cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 101 results. Next

A352516 Number of excedances (parts above the diagonal) of the n-th composition in standard order.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Mar 23 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See also A000120, A059893, A070939, A114994, A225620.

Examples

			The 5392th composition in standard order is (2,2,4,5), with excedances {1,3,4}, so a(5392) = 3.
		

Crossrefs

Positions of first appearances are A104462.
The opposite version is A352514, counted by A352521 (first column A219282).
The weak opposite version is A352515, counted by A352522 (first A238874).
The weak version is A352517, counted by A352525 (first column A177510).
The triangle A352524 counts these compositions (first column A008930).
A008292 is the triangle of Eulerian numbers (version without zeros).
A011782 counts compositions.
A173018 counts permutations by number of excedances, weak A123125.
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352487 is the excedance set of A122111.
A352523 counts comps by unfixed points, first A010054, rank stat A352513.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pd[y_]:=Length[Select[Range[Length[y]],#
    				

A352517 Number of weak excedances (parts on or above the diagonal) of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Mar 23 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See also A000120, A059893, A070939, A114994, A225620.

Examples

			The 169th composition in standard order is (2,2,3,1), with weak excedances {1,2,3}, so a(169) = 3.
		

Crossrefs

Positive positions of first appearances are A164894.
The version for partitions is A257990.
The strong opposite version is A352514, counted by A352521 (first A219282).
The opposite version is A352515, counted by A352522 (first column A238874).
The strong version is A352516, counted by A352524 (first column A008930).
The triangle A352525 counts these compositions (first column A177510).
A008292 is the triangle of Eulerian numbers (version without zeros).
A011782 counts compositions.
A173018 counts permutations by number of excedances, weak A123125.
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352489 is the weak excedance set of A122111.
A352523 counts comps by unfixed points, first A010054, rank stat A352513.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pdw[y_]:=Length[Select[Range[Length[y]],#<=y[[#]]&]];
    Table[pdw[stc[n]],{n,0,30}]

A201339 Expansion of e.g.f. exp(x) / (3 - 2*exp(x)).

Original entry on oeis.org

1, 3, 15, 111, 1095, 13503, 199815, 3449631, 68062695, 1510769343, 37260156615, 1010843385951, 29916558512295, 959183053936383, 33118910817665415, 1225219266296167071, 48348200298184769895, 2027102674516399522623, 89990106205541777926215, 4216915299772659459872991
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2011

Keywords

Examples

			E.g.f.: E(x) = 1 + 3*x + 15*x^2/2! + 111*x^3/3! + 1095*x^4/4! + 13503*x^5/5! + ...
O.g.f.: A(x) = 1 + 3*x + 15*x^2 + 111*x^3 + 1095*x^4 + 13503*x^5 + ...
where A(x) = 1 + 3*x/(1+x) + 2!*3^2*x^2/((1+x)*(1+2*x)) + 3!*3^3*x^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*3^4*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
		

Crossrefs

Programs

  • Magma
    [&+[(-1)^(n-j)*3^j*Factorial(j)*StirlingSecond(n,j): j in [0..n]]: n in [0..20]]; // G. C. Greubel, Jun 08 2020
    
  • Maple
    seq(coeff(series( 1/(3*exp(-x) -2) , x, n+1)*n!, x, n), n = 0..30); # G. C. Greubel, Jun 08 2020
  • Mathematica
    Table[Sum[(-1)^(n-k)*3^k*StirlingS2[n,k]*k!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 13 2013 *)
    With[{nn=20},CoefficientList[Series[Exp[x]/(3-2Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 16 2025 *)
  • PARI
    {a(n)=n!*polcoeff(exp(x+x*O(x^n))/(3 - 2*exp(x+x*O(x^n))), n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 3^m*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
    
  • PARI
    {Stirling2(n, k)=if(k<0||k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}
    {a(n)=sum(k=0, n, (-1)^(n-k)*3^k*Stirling2(n, k)*k!)}
    
  • Sage
    [sum( (-1)^(n-j)*3^j*factorial(j)*stirling_number2(n,j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jun 08 2020

Formula

O.g.f.: A(x) = Sum_{n>=0} n! * 3^n*x^n / Product_{k=0..n} (1+k*x).
O.g.f.: A(x) = 1/(1 - 3*x/(1-2*x/(1 - 6*x/(1-4*x/(1 - 9*x/(1-6*x/(1 - 12*x/(1-8*x/(1 - 15*x/(1-10*x/(1 - ...))))))))))), a continued fraction.
a(n) = Sum_{k=0..n} (-1)^(n-k) * 3^k * Stirling2(n,k) * k!.
a(n) = 3*A050351(n) for n>0.
a(n) = Sum_{k=0..n} A123125(n,k)*3^k*2^(n-k). - Philippe Deléham, Nov 30 2011
a(n) ~ n! / (2*log(3/2)^(n+1)). - Vaclav Kotesovec, Jun 13 2013
a(n) = log(3/2) * Integral_{x = 0..oo} (ceiling(x))^n * (3/2)^(-x) dx. - Peter Bala, Feb 06 2015
a(n) = 1 + 2 * Sum_{k=0..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 08 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(0) = 1; a(n) = -3*Sum_{k=1..n} (-1)^k * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 3*a(n-1) + 2*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)
a(n) = (3/2)*A004123(n+1) - (1/2)*0^n. - Seiichi Manyama, Dec 21 2023

A201365 Expansion of e.g.f. exp(x) / (5 - 4*exp(x)).

Original entry on oeis.org

1, 5, 45, 605, 10845, 243005, 6534045, 204972605, 7348546845, 296387331005, 13282361478045, 654762261324605, 35211177242722845, 2051349014835939005, 128701394409842982045, 8651475271312083756605, 620334325261670875138845, 47259638324026516284867005
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2011

Keywords

Examples

			E.g.f.: E(x) = 1 + 5*x + 45*x^2/2! + 605*x^3/3! + 10845*x^4/4! + 243005*x^5/5! + ...
O.g.f.: A(x) = 1 + 5*x + 45*x^2 + 605*x^3 + 10845*x^4 + 243005*x^5 + ...
where A(x) = 1 + 5*x/(1+x) + 2!*5^2*x^2/((1+x)*(1+2*x)) + 3!*5^3*x^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*5^4*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!(Laplace( 1/(5*Exp(-x) -4) ))); // G. C. Greubel, Jun 08 2020
    
  • Maple
    seq(coeff(series(1/(5*exp(-x) - 4), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Jun 08 2020
  • Mathematica
    Table[Sum[(-1)^(n-k)*5^k*StirlingS2[n,k]*k!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 13 2013 *)
    With[{nn=20},CoefficientList[Series[Exp[x]/(5-4Exp[x]),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jul 09 2015 *)
    a[n_]:= If[n<0, 0, PolyLog[ -n, 4/5]/4]; (* Michael Somos, Apr 27 2019 *)
  • PARI
    {a(n)=n!*polcoeff(exp(x+x*O(x^n))/(5 - 4*exp(x+x*O(x^n))), n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 5^m*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
    
  • PARI
    {a(n)=sum(k=0, n, (-1)^(n-k)*5^k*stirling(n, k, 2)*k!)}
    
  • Sage
    [sum( (-1)^(n-j)*5^j*factorial(j)*stirling_number2(n,j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jun 08 2020

Formula

O.g.f.: A(x) = Sum_{n>=0} n! * 5^n*x^n / Product_{k=0..n} (1+k*x).
O.g.f.: A(x) = 1/(1 - 5*x/(1-4*x/(1 - 10*x/(1-8*x/(1 - 15*x/(1-12*x/(1 - 20*x/(1-16*x/(1 - 25*x/(1-20*x/(1 - ...))))))))))), a continued fraction.
a(n) = Sum_{k=0..n} (-1)^(n-k) * 5^k * Stirling2(n,k) * k!.
a(n) = Sum_{k=0..n} A123125(n,k)*5^k*4^(n-k). - Philippe Deléham, Nov 30 2011
a(n) ~ n! / (4*(log(5/4))^(n+1)) . - Vaclav Kotesovec, Jun 13 2013
a(n) = log(5/4) * Integral_{x = 0..oo} (ceiling(x))^n * (5/4)^(-x) dx. - Peter Bala, Feb 14 2015
a(n) = (1/4) Sum_{k>=1} (4/5)^k * n^k. - Michael Somos, Apr 27 2019
a(n) = 1 + 4 * Sum_{k=0..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 08 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(0) = 1; a(n) = -5*Sum_{k=1..n} (-1)^k * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 5*a(n-1) + 4*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)
a(n) = (5/4)*A094417(n) - (1/4)*0^n. - Seiichi Manyama, Dec 21 2023

A352488 Weak nonexcedance set of A122111. Numbers k >= A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 30, 32, 36, 40, 48, 50, 54, 56, 60, 64, 72, 75, 80, 81, 84, 90, 96, 100, 108, 112, 120, 125, 128, 135, 140, 144, 150, 160, 162, 168, 176, 180, 192, 196, 200, 210, 216, 224, 225, 240, 243, 250, 252, 256, 264, 270, 280
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is greater than or equal to that of their conjugate.

Examples

			The terms together with their prime indices begin:
    1: ()
    2: (1)
    4: (1,1)
    6: (2,1)
    8: (1,1,1)
    9: (2,2)
   12: (2,1,1)
   16: (1,1,1,1)
   18: (2,2,1)
   20: (3,1,1)
   24: (2,1,1,1)
   27: (2,2,2)
   30: (3,2,1)
   32: (1,1,1,1,1)
   36: (2,2,1,1)
   40: (3,1,1,1)
   48: (2,1,1,1,1)
   50: (3,3,1)
   54: (2,2,2,1)
   56: (4,1,1,1)
		

Crossrefs

These partitions are counted by A046682.
The opposite version is A352489, strong A352487.
The strong version is A352490, counted by A000701.
These are the positions of nonnegative terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A008292 is the triangle of Eulerian numbers (version without zeros).
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352525 counts compositions by weak superdiagonals, rank statistic A352517.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#>=Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) >= A122111(a(n)).

A352489 Weak excedance set of A122111. Numbers k <= A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is less than or equal to that of their conjugate.

Examples

			The terms together with their prime indices begin:
   1: ()
   2: (1)
   3: (2)
   5: (3)
   6: (2,1)
   7: (4)
   9: (2,2)
  10: (3,1)
  11: (5)
  13: (6)
  14: (4,1)
  15: (3,2)
  17: (7)
  19: (8)
  20: (3,1,1)
For example, the partition (3,2,2) has Heinz number 45 and its conjugate (3,3,1) has Heinz number 50, and 45 <= 50, so 45 is in the sequence, and 50 is not.
		

Crossrefs

These partitions are counted by A046682.
The strong version is A352487, counted by A000701.
The opposite version is A352488, strong A352490
These are the positions of nonpositive terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A008292 is the triangle of Eulerian numbers (version without zeros).
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352522 counts compositions by weak subdiagonals, rank statistic A352515.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#<=Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) <= A122111(a(n)).

A145905 Square array read by antidiagonals: Hilbert transform of triangle A060187.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 27, 25, 7, 1, 1, 81, 125, 49, 9, 1, 1, 243, 625, 343, 81, 11, 1, 1, 729, 3125, 2401, 729, 121, 13, 1, 1, 2187, 15625, 16807, 6561, 1331, 169, 15, 1, 1, 6561, 78125, 117649, 59049, 14641, 2197, 225, 17, 1, 1, 19683, 390625, 823543
Offset: 0

Views

Author

Peter Bala, Oct 27 2008

Keywords

Comments

Definition of the Hilbert transform of a triangular array:
For many square arrays in the database the entries in a row are polynomial in the column index, of degree d say and hence the row generating function has the form P(x)/(1-x)^(d+1), where P is some polynomial function. Often the array whose rows are formed from the coefficients of these P polynomials is of independent interest. This suggests the following definition.
Let [L(n,k)]n,k>=0 be a lower triangular array and let R(n,x) := sum {k = 0 .. n} L(n,k)*x^k, denote the n-th row generating polynomial of L. Then we define the Hilbert transform of L, denoted Hilb(L), to be the square array whose n-th row, n >= 0, has the generating function R(n,x)/(1-x)^(n+1).
In this particular case, L is the array A060187, the array of Eulerian numbers of type B, whose row polynomials are the h-polynomials for permutohedra of type B. The Hilbert transform is an infinite Vandermonde matrix V(1,3,5,...).
We illustrate the Hilbert transform with a few examples:
(1) The Delannoy number array A008288 is the Hilbert transform of Pascal's triangle A007318 (view as the array of coefficients of h-polynomials of n-dimensional cross polytopes).
(2) The transpose of the array of nexus numbers A047969 is the Hilbert transform of the triangle of Eulerian numbers A008292 (best viewed in this context as the coefficients of h-polynomials of n-dimensional permutohedra of type A).
(3) The sequence of Eulerian polynomials begins [1, x, x + x^2, x + 4*x^2 + x^3, ...]. The coefficients of these polynomials are recorded in triangle A123125, whose Hilbert transform is A004248 read as square array.
(4) A108625, the array of crystal ball sequences for the A_n lattices, is the Hilbert transform of A008459 (viewed as the triangle of coefficients of h-polynomials of n-dimensional associahedra of type B).
(5) A142992, the array of crystal ball sequences for the C_n lattices, is the Hilbert transform of A086645, the array of h-vectors for type C root polytopes.
(6) A108553, the array of crystal ball sequences for the D_n lattices, is the Hilbert transform of A108558, the array of h-vectors for type D root polytopes.
(7) A086764, read as a square array, is the Hilbert transform of the rencontres numbers A008290.
(8) A143409 is the Hilbert transform of triangle A073107.

Examples

			Triangle A060187 (with an offset of 0) begins
1;
1, 1;
1, 6, 1;
so the entries in the first three rows of the Hilbert transform of
A060187 come from the expansions:
Row 0: 1/(1-x) = 1 + x + x^2 + x^3 + ...;
Row 1: (1+x)/(1-x)^2 = 1 + 3*x + 5*x^2 + 7*x^3 + ...;
Row 2: (1+6*x+x^2)/(1-x)^3 = 1 + 9*x + 25*x^2 + 49*x^3 + ...;
The array begins
n\k|..0....1.....2.....3......4
================================
0..|..1....1.....1.....1......1
1..|..1....3.....5.....7......9
2..|..1....9....25....49.....81
3..|..1...27...125...343....729
4..|..1...81...625..2401...6561
5..|..1..243..3125.16807..59049
...
		

Crossrefs

Cf. A008292, A039755, A052750 (first superdiagonal), A060187, A114172, A145901.

Programs

  • Maple
    T:=(n,k) -> (2*k + 1)^n: seq(seq(T(n-k,k),k = 0..n),n = 0..10);

Formula

T(n,k) = (2*k + 1)^n, (see equation 4.10 in [Franssens]). This array is the infinite Vandermonde matrix V(1,3,5,7, ....) having a LDU factorization equal to A039755 * diag(2^n*n!) * transpose(A007318).

A180056 The number of permutations of {1,2,...,2n} with n ascents.

Original entry on oeis.org

1, 1, 11, 302, 15619, 1310354, 162512286, 27971176092, 6382798925475, 1865385657780650, 679562217794156938, 301958232385734088196, 160755658074834738495566, 101019988341178648636047412, 73990373947612503295166622044, 62481596875767023932367207962680
Offset: 0

Views

Author

Peter Luschny, Aug 08 2010

Keywords

Comments

Define the Eulerian numbers A(n,k) (see A008292) to be the number of permutations of {1,2,..,n} with k ascents: A(n,k) = Sum_{j=0..k} (-1)^j binomial(n+1,j)*(k-j+1)^n.
Then a(n) = A(2*n,n) are the central Eulerian numbers. (Analogous to what are called the central binomial coefficients).

Crossrefs

A bisection of A006551.
A diagonal of A321967.

Programs

  • Maple
    A180056 :=
    proc(n) local j;
      add((-1)^j*binomial(2*n+1,j)*(n-j+1)^(2*n),j=0..n)
    end:
    # A180056_list(m) returns [a_0,a_1,..,a_m]
    A180056_list :=
      proc(m) local A, R, M, n, k;
        R := 1; M := m + 1;
        A := array([seq(1, n = 1..M)]);
        for n from 2 to M do
          for k from 2 to M do
            if n = k then R := R, A[k] fi;
            A[k] := n*A[k-1] + k*A[k]
          od
        od;
      R
    end:
  • Mathematica
    A025585[n_] := Sum[(-1)^j*(n-j)^(2*n-1)*Binomial[2*n, j], {j, 0, n}]; a[0] = 1; a[n_] := A025585[n+1]/(2*n+2); Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jun 28 2013, after Gary Detlefs *)
    << Combinatorica`; Table[Combinatorica`Eulerian[2 n, n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
  • Python
    def A180056_list(m):
        ret = [1]
        M = m + 1
        A = [1 for i in range(0, M)]
        for n in range(2, M):
            for k in range(2, M):
                if n == k:
                    ret.append(A[k])
                A[k] = n*A[k-1] + k*A[k]
        return ret

Formula

a(n-1) = A025585(n)/(2*n). - Gary Detlefs, Nov 11 2011
a(n+1)/a(n) ~ 4*n^2. - Ran Pan, Oct 26 2015
a(n) ~ sqrt(3) * 2^(2*n+1) * n^(2*n) / exp(2*n). - Vaclav Kotesovec, Oct 16 2016
From Alois P. Heinz, Jul 21 2018: (Start)
a(n) = ceiling(1/2 * (2n)! * [x^(2n) y^n] (exp(x)-y*exp(y*x))/(exp(y*x)-y*exp(x))).
a(n) = (2n)! * [x^(2n) y^n] (1-y)/(1-y*exp((1-y)*x)). (End)
a(n) = A123125(2n,n). - Alois P. Heinz, Nov 13 2024

Extensions

Partially edited by N. J. A. Sloane, Aug 08 2010

A006955 Denominator of (2n+1) B_{2n}, where B_n are the Bernoulli numbers.

Original entry on oeis.org

1, 2, 6, 6, 10, 6, 210, 2, 30, 42, 110, 6, 546, 2, 30, 462, 170, 6, 51870, 2, 330, 42, 46, 6, 6630, 22, 30, 798, 290, 6, 930930, 2, 102, 966, 10, 66, 1919190, 2, 30, 42, 76670, 6, 680862, 2, 690, 38874, 470, 6, 46410, 2, 330, 42, 106, 6, 1919190
Offset: 0

Views

Author

Keywords

Comments

Also denominators of asymptotic expansion of polygamma function psi''(z).

Examples

			(n+1)*B_n gives the sequence 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 260, (6.4.13).
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 73.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Numerators are in A002427.

Programs

  • Maple
    gf := z / (1 - exp(-z)): ser := series(gf, z, 220):
    seq(denom((n+1)!*coeff(ser, z, n)), n=0..108, 2); # Peter Luschny, Aug 29 2020
  • Mathematica
    Denominator[Table[(2n+1)BernoulliB[2n],{n,0,60}]] (* Harvey P. Dale, Nov 03 2011 *)
  • PARI
    a(n) = denominator((2*n+1)*bernfrac(2*n)); \\ Michel Marcus, Aug 06 2017

Formula

Apparently a(n) = denominator(Sum_{k=0..2*n-1} (-1)^(2*n-k+1)*E1(2*n, k+1)/ binomial(2*n, k+1)), where E1(n, k) denotes the first-order Eulerian numbers A123125. - Peter Luschny, Feb 17 2021

A248727 A046802(x,y) --> A046802(x,y+1), transform of e.g.f. for the graded number of positroids of the totally nonnegative Grassmannians G+(k,n); enumerates faces of the stellahedra.

Original entry on oeis.org

1, 2, 1, 5, 5, 1, 16, 24, 10, 1, 65, 130, 84, 19, 1, 326, 815, 720, 265, 36, 1, 1957, 5871, 6605, 3425, 803, 69, 1, 13700, 47950, 65646, 44240, 15106, 2394, 134, 1, 109601, 438404, 707840, 589106, 267134, 63896, 7094, 263, 1
Offset: 0

Views

Author

Tom Copeland, Oct 12 2014

Keywords

Comments

This is a transform of A046802 treating it as an array of h-vectors, so y is replaced by (y+1) in the e.g.f. for A046802.
An e.g.f. for the reversed row polynomials with signs is given by exp(a.(0;t)x) = [e^{(1+t)x} [1+t(1-e^(-x))]]^(-1) = 1 - (1+2t)x + (1+5t+5t^2)x^2/2! + ... . The reciprocal is an e.g.f. for the reversed face polynomials of the simplices A074909, i.e., exp(b.(0;t)x) = e^{(1+t)x} [1+t(1-e^(-x))] = 1 + (1+2t)x +(1+3t+3t^2) x^2/2! + ... , so the relations of A133314 apply between the two sets of polynomials. In particular, umbrally [a.(0;t)+b.(0;t)]^n vanishes except for n=0 for which it's unity, implying the two sets of Appell polynomials formed from the two bases, a_n(z;t) = (a.(0;t)+z)^n and b_n(z;t) = (b.(0;t) + z)^n, are an umbral compositional inverse pair, i.e., b_n(a.(x;t);t)= x^n = a_n(b.(x;t);t). Raising operators for these Appell polynomials are related to the polynomials of A028246, whose reverse polynomials are given by A123125 * A007318. Compare: A248727 = A007318 * A123125 * A007318 and A046802 = A007318 * A123125. See A074909 for definitions and related links. - Tom Copeland, Jan 21 2015
The o.g.f. for the umbral inverses is Og(x) = x / (1 - x b.(0;t)) = x / [(1-tx)(1-(1+t)x)] = x + (1+2t) x^2 + (1+3t+3t^2) x^3 + ... . Its compositional inverse is an o.g.f for signed A033282, the reverse f-polynomials for the simplicial duals of the Stasheff polytopes, or associahedra of type A, Oginv(x) =[1+(1+2t)x-sqrt[1+2(1+2t)x+x^2]] / (2t(1+t)x) = x - (1+2t) x^2 + (1+5t+5t^2) x^3 + ... . Contrast this with the o.g.f.s related to the corresponding h-polynomials in A046802. - Tom Copeland, Jan 24 2015
Face vectors, or coefficients of the face polynomials, of the stellahedra, or stellohedra. See p. 59 of Buchstaber and Panov. - Tom Copeland, Nov 08 2016
See A008279 for a relation between the e.g.f.s enumerating the faces of permutahedra and stellahedra. - Tom Copeland, Nov 14 2016

Examples

			The triangle T(n, k) starts:
n\k    0     1     2     3     4    5   6  7 ...
1:     1
2:     2     1
3:     5     5     1
4:    16    24    10     1
5:    65   130    84    19     1
6:   326   815   720   265    36    1
7:  1957  5871  6605  3425   803   69   1
8: 13700 47950 65646 44240 15106 2394 134  1
... reformatted, _Wolfdieter Lang_, Mar 27 2015
		

Crossrefs

Programs

  • Mathematica
    (* t = A046802 *) t[, 1] = 1; t[n, n_] = 1; t[n_, 2] = 2^(n - 1) - 1; t[n_, k_] = Sum[((i - k + 1)^i*(k - i)^(n - i - 1) - (i - k + 2)^i*(k - i - 1)^(n - i - 1))*Binomial[n - 1, i], {i, 0, k - 1}]; T[n_, j_] := Sum[Binomial[k, j]*t[n + 1, k + 1], {k, j, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 23 2015, after Tom Copeland *)

Formula

Let M(n,k)= sum{i=0,..,k-1, C(n,i)[(i-k)^i*(k-i+1)^(n-i)- (i-k+1)^i*(k-i)^(n-i)]} with M(n,0)=1. Then M(n,k)= A046802(n,k), and T(n,j)= sum(k=j,..,n, C(k,j)*M(n,k)) for j>0 with T(n,0)= 1 + sum(k=1,..,n, M(n,k)) for n>0 and T(0,0)=1.
E.g.f: y * exp[x*(y+1)]/[y+1-exp(x*y)].
Row sums are A007047. Row polynomials evaluated at -1 are unity. Row polynomials evaluated at -2 are A122045.
First column is A000522. Second column appears to be A036918/2 = (A001339-1)/2 = n*A000522(n)/2.
Second diagonal is A052944. (Changed from conjecture to fact on Nov 08 2016.)
The raising operator for the reverse row polynomials with row signs is R = x - (1+t) - t e^(-D) / [1 + t(1-e^(-D))] evaluated at x = 0, with D = d/dx. Also R = x - d/dD log[exp(a.(0;t)D], or R = - d/dz log[e^(-xz) exp(a.(0;t)z)] = - d/dz log[exp(a.(-x;t)z)] with the e.g.f. defined in the comments and z replaced by D. Note that t e ^(-D) / [1+t(1-e^(-D))] = t - (t+t^2) D + (t+3t^2+2t^3) D^2/2! - ... is an e.g.f. for the signed reverse row polynomials of A028246. - Tom Copeland, Jan 23 2015
Equals A007318*(padded A090582)*A007318*A097808 = A007318*(padded (A008292*A007318))*A007318*A097808 = A007318*A130850 = A007318*(mirror of A028246). Padded means in the same way that A097805 is padded A007318. - Tom Copeland, Nov 14 2016
Umbrally, the row polynomials are p_n(x) = (1 + q.(x))^n, where (q.(x))^k = q_k(x) are the row polynomials of A130850. - Tom Copeland, Nov 16 2016
From the previous umbral statement, OP(x,d/dy) y^n = (y + q.(x))^n, where OP(x,y) = exp[y * q.(x)] = x/((1+x)*exp(-x*y) - 1), the e.g.f. of A130850, so OP(x,d/dy) y^n evaluated at y = 1 is p_n(x), the n-th row polynomial of this entry, with offset 0. - Tom Copeland, Jun 25 2018
Consolidating some formulas in this entry and A046082, in umbral notation for concision, with all offsets 0: Let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of A046802 (the h-polynomials of the stellahedra) are given by h_n(x) = A_n(x;1); the row polynomials of this entry (A248727, the face polynomials of the stellahedra), by f_n(x) = A_n(1 + x;1); the Swiss-knife polynomials of A119879, by Sw_n(x) = A_n(-1;1 + x); and the row polynomials of the Worpitsky triangle (A130850), by w_n(x) = A(1 + x;0). Other specializations of A_n(x;y) give A090582 (the f-polynomials of the permutohedra, cf. also A019538) and A028246 (another version of the Worpitsky triangle). - Tom Copeland, Jan 24 2020

Extensions

Title expanded by Tom Copeland, Nov 08 2016
Previous Showing 31-40 of 101 results. Next