, 64, 64, 256, 36, 324, 64, 144, 100, 484, 64, 400, 144, 324, 144, 784, 64, 900, 256, 400, 256, 576, 144, 1296, 324, 576, 256, 1600, 144, 1764, 400, 576, 484, 2116, 256, 1764, 400, 1024, 576, 2704, 324, 1600
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Comments

Number of maps of the form j |--> m*j + d with gcd(m, n) = 1 and gcd(d, n) = 1 from [1, 2, ..., n] to itself. - Joerg Arndt, Aug 29 2014
Right border of A127474.
Equals the Mobius transform (A054525) of A029939. - Gary W. Adamson, Aug 20 2008
From Jianing Song, Apr 14 2019: (Start)
a(n) is the number of solutions to gcd(xy, n) = 1 with x, y in [0, n-1].
Let Z_n be the ring of integers modulo n, then a(n) is the number of invertible elements in the ring Z_n[x]/(x^2 - x) (or equivalently, Z_n[x]/(x^2 + x)) with discriminant d = 1 (that is, a(n) is the size of the group G(n) = (Z_n[x]/(x^2 - x))*). Actually, G(n) is isomorphic to (Z_n)* X (Z_n)*. (End)

Examples

			a(5) = 16 since phi(5) = 4.
		

Crossrefs

Similar sequences: A082953 (size of (Z_n[x]/(x^2 - 1))*, d = 4), A002618 ((Z_n[x]/(x^2))*, d = 0), A079458 ((Z_n[x]/(x^2 + 1))*, d = -4), A319445 ((Z_n[x]/(x^2 - x + 1))* or (Z_n[x]/(x^2 + x + 1))*, d = -3).

Programs

Formula

a(n) = A000010(n)^2.
Multiplicative with a(p^e) = (p-1)^2*p^(2e-2), e >= 1. Dirichlet g.f. zeta(s-2)*Product_{primes p} (1 - 2/p^(s-1) + 1/p^s). - R. J. Mathar, Apr 04 2011
Sum_{k>=1} 1/a(k) = A109695. - Vaclav Kotesovec, Sep 20 2020
Sum_{k>=1} (-1)^k/a(k) = (1/7) * A109695. - Amiram Eldar, Nov 11 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime}(1 - (2*p-1)/p^3) = A065464 / 3 = 0.142749... . - Amiram Eldar, Oct 25 2022
a(n) = Sum_{d|n} mu(n/d)*phi(n*d). - Ridouane Oudra, Jul 23 2025

A114043 Take an n X n square grid of points in the plane; a(n) = number of ways to divide the points into two sets using a straight line.

Original entry on oeis.org

1, 7, 29, 87, 201, 419, 749, 1283, 2041, 3107, 4493, 6395, 8745, 11823, 15557, 20075, 25457, 32087, 39725, 48935, 59457, 71555, 85253, 101251, 119041, 139351, 161933, 187255, 215137, 246691, 280917, 319347, 361329, 407303
Offset: 1

Views

Author

Ugo Merlone (merlone(AT)econ.unito.it) and N. J. A. Sloane, Feb 22 2006

Keywords

Comments

Also, half of the number of two-dimensional threshold functions (A114146).
The line may not pass through any point. This is the "labeled" version - rotations and reflections are not taken into account (cf. A116696).
The number of ways to divide a (2n) X (2n) grid into two sets of equal size is given by 2*A099957(n). - David Applegate, Feb 23 2006
All terms are odd: the line that misses the grid contributes 1 to the total and all other lines contribute 2, 4 or 8, so the total must be odd.
What can be said about the 3-D generalization? - Max Alekseyev, Feb 27 2006

Examples

			Examples: the two sets are indicated by X's and o's.
a(2) = 7:
XX oX Xo XX XX oo oX
XX XX XX Xo oX XX oX
--------------------
a(3) = 29:
XXX oXX ooX ooo ooX ooo
XXX XXX XXX XXX oXX oXX
XXX XXX XXX XXX XXX XXX
-1- -4- -8- -4- -4- -8- Total = 29
--------------------
a(4)= 87:
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXo XXXo XXXo XXoo XXoo
XXXX XXXo XXoo Xooo oooo XXoo Xooo oooo Xooo oooo
--1- --4- --8- --8- --4- --4- --8- --8- --8- --8-
XXXX XXXX XXXX XXXX XXXX
XXXo XXXX XXXX XXXo XXXo
XXoo Xooo oooo Xooo XXoo
Xooo oooo oooo oooo oooo
--4- --8- --2- --4- --8- Total = 87.
--------------------
		

Crossrefs

Cf. A114499, A115004, A115005, A116696 (unlabeled case), A114531, A114146.
Cf. A099957.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Mathematica
    a[n_] := 2*Sum[(n - i)*(n - j)*Boole[CoprimeQ[i, j]], {i, 1, n - 1}, {j, 1, n - 1}] + 2*n^2 - 2*n + 1; Array[a, 40] (* Jean-François Alcover, Apr 25 2016, after Max Alekseyev *)
  • Python
    from sympy import totient
    def A114043(n): return 4*n**2-6*n+3 + 2*sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 15 2021

Formula

Let V(m,n) = Sum_{i=1..m, j=1..n, gcd(i,j)=1} (m+1-i)*(n+1-j); then a(n+1) = 2*(n^2 + n + V(n,n)) + 1. - Max Alekseyev, Feb 22 2006
a(n) ~ (3/Pi^2) * n^4. - Max Alekseyev, Feb 22 2006
a(n) = A141255(n) + 1. - T. D. Noe, Jun 17 2008
a(n) = 4*n^2 - 6*n + 3 + 2*Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 15 2021

Extensions

More terms from Max Alekseyev, Feb 22 2006

A141255 Total number of line segments between points visible to each other in a square n X n lattice.

Original entry on oeis.org

0, 6, 28, 86, 200, 418, 748, 1282, 2040, 3106, 4492, 6394, 8744, 11822, 15556, 20074, 25456, 32086, 39724, 48934, 59456, 71554, 85252, 101250, 119040, 139350, 161932, 187254, 215136, 246690, 280916, 319346, 361328, 407302, 457180, 511714, 570232
Offset: 1

Views

Author

T. D. Noe, Jun 17 2008

Keywords

Comments

A line segment joins points (a,b) and (c,d) if the points are distinct and gcd(c-a,d-b)=1.

Examples

			The 2 x 2 square lattice has a total of 6 line segments: 2 vertical, 2 horizontal and 2 diagonal.
		

References

  • D. M. Acketa, J. D. Zunic: On the number of linear partitions of the (m,n)-grid. Inform. Process. Lett., 38 (3) (1991), 163-168. See Table A.1.
  • Jovisa Zunic, Note on the number of two-dimensional threshold functions, SIAM J. Discrete Math. Vol. 25 (2011), No. 3, pp. 1266-1268. See Eq. (1.2).

Crossrefs

Cf. A141224.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020

Programs

  • Mathematica
    Table[cnt=0; Do[If[GCD[c-a,d-b]<2, cnt++ ], {a,n}, {b,n}, {c,n}, {d,n}]; (cnt-n^2)/2, {n,20}]
    (* This recursive code is much more efficient. *)
    a[n_]:=a[n]=If[n<=1,0,2*a1[n]-a[n-1]+R1[n]]
    a1[n_]:=a1[n]=If[n<=1,0,2*a[n-1]-a1[n-1]+R2[n]]
    R1[n_]:=R1[n]=If[n<=1,0,R1[n-1]+4*EulerPhi[n-1]]
    R2[n_]:=(n-1)*EulerPhi[n-1]
    Table[a[n],{n,1,37}]
    (* Seppo Mustonen, May 13 2010 *)
    a[n_]:=2 Sum[(n-i) (n-j) Boole[CoprimeQ[i,j]], {i,1,n-1}, {j,1,n-1}] + 2 n^2 - 2 n; Array[a, 40] (* Vincenzo Librandi, Feb 05 2020 *)
  • Python
    from sympy import totient
    def A141255(n): return 2*(n-1)*(2*n-1) + 2*sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 16 2021

Formula

a(n) = A114043(n) - 1.
a(n) = 2*(n-1)*(2n-1) + 2*Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 16 2021

A159684 Sturmian word: limit S(infinity) where S(0) = 0, S(1) = 0,1 and for n>=1, S(n+1) = S(n)S(n)S(n-1).

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Apr 19 2009

Keywords

Comments

Fixed point of morphism 0 -> 0,1; 1 -> 0,1,0.
This sequence corresponds to the case k = 1 of the Sturmian word S_k(infinity) as defined in A080764. See A171588 for the case k = 2. - Peter Bala, Nov 22 2013
This sequence is the {1->01}-transform of the Sturmian word A080764. - Clark Kimberling, May 17 2017
Also, sequence (1 if x/sqrt(2) is integer, 0 else) as x runs over the elements of N U N*sqrt(2) in increasing order, N = {0, 1, 2, ...}. See A144612 for the sqrt(3) analog. - M. F. Hasler, Feb 06 2025

Examples

			0 -> 0,1 -> 0,1,0,1,0 -> 0,1,0,1,0,0,1,0,1,0,0,1 ->...
		

Crossrefs

See A188037 for another version of this sequence. - N. J. A. Sloane, Mar 22 2011
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - N. J. A. Sloane, Mar 09 2021

Programs

  • Haskell
    a159684 n = a159684_list !! n
    a159684_list = 0 : concat (iterate (concatMap s) [1])
       where s 0 = [0,1]; s 1 = [0,1,0]
    -- Reinhard Zumkeller, Oct 26 2013
    
  • Mathematica
    Nest[ Flatten[ # /. {0 -> {0, 1}, 1 -> {0, 1, 0}}] &, {1}, 6] (* Robert G. Wilson v, May 02 2009 *)
    SubstitutionSystem[{0->{0,1},1->{0,1,0}},{1},{6}][[1]] (* Harvey P. Dale, Dec 25 2021 *)
  • Python
    def aupto(nn):
        Snm1, Sn = [0], [0, 1]
        while len(Sn) < nn+1: Snm1, Sn = Sn, Sn + Sn + Snm1
        return Sn[:nn+1]
    print(aupto(104)) # Michael S. Branicky, Jul 23 2022
    
  • Python
    from math import isqrt
    def A159684(n): return -isqrt(m:=(n+1)**2<<1)+isqrt(m+(n<<2)+6)-1 # Chai Wah Wu, Aug 03 2022

Formula

From Peter Bala, Nov 22 2013: (Start)
a(n) = floor((n + 2)*(sqrt(2) - 1)) - floor((n + 1)*(sqrt(2) - 1)).
If we read the sequence as the decimal constant C = 0.01010 01010 01010 10010 10010 ... then C = sum {n >= 1} 1/10^floor(n*(1 + sqrt(2))).
The real number 9*C has the simple continued fraction expansion [0; 11, 1010, 10000100, 100000000000100000, 100000000000000000000000000001000000000000, ...], the partial quotients having the form 10^Pell(n)*(1 + 10^Pell(n+1)) = 10^A001333(n+1) + 10^A000129(n) (see Adams and Davison).
A rapidly converging series for C is C = 9*sum {n >= 1} 10^Pell(2*n-1)*(1 + 10^Pell(2*n))/( (10^Pell(2*n-1) - 1)*(10^Pell(2*n+1) - 1) ): for example, the first 10 terms of the series give a rational approximation to C accurate to more than 130 million decimal places. Compare with the Fibonacci words A005614 and A221150. (End)

Extensions

More terms from Robert G. Wilson v, May 02 2009

A001030 Fixed under 1 -> 21, 2 -> 211.

Original entry on oeis.org

2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Keywords

Comments

If treated as the terms of a continued fraction, it converges to approximately
2.57737020881617828717350576260723346479894963737498275232531856357441\
7024804797827856956758619431996. - Peter Bertok (peter(AT)bertok.com), Nov 27 2001
There are a(n) 1's between successive 2's. - Eric Angelini, Aug 19 2008
Same sequence where 1's and 2's are exchanged: A001468. - Eric Angelini, Aug 19 2008

References

  • Midhat J. Gazale, Number: From Ahmes to Cantor, Section on 'Cleavages' in Chapter 6, Princeton University Press, Princeton, NJ 2000, pp. 203-211.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Length of the sequence after 'n' substitution steps is given by the terms of A000129.
Equals A004641(n) + 1.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    Following Spage's PARI program.
    a001030 n = a001030_list !! (n-1)
    a001030_list = [2, 1, 1, 2] ++ f [2] [2, 1, 1, 2] where
       f us vs = ws ++ f vs (vs ++ ws) where
                 ws = 1 : us ++ 1 : vs
    -- Reinhard Zumkeller, Aug 04 2014
    
  • Mathematica
    ('n' is the number of substitution steps to perform.) Nest[Flatten[ # /. {1 -> {2, 1}, 2 -> {2, 1, 1}}] &, {1}, n]
    SubstitutionSystem[{1->{2,1},2->{2,1,1}},{2},{6}][[1]] (* Harvey P. Dale, Feb 15 2022 *)
  • PARI
    /* Fast string concatenation method giving e.g. 5740 terms in 8 iterations */
    a="2";b="2,1,1,2";print1(b);for(x=1,8,c=concat([",1,",a,",1,",b]);print1(c);a=b;b=concat(b,c)) \\ K. Spage, Oct 08 2009
    
  • Python
    from math import isqrt
    def A001030(n): return [2, 1, 1, 2, 1, 2, 1, 2][n-1] if n < 9 else -isqrt(m:=(n-9)*(n-9)<<1)+isqrt(m+(n-9<<2)+2) # Chai Wah Wu, Aug 25 2022

Formula

a(n) = -1 + floor(n*(1+sqrt(2))+1/sqrt(2))-floor((n-1)*(1+sqrt(2))+1/sqrt(2)). - Benoit Cloitre, Jun 26 2004. [I don't know if this is a theorem or a conjecture. - N. J. A. Sloane, May 14 2008]
This is a theorem, following from Hofstadter's Generalized Fundamental Theorem of eta-sequences on page 10 of Eta-Lore. See also de Bruijn's paper from 1981 (hint from Benoit Cloitre). - Michel Dekking, Jan 22 2017

Extensions

More terms from Peter Bertok (peter(AT)bertok.com), Nov 27 2001

A004641 Fixed under 0 -> 10, 1 -> 100.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Partial sums: A088462. - Reinhard Zumkeller, Dec 05 2009
Write w(n) = a(n) for n >= 1. Each w(n) is generated by w(i) for exactly one i <= n; let g(n) = i. Each w(i) generates a single 1, in a word (10 or 100) that starts with 1. Therefore, g(n) is the number of 1s among w(1), ..., w(n), so that g = A088462. That is, this sequence is generated by its partial sums. - Clark Kimberling, May 25 2011

Crossrefs

Equals A001030 - 1. Essentially the same as A006337 - 1 and A159684.
Characteristic function of A086377.
Cf. A081477.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Magma
    [Floor(n*(Sqrt(2) - 1) + Sqrt(1/2)) - Floor((n - 1)*(Sqrt(2) - 1) + Sqrt(1/2)): n in [0..100]]; // Vincenzo Librandi, Mar 27 2015
    
  • Maple
    P(0):= (1,0): P(1):= (1,0,0):
    ((P~)@@6)([1]);
    # in Maple 12 or earlier, comment the above line and uncomment the following:
    # (curry(map,P)@@6)([1]); # Robert Israel, Mar 26 2015
  • Mathematica
    Nest[ Flatten[# /. {0 -> {1, 0}, 1 -> {1, 0, 0}}] &, {1}, 5] (* Robert G. Wilson v, May 25 2011 *)
    SubstitutionSystem[{0->{1,0},1->{1,0,0}},{1},5]//Flatten (* Harvey P. Dale, Nov 20 2021 *)
  • Python
    from math import isqrt
    def A004641(n): return [1, 0, 0, 1, 0, 1, 0, 1][n-1] if n < 9 else -1-isqrt(m:=(n-9)*(n-9)<<1)+isqrt(m+(n-9<<2)+2) # Chai Wah Wu, Aug 25 2022

Formula

a(n) = floor(n*(sqrt(2) - 1) + sqrt(1/2)) - floor((n - 1)*(sqrt(2) - 1) + sqrt(1/2)) (from the de Bruijn reference). - Peter J. Taylor, Mar 26 2015
From Jianing Song, Jan 02 2019: (Start)
a(n) = A001030(n) - 1.
a(n) = A006337(n-9) - 1 = A159684(n-10) for n >= 10. (End)

A022842 Beatty sequence for sqrt(8).

Original entry on oeis.org

2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 31, 33, 36, 39, 42, 45, 48, 50, 53, 56, 59, 62, 65, 67, 70, 73, 76, 79, 82, 84, 87, 90, 93, 96, 98, 101, 104, 107, 110, 113, 115, 118, 121, 124, 127, 130, 132, 135, 138, 141, 144, 147, 149, 152, 155, 158, 161, 164
Offset: 1

Views

Author

Keywords

Crossrefs

A bisection of A001951. Cf. A010466.

Programs

  • Magma
    [Floor(n*Sqrt(8)): n in [1..60]]; // Vincenzo Librandi, Oct 24 2011
    
  • Maple
    a:=n->floor(2*n*sqrt(2)): seq(a(n),n=1..60); # Muniru A Asiru, Sep 28 2018
  • Mathematica
    Table[Floor[2*n*Sqrt[2]], {n,1,60}] (* G. C. Greubel, Sep 28 2018 *)
  • PARI
    vector(80, n, floor(2*n*sqrt(2))) \\ G. C. Greubel, Sep 28 2018
    
  • Python
    from sympy import integer_nthroot
    def A022842(n): return integer_nthroot(8*n**2,2)[0] # Chai Wah Wu, Mar 16 2021

Formula

a(n) = floor(2*n*sqrt(2)). - Michel Marcus, Oct 31 2017

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Oct 24 2011

A037225 a(n) = phi(2n+1).

Original entry on oeis.org

1, 2, 4, 6, 6, 10, 12, 8, 16, 18, 12, 22, 20, 18, 28, 30, 20, 24, 36, 24, 40, 42, 24, 46, 42, 32, 52, 40, 36, 58, 60, 36, 48, 66, 44, 70, 72, 40, 60, 78, 54, 82, 64, 56, 88, 72, 60, 72, 96, 60, 100, 102, 48, 106, 108, 72, 112, 88, 72, 96, 110, 80, 100, 126, 84, 130
Offset: 0

Views

Author

Keywords

Comments

Bisection of A000010 (cf. A062570).
From Alain Rocchelli, Jun 28 2023: (Start)
If 2*n+1 has r distinct odd prime factors, 2^r divides a(n).
Conjectures:
1) For any composite integer 2*n+1, a(n) doesn't divide 2*n.
2) For all n, a(n) is never equal to n. (End)

Crossrefs

Programs

Formula

Sum_{k=0..n} a(k) ~ c * n^2, where c = 8/Pi^2 = 0.810569... (A217739). - Amiram Eldar, Nov 17 2022
a(n) = 2*n iff 2*n+1 is prime, see A005097. - Alain Rocchelli, Jun 22 2023
From Peter Bala, Feb 01 2024: (Start)
Odd bisection of A000010.
a(n) = 2*A072451(n) for n >= 1.
G.f.: Sum_{n >= 1} phi(2*n+1)*x^(2*n+1) = Sum_{n >= 1} moebius(n)*x^(2*n-1)*(1 + x^(4*n-2))/(1 - x^(4*n-2))^2 = x + 2*x^3 + 4*x^5 + 6*x^7 + 6*x^9 + .... (End)

A088462 a(1)=1, a(n) = ceiling((n - a(a(n-1)))/2).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 25, 25, 25, 26, 26, 27, 27, 28, 28, 28, 29, 29, 30, 30, 30, 31, 31, 32, 32
Offset: 1

Views

Author

Benoit Cloitre, Nov 12 2003

Keywords

Comments

Partial sums of A004641. - Reinhard Zumkeller, Dec 05 2009
This sequence generates A004641; see comment at A004641. - Clark Kimberling, May 25 2011

Crossrefs

Cf. A005206.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Magma
    [Floor((Sqrt(2)-1)*n+1/Sqrt(2)): n in [1..100]]; // Vincenzo Librandi, Jun 26 2017
  • Mathematica
    Table[Floor[(Sqrt[2] - 1) n + 1 / Sqrt[2]], {n, 100}] (* Vincenzo Librandi, Jun 26 2017 *)
  • Python
    l=[0, 1, 1]
    for n in range(3, 101): l.append(n - l[n - 1] - l[l[n - 2]])
    print(l[1:]) # Indranil Ghosh, Jun 24 2017, after Altug Alkan
    

Formula

a(n) = floor((sqrt(2)-1)*n + 1/sqrt(2)).
a(1) = a(2) = 1; a(n) = n - a(n-1) - a(a(n-2)) for n > 2. - Altug Alkan, Jun 24 2017
Previous Showing 31-40 of 95 results. Next