A008279 Triangle T(n,k) = n!/(n-k)! (0 <= k <= n) read by rows, giving number of permutations of n things k at a time.
1, 1, 1, 1, 2, 2, 1, 3, 6, 6, 1, 4, 12, 24, 24, 1, 5, 20, 60, 120, 120, 1, 6, 30, 120, 360, 720, 720, 1, 7, 42, 210, 840, 2520, 5040, 5040, 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 1, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 362880
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2, 2; 1, 3, 6, 6; 1, 4, 12, 24, 24; 1, 5, 20, 60, 120, 120; 1, 6, 30, 120, 360, 720, 720; 1, 7, 42, 210, 840, 2520, 5040, 5040; 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320; 1, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 362880; 1, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 3628800; ... For example, T(4,2)=12 since there are 12 injective functions f:{1,2}->{1,2,3,4}. There are 4 choices for f(1) and then, since f is injective, 3 remaining choices for f(2), giving us 12 ways to construct an injective function. - _Dennis P. Walsh_, Feb 10 2011 For example, T(5,3)=60 since there are 60 functions f:{1,2,3}->{1,2,3,4,5} with f(x) >= x. There are 5 choices for f(1), 4 choices for f(2), and 3 choices for f(3), giving us 60 ways to construct such a function. - _Dennis P. Walsh_, Apr 30 2011
References
- CRC Standard Mathematical Tables and Formulae, 30th ed., 1996, p. 176; 31st ed., p. 215, Section 3.3.11.1.
- Maple V Reference Manual, p. 490, numbperm(n,k).
Links
- T. D. Noe, Rows n = 0..100 of triangle, flattened
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013-2014.
- V. Buchstaber and T. Panov Toric Topology, arXiv:1210.2368v3 [math.AT], 2014.
- R. F. Coleman, On the Galois groups of the exponential Taylor polynomials, L’Enseignement Mathématique 33, 183-189, (1987).
- Quentin Gendron and Guillaume Tahar, Isoresidual fibration and resonance arrangements, Lett. Math. Phys. 112, No. 2, Paper No. 33, 36 p. (2022).
- J. Goldman and J. Haglund, Generalized rook polynomials, J. Combin. Theory A91 (2000), 509-530, 2-rook coefficients for k rooks on the 1xn board, all heights 1.
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.
- Germain Kreweras, Une dualité élémentaire souvent utile dans les problèmes combinatoires, Mathématiques et Sciences Humaines 3 (1963) 31-41.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
- Yuriy Shablya and Dmitry Kruchinin, Euler-Catalan's Number Triangle and its Application, Proceedings Book of Micropam (The Mediterranean International Conference of Pure & Applied Mathematics and Related Areas 2018), 212-215.
- Dennis Walsh, Notes on no-less functions
- Eric Weisstein's World of Mathematics, Falling Factorial
- Index entries for "core" sequences
Crossrefs
Programs
-
Haskell
a008279 n k = a008279_tabl !! n !! k a008279_row n = a008279_tabl !! n a008279_tabl = iterate f [1] where f xs = zipWith (+) ([0] ++ zipWith (*) xs [1..]) (xs ++ [0]) -- Reinhard Zumkeller, Dec 15 2013, Nov 18 2012
-
Magma
/* As triangle */ [[Factorial(n)/Factorial(n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 11 2015
-
Maple
with(combstruct): for n from 0 to 10 do seq(count(Permutation(n),size=m), m = 0 .. n) od; # Zerinvary Lajos, Dec 16 2007 seq(seq(n!/(n-k)!,k=0..n),n=0..10); # Dennis P. Walsh, Apr 20 2011 seq(print(seq(pochhammer(n-k+1,k),k=0..n)),n=0..6); # Peter Luschny, Mar 26 2015
-
Mathematica
Table[CoefficientList[Series[(1 + x)^m, {x, 0, 20}], x]* Table[n!, {n, 0, m}], {m, 0, 10}] // Grid (* Geoffrey Critzer, Mar 16 2010 *) Table[ Pochhammer[n - k + 1, k], {n, 0, 9}, {k, 0, n}] // Flatten (* or *) Table[ FactorialPower[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 18 2013, updated Jan 28 2016 *)
-
PARI
{T(n, k) = if( k<0 || k>n, 0, n!/(n-k)!)}; /* Michael Somos, Nov 14 2002 */
-
PARI
{T(n, k) = my(A, p); if( k<0 || k>n, 0, if( n==0, 1, A = matrix(n, n, i, j, x + (i==j)); polcoeff( sum(i=1, n!, if( p = numtoperm(n, i), prod(j=1, n, A[j, p[j]]))), k)))}; /* Michael Somos, Mar 05 2004 */
-
Python
from math import factorial, isqrt, comb def A008279(n): return factorial(a:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))//factorial(a-n+comb(a+1,2)) # Chai Wah Wu, Nov 13 2024
-
Sage
for n in range(8): [falling_factorial(n,k) for k in (0..n)] # Peter Luschny, Mar 26 2015
Formula
E.g.f.: Sum T(n,k) x^n/n! y^k = exp(x)/(1-x*y). - Vladeta Jovovic, Aug 19 2002
T(n, k) = n*T(n-1, k-1) = k*T(n-1, k-1)+T(n-1, k) = n*T(n-1, k)/(n-k) = (n-k+1)*T(n, k-1). - Henry Bottomley, Mar 29 2001
T(n, k) = n!/(n-k)! if n >= k >= 0, otherwise 0.
G.f. for k-th column k!*x^k/(1-x)^(k+1), k >= 0.
E.g.f. for n-th row (1+x)^n, n >= 0.
Sum T(n, k)x^k = permanent of n X n matrix a_ij = (x+1 if i=j, x otherwise). - Michael Somos, Mar 05 2004
Ramanujan psi_1(k, x) polynomials evaluated at n+1. - Ralf Stephan, Apr 16 2004
E.g.f.: Sum T(n,k) x^n/n! y^k/k! = e^{x+xy}. - Franklin T. Adams-Watters, Feb 07 2006
The triangle is the binomial transform of an infinite matrix with (1, 1, 2, 6, 24, ...) in the main diagonal and the rest zeros. - Gary W. Adamson, Nov 20 2006
G.f.: 1/(1-x-xy/(1-xy/(1-x-2xy/(1-2xy/(1-x-3xy/(1-3xy/(1-x-4xy/(1-4xy/(1-... (continued fraction). - Paul Barry, Feb 11 2009
T(n,k) = Sum_{j=0..k} binomial(k,j)*T(x,j)*T(y,k-j) for x+y = n. - Dennis P. Walsh, Feb 10 2011
From Dennis P. Walsh, Apr 20 2011: (Start)
E.g.f (with k fixed): x^k*exp(x).
G.f. (with k fixed): k!*x^k/(1-x)^(k+1). (End)
For n >= 2 and m >= 2, Sum_{k=0..m-2} S2(n, k+2)*T(m-2, k) = Sum_{p=0..n-2} m^p. S2(n,k) are the Stirling numbers of the second kind A008277. - Tony Foster III, Jul 23 2019
Comments