cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 81 results. Next

A162514 Triangle of coefficients of polynomials defined by the Binet form P(n,x) = U^n + L^n, where U = (x + d)/2, L = (x - d)/2, d = (4 + x^2)^(1/2). Decreasing powers of x.

Original entry on oeis.org

2, 1, 0, 1, 0, 2, 1, 0, 3, 0, 1, 0, 4, 0, 2, 1, 0, 5, 0, 5, 0, 1, 0, 6, 0, 9, 0, 2, 1, 0, 7, 0, 14, 0, 7, 0, 1, 0, 8, 0, 20, 0, 16, 0, 2, 1, 0, 9, 0, 27, 0, 30, 0, 9, 0, 1, 0, 10, 0, 35, 0, 50, 0, 25, 0, 2, 1, 0, 11, 0, 44, 0, 77, 0, 55, 0, 11, 0, 1, 0, 12, 0, 54, 0, 112, 0, 105, 0, 36, 0, 2, 1, 0, 13, 0
Offset: 0

Views

Author

Clark Kimberling, Jul 05 2009

Keywords

Comments

For a signed version of this triangle corresponding to the row reversed version of the triangle A127672 see A244422. - Wolfdieter Lang, Aug 07 2014
The row reversed triangle is A114525. - Paolo Bonzini, Jun 23 2016

Examples

			Triangle begins
   2;  == 2
   1, 0;  == x + 0
   1, 0,  2;  == x^2 + 2
   1, 0,  3, 0;  == x^3 + 3*x + 0
   1, 0,  4, 0,  2;
   1, 0,  5, 0,  5, 0;
   1, 0,  6, 0,  9, 0,  2;
   1, 0,  7, 0, 14, 0,  7, 0;
   1, 0,  8, 0, 20, 0, 16, 0,  2;
   1, 0,  9, 0, 27, 0, 30, 0,  9, 0;
   1, 0, 10, 0, 35, 0, 50, 0, 25, 0, 2;
   ...
From _Wolfdieter Lang_, Aug 07 2014: (Start)
The row polynomials R(n, x) are:
  R(0, x) = 2, R(1, x) = 1 =   x*P(1,1/x),  R(2, x) = 1 + 2*x^2 = x^2*P(2,1/x), R(3, x) = 1 + 3*x^2 = x^3*P(3,1/x), ...
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Reverse[CoefficientList[LucasL[n, x], x]], {n, 0, 12}]//Flatten  (* G. C. Greubel, Nov 05 2018 *)
  • PARI
    P(n)=
    {
        local(U, L, d, r, x);
        if ( n<0, return(0) );
        x = 'x+O('x^(n+1));
        d=(4 + x^2)^(1/2);
        U=(x+d)/2;  L=(x-d)/2;
        r = U^n+L^n;
        r = truncate(r);
        return( r );
    }
    for (n=0, 10, print(Vec(P(n))) ); /* show triangle */
    /* Joerg Arndt, Jul 24 2011 */

Formula

P(n,x) = x*P(n-1,x) + P(n-2,x) for n >= 2, P(0,x) = 2, P(1,x) = x.
From Wolfdieter Lang, Aug 07 2014: (Start)
T(n,m) = [x^(n-m)] P(n,x), m = 0, 1, ..., n and n >= 0.
G.f. of polynomials P(n,x): (2 - x*z)/(1 - x*z - z^2).
G.f. of row polynomials R(n,x) = Sum_{m=0..n} T(n,m)*x^m: (2 - z)/(1 - z - (x*z)^2) (rows for P(n,x) reversed).
(End)
For n > 0, T(n,2*m+1) = 0, T(n,2*m) = A034807(n,m). - Paolo Bonzini, Jun 23 2016

Extensions

Name clarified by Wolfdieter Lang, Aug 07 2014

A189315 Expansion of g.f. 5*(1-3*x+x^2)/(1-5*x+5*x^2).

Original entry on oeis.org

5, 10, 30, 100, 350, 1250, 4500, 16250, 58750, 212500, 768750, 2781250, 10062500, 36406250, 131718750, 476562500, 1724218750, 6238281250, 22570312500, 81660156250, 295449218750, 1068945312500, 3867480468750, 13992675781250, 50625976562500, 183166503906250, 662702636718750
Offset: 0

Views

Author

L. Edson Jeffery, Apr 20 2011

Keywords

Comments

Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,1)=
(0 1 0 0 0)
(1 0 1 0 0)
(0 1 0 1 0)
(0 0 1 0 1)
(0 0 0 2 0).
Then a(n) = Trace(A^(2*n)).
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers (here they are A^(2*n)) of a unit-primitive matrix A_(N,r) (0
From Tom Copeland, Dec 08 2015: (Start)
These are also the non-vanishing traces for the adjacency matrices of the simple Lie algebras B_5 and C_5. See links for B_4, A265185, and B_3, A025192.
a(n+1) = 10 * A081567(n), and, ignoring a(0), a G.F. is 10 *(1-2*x)/(1-5*x+5*x^2) whose denominator is y^5 * A127672(5,1/y) with y = sqrt(x).
-log(1 - 5x^2 + 5x^4) = 10 x^2/2 + 30 x^4/4 + ... provides a logarithmic series for the traces of both the odd and even powers of the matrix beginning with the first power. (End)

Programs

  • Magma
    I:=[5,10,30]; [n le 3 select I[n] else 5*Self(n-1)-5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 09 2015
  • Mathematica
    CoefficientList[Series[5(1-3x+x^2)/(1-5x+5x^2),{x,0,40}],x] (* or *)
    Join[{5},LinearRecurrence[{5,-5},{10,30},40]]  (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    Vec(5*(1-3*x+x^2)/(1-5*x+5*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012
    

Formula

a(n) = 5*a(n-1)-5*a(n-2), n>2, a(0)=5, a(1)=10, a(2)=30.
a(n) = Sum_{k=1..5} (w_k)^(2*n), w_k=2*cos((2*k-1)*Pi/10).
a(n) = 2^(1-n)*((5-Sqrt(5))^n+(5+Sqrt(5))^n), for n>0, with a(0)=5.
a(n) = 5*A147748(n).
E.g.f.: 1 + 4*exp(5*x/2)*cosh(sqrt(5)*x/2). - Stefano Spezia, Jul 09 2024

A300484 a(n) = 2 * Integral_{t>=0} T_n(t/2+1) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.

Original entry on oeis.org

2, 3, 8, 29, 130, 697, 4376, 31607, 258690, 2368847, 24011832, 267025409, 3233119106, 42346123861, 596617706344, 8998126507307, 144651872924162, 2469279716419035, 44609768252582312, 850345380011532261, 17056474009400181122
Offset: 0

Author

Max Alekseyev, Mar 06 2018

Keywords

Comments

For any integer n>=0, 2 * Integral_{t=-2..2} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-1..1} T_n(z)*exp(-2*z)*dz = A102761(n)*exp(2) - a(n)*exp(-2).

Crossrefs

Row m=2 in A300480.
Row sums of A156995.

Programs

  • PARI
    { A300484(n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, (x+2)/2)), x, 1); }

Formula

a(n) = Sum_{i=0..n} A127672(n,i) * A010842(i).
a(n) = A300480(2,n) = A300481(-2,n).
a(n) = Sum_{m=0..n} A156995(n,m) = 2*n*Sum_{m=0..n} binomial(2*n-m, m)*(n-m)!/(2*n-m).

A005584 Coefficients of Chebyshev polynomials.

Original entry on oeis.org

2, 13, 49, 140, 336, 714, 1386, 2508, 4290, 7007, 11011, 16744, 24752, 35700, 50388, 69768, 94962, 127281, 168245, 219604, 283360, 361790, 457470, 573300, 712530, 878787, 1076103, 1308944, 1582240, 1901416, 2272424, 2701776, 3196578, 3764565, 4414137, 5154396
Offset: 1

Keywords

Comments

If X is an n-set and Y a fixed 2-subset of X then a(n-6) is equal to the number of (n-6)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
a(n-1) = risefac(n+1,6)/6! - risefac(n+1,4)/4! is for n >=1 also the number of independent components of a symmetric traceless tensor of rank 6 and dimension n. Here risefac is the rising factorial. Put a(0) = 0. - Wolfdieter Lang, Dec 10 2015

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: x*(2-x) / (1-x)^7.
a(n) = binomial(n+5, n-1) + binomial(n+4, n-1) = 1/720*n*(n+11)*(n+4)*(n+3)*(n+2)*(n+1).
a(n) = binomial(n,6) + 2*binomial(n,5), n >= 5. - Zerinvary Lajos, Jul 26 2006
a(n+1) = A127672(12+n, n), n >= 0, where A127672 gives the coefficients of Chebyshev's C polynomials. See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
From G. C. Greubel, Aug 27 2019: (Start)
a(n) = (n+11)*Pochhammer(n, 5)/6!.
E.g.f.: x*(1440 +3240*x +1920*x^2 +420*x^3 +36*x^4 +x^5)*exp(x)/6!. (End)
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=1} 1/a(n) = 1303391/2134440.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4160*log(2)/77 - 78994697/2134440. (End)

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999

A272534 Decimal expansion of the edge length of a regular 15-gon with unit circumradius.

Original entry on oeis.org

4, 1, 5, 8, 2, 3, 3, 8, 1, 6, 3, 5, 5, 1, 8, 6, 7, 4, 2, 0, 3, 4, 8, 4, 5, 6, 8, 8, 1, 0, 2, 5, 0, 3, 3, 2, 4, 3, 3, 1, 6, 9, 5, 2, 1, 2, 5, 5, 4, 4, 7, 6, 7, 2, 8, 1, 4, 3, 6, 3, 9, 4, 7, 7, 6, 4, 7, 6, 5, 6, 5, 1, 3, 2, 8, 1, 4, 8, 7, 5, 2, 6, 0, 9, 2, 5, 7, 5, 1, 3, 4, 4, 5, 4, 5, 5, 1, 4, 6, 1, 1, 5, 7, 3, 0
Offset: 0

Author

Stanislav Sykora, May 02 2016

Comments

15-gon is the first m-gon with odd composite m which is constructible (see A003401) in virtue of the fact that 15 is the product of two distinct Fermat primes (A019434). The next such case is 51-gon (m=3*17), followed by 85-gon (m=5*17), 771-gon (m=3*257), etc.
From Wolfdieter Lang, Apr 29 2018: (Start)
This constant appears in a historic problem posed by Adriaan van Roomen (Adrianus Romanus) in his Ideae mathematicae from 1593, solved by Viète. See the Havil reference, problem 4, pp. 69-74. See also the comments in A302711 with a link to Romanus' book, Exemplum quaesitum.
This problem is equivalent to R(45, 2*sin(Pi/675)) = 2*sin(Pi/15), with a special case of monic Chebyshev polynomials of the first kind, named R, given in A127672. For the constant 2*sin(Pi/675) see A302716. (End)

Examples

			0.415823381635518674203484568810250332433169521255447672814363947...
		

References

  • Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.

Crossrefs

Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272535 (16), A228787 (17), A272536 (20).

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/15], 100]][[1]] (* Robert Price, May 02 2016*)
  • PARI
    2*sin(Pi/15)

Formula

Equals 2*sin(Pi/m) for m=15, 2*A019821.
Also equals (sqrt(3) - sqrt(15) + sqrt(10 + 2*sqrt(5)))/4.
Also equals sqrt(7 - sqrt(5) - sqrt(30 - 6*sqrt(5)))/2. This is the rewritten expression of the Havil reference on top of p. 70. - Wolfdieter Lang, Apr 29 2018

A300480 Rectangular array read by antidiagonals: a(m,n) = 2 * Integral_{t>=0} T_n((t+m)/2)*exp(-t)*dt, m>=0, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.

Original entry on oeis.org

2, 2, 1, 2, 2, 0, 2, 3, 3, 3, 2, 4, 8, 10, 18, 2, 5, 15, 29, 47, 95, 2, 6, 24, 66, 130, 256, 592, 2, 7, 35, 127, 327, 697, 1610, 4277, 2, 8, 48, 218, 722, 1838, 4376, 11628, 35010, 2, 9, 63, 345, 1423, 4459, 11770, 31607, 95167, 320589, 2, 10, 80, 514, 2562, 9820, 30248, 85634, 258690
Offset: 0

Author

Max Alekseyev, Mar 06 2018

Keywords

Comments

a(m,n) is a polynomial in m of degree n.
For any integers m>=0, n>=0, 2 * Integral_{t=-m..m} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-m/2..m/2} T_n(z)*exp(-2*z)*dz = A300481(m,n)*exp(m) - a(m,n)*exp(-m).

Examples

			Array starts with:
m=0: 2,  1,   0,    3,    18,     95,     592, ...
m=1: 2,  2,   3,   10,    47,    256,    1610, ...
m=2: 2,  3,   8,   29,   130,    697,    4376, ...
m=3: 2,  4,  15,   66,   327,   1838,   11770, ...
m=4: 2,  5,  24,  127,   722,   4459,   30248, ...
...
		

Crossrefs

Values for m<=0 are given in A300481.
Rows: A300482 (m=0), A300483 (m=1), A300484 (m=2), A300485 (m=-1), A102761 (m=-2).
Columns: A007395 (n=0), A000027 (n=1), A005563 (n=2), A084380 (n=3).
Cf. A000179 (almost row m=-2), A127672, A156995.

Programs

  • PARI
    { A300480(m,n) = if(n==0,return(2)); subst( serlaplace( 2*polchebyshev(n,1,(x+m)/2)), x, 1); }

Formula

a(m,n) = Sum_{i=0..n} A127672(n,i) * i! * Sum_{j=0..i} m^j/j!.
a(m,n) = Sum_{i=0..n} A127672(n,i) * A080955(m,i) = Sum_{i=0..n} A127672(n,i) * A089258(i,m).

A300481 Rectangular array read by antidiagonals: a(m,n) = 2 * Integral_{t>=0} T_n((t-m)/2)*exp(-t)*dt, m>=0, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.

Original entry on oeis.org

2, 2, 1, 2, 0, 0, 2, -1, -1, 3, 2, -2, 0, 2, 18, 2, -3, 3, 1, 7, 95, 2, -4, 8, -6, 2, 34, 592, 2, -5, 15, -25, 15, 13, 218, 4277, 2, -6, 24, -62, 82, -28, 80, 1574, 35010, 2, -7, 35, -123, 263, -269, 106, 579, 12879, 320589
Offset: 0

Author

Max Alekseyev, Mar 06 2018

Keywords

Comments

Although negative values of m are not present here or in A300480, the two arrays are connected with the formula: a(m,n) = A300480(-m,n). Thus, they essentially represent two "halves" of the same array indexed by integers m.
a(m,n) is a polynomial in m of degree n.
For any integers m>=0, n>=0, 2 * Integral_{t=-m..m} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-m/2..m/2} T_n(z)*exp(-2*z)*dz = a(m,n)*exp(m) - A300480(m,n)*exp(-m).

Examples

			Array starts with:
m=0: 2,  1,  0,    3,   18,     95,    592, ...
m=1: 2,  0, -1,    2,    7,     34,    218, ...
m=2: 2, -1,  0,    1,    2,     13,     80, ...
m=3: 2, -2,  3,   -6,   15,    -28,    106, ...
m=4: 2, -3,  8,  -25,   82,   -269,    920, ...
...
		

Crossrefs

Values for m<=0 are given in A300480.
Rows: A300482 (m=0), A300485 (m=1), A102761 (m=2), A300483 (m=-1), A300484 (m=-2).
Columns (up to signs and offset): A007395 (n=0), A000027 (n=1), A005563 (n=2).
Cf. A000179 (almost row m=2), A127672, A156995.

Programs

Formula

a(m,n) = A300480(-m,n) = Sum_{i=0..n} A127672(n,i) * i! * Sum_{j=0..i} (-m)^j/j!.
a(m,n) = Sum_{i=0..n} A127672(n,i) * A292977(i,m).

A231190 Numerator of abs(n-8)/(2*n), n >= 1.

Original entry on oeis.org

7, 3, 5, 1, 3, 1, 1, 0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 2, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 4, 65, 33, 67, 17
Offset: 1

Author

Wolfdieter Lang, Dec 12 2013

Keywords

Comments

Because 2*sin(Pi*4/n) = 2*cos(Pi*abs(n-8)/(2*n)) = 2*cos(Pi*a(n)/b(n)) with gcd(a(n),b(n)) = 1, one has
2*sin(Pi*4/n) = R(a(n), x) (mod C(b(n), x)), with x = 2*cos(Pi/b(n)) =: rho(b(n)). The integer Chebyshev R and C polynomials are found in A127672 and A187360, respectively.
b(n) = A232625(n). This shows that 2*sin(Pi*4/n) is an integer in the algebraic number field Q(rho(b(n))) of degree delta(b(n)), with delta(k) = A055034(k). This degree delta(b(n)) is given in A231193(n), and if gcd(n,2) = 1 it coincides with the one for sin(2*Pi/n) given by A093819(n). See Theorem 3.9 of the I. Niven reference, pp. 37-38, which uses gcd(k, n) = 1. See also the Jan 09 2011 comment on A093819.
a(n) and b(n) = A232625(n) are the k=2 members of a family of pair of sequences p(k,n) and q(k,n), n >= 1, k >= 1, relevant to determine the algebraic degree of 2*sin(Pi*2*k/n) from the trigonometric identity (used in the D. H. Lehmer and I. Niven references) 2*sin(Pi*2*k/n) = 2*cos(Pi*abs(n-4*k)/(2*n)) = 2*cos(Pi*p(k,n)/q(k,n)). This is R(p(k,n), x) (mod C(q(k,n), x)), with x = 2*cos(Pi/q(k,n)) =: rho(q(k,n)). The polynomials R and C have been used above. C(q(k,n), x) is the minimal polynomial of rho(q(k,n)) with degree delta(q(k,n)), which is then the degree, call it deg(k,n), of the integer 2*sin(Pi*2*k/n) in the number field Q(rho(q(k,n))). From Theorem 3.9 of the I. Niven reference deg(k,n) is, for given k, for those n with gcd(k, n) = 1 determined by A093819(n). In general deg(k,n) = A093819(n/gcd(k,n)). For the k=1 instance p(1,n) and q(1,n) see comments on A106609 and A225975.

References

  • I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.

Crossrefs

Cf. A127672 (R), A187360 (C), A232625 (b), A055034 (delta), A093819 (degree if k=1), A232626(degree if k=2), A106609 (k=1, p), A225975 (k=1, q), A106617.

Programs

  • Maple
    f:= n -> numer(abs(n-8)/(2*n)):
    map(f, [$1..100]); # Robert Israel, Dec 06 2018
  • Mathematica
    a[n_] := Numerator[Abs[n-8]/(2n)]; Array[a, 50] (* Amiram Eldar, Dec 06 2018 *)

Formula

a(n) = numerator(abs(n-8)/(2*n)), n >= 1.
a(n) = abs(n-8)/gcd(n-8, 16).
a(n) = abs(n-8) if n is odd; if n is even then a(n) = abs(n-8)/2 if n/2 == 1, 3, 5, 7 (mod 8), a(n) = abs(n-8)/4 if n/2 == 2, 6 (mod 8), a(n) = abs(n-8)/8 if n/2 == 0 (mod 8) and a(n) = abs(n-8)/16 if n == 4 (mod 8).
O.g.f.: 1+ x*(7 + 3*x + 5*x^2 + 1*x^3 + 3*x^4 + 1*x^5 + 1*x^6) + N(x)/(1-x^16)^2 , with N(x) = x^9*((1+x^30) + x*(1+x^28) + 3*x^2*(1+x^26) + x^3*(1+x^24) + 5*x^4*(1+x^22) + 3*x^5*(1+x^20) + 7*x^6*(1+x^18) + x^7*(1+x^16) + 9*x^8*(1+x^14) + 5*x^9*(1+x^12) + 11*x^10*(1+x^10) + 3*x^11*(1+x^8) + 13*x^12*(1+x^6) + 7*x^13*(1+x^4) + 15*x^14*(1+x^2)+x^15).
a(n+32)-2*a(n+16)+a(n) = 0 for n >= 8.
a(n+8) = A106617(n). - Peter Bala, Feb 28 2019

A232624 Coefficient array for the minimal polynomials of 2*cos(2*Pi/n) for n >= 1.

Original entry on oeis.org

-2, 1, 2, 1, 1, 1, 0, 1, -1, 1, 1, -1, 1, -1, -2, 1, 1, -2, 0, 1, 1, -3, 0, 1, -1, -1, 1, 1, 3, -3, -4, 1, 1, -3, 0, 1, -1, 3, 6, -4, -5, 1, 1, 1, -2, -1, 1, 1, 4, -4, -1, 1, 2, 0, -4, 0, 1, 1, -4, -10, 10, 15, -6, -7, 1, 1, -1, -3, 0, 1, 1, 5, -10, -20, 15, 21, -7, -8, 1, 1, 5, 0, -5, 0, 1, 1, -8, 8, 6, -6, -1, 1, -1, 3, 3, -4, -1, 1
Offset: 1

Author

Wolfdieter Lang, Nov 28 2013

Keywords

Comments

The length of row n is deg(n) + 1, n >= 1, with the degree deg(1) = deg(2) = 1, and deg(n) = phi(n)/2 = A023022(n) for n >= 3. That is: 2, 2, 2, 2, 3, 2, 4, 3, 4, 3, 6, 3, 7, 4, 5, 5, 9, 4, 10, 5, ...
2*cos(2*Pi/n) = R(2, rho(n)) = -2 + rho(n)^2, with rho(n) = 2*cos(Pi/n) and the monic Chebyshev T-polynomials R(n, x), n>=1, with coefficient table A127672. For even n 2*cos(2*Pi/n) becomes rho(n/2). Therefore, 2*cos(2*Pi/n) is an integer in the algebraic number field Q(rho(n/2)) or Q(rho(n)) if n is even or odd, respectively. The degree deg(n) of the minimal polynomials, call them MPR2(n, x), is delta(n/2) or delta(n) for even or odd n, respectively, with delta(n) = A055034(n). This becomes deg(n) as given above.
These minimal polynomials are C(n/2, x) if n is even, with C(k, x) the minimal polynomials of rho(k) given in A187360.
For odd n the known zeros of C(n, x) are rho(n) and its conjugates, call them rho(n;j), j=1, 2, ..., delta(n), with rho(n;1) = rho(n). These conjugates can be written in the power basis of Q(rho(2*l+1)), l >= 1. See the link to the Q(2cos(Pi/n)) paper in A187360, and there Table 4. Then the (monic) minimal polynomial MPR2(2*l+1, x) = Product_{j=1..delta(2*l+1)} (x - (-2 + rho(2*l+1;j)^2)), l >= 0. After expansion all powers of rho(2*l+1) not smaller than delta(2*l+1) are reduced with the help of C(2*l+1,rho(2*l+1)) = 0, leading automatically to integer coefficients (without using the trigonometric version of rho(2*l+1)).
Compare the present minimal polynomials with the (non-monic) minimal polynomials of cos(2*Pi/n) given in an Artur Jasinski comment from Oct 28 2008 on A023022.
The present monic integer minimal polynomials of 2*cos(2*Pi/n), called MPR2(n, x), are related to the non-monic integer minimal polynomials of 2*cos(2*Pi/n) of A181877, called there psi(n, x) by MPR2(n, x) = psi(n, x/2). See Table 5 of the Wolfdieter Lang link given there. - Wolfdieter Lang, Nov 29 2013
The present minimal polynomials MPR2(n, x) are C(n/2, x) if n is even (see above) and (-1)^degC(n)*C(n, -x) if n is odd, with the C polynomials from A187360 of degree degC(n) = A055034(n). Note that degC(2*k+1) = deg(2*k+1) = A023022(2*k+1), k >= 0. - Wolfdieter Lang, Apr 12 2018
Let {U(n, x)} be defined as: U(0, x) = 0, U(1, x) = 1, U(n, x) = x*U(n-1, x) - U(n-2, x) for n >= 2, then U(n, x) = Product_{k|2n, k>=3} MPR2(k, x) for n > 0, because U(n, x) = Product_{m=1..n-1} (x - 2*cos(Pi*m/n)) for n > 0. - Jianing Song, Jul 08 2019
Conjecture: For odd n > 1, the term of the highest degree of (MPR2(2n, x) - MPR2(n, x))/2 is (-1)^omega(n) * x^(phi(n)/2-n/rad(n)) = A076479(n) * x^(A023022(n)-A003557(n)). For example, for n = 15, (MPR2(30, x) - MPR2(15, x))/2 = x^3 - 4x; for n = 105, (MPR2(210, x) - MPR2(105, x))/2 = -x^23 + ...; for n = 225, (MPR2(450, x) - MPR2(225, x))/2 = x^45 + ... If this is true, then for odd n > 1, a(n,A023022(n)-k) = a(2n,A023022(n)-k) = 0 for k = 1, 3, ..., A003557(n)-2; a(n,A023022(n)-A003557(n)) = -A076479(n) and a(2n,A023022(n)-A003557(n)) = A076479(n). - Jianing Song, Jul 11 2019
Conjecture: Let MPR2(n, x) equal the odd indexed (n) monic polynomial. If the number of roots with negative signs is even, then n is a term in A014659. Example: n = 7 for x^3 + x^2 - 2x - 1, having two negative roots, (-445041..., and -1.801937...). Two is even so the integer 7 is in A014659. n = 9 for the polynomial x^3 - 3x + 1, with one negative root, (-1.87938). The term 9 is in A014657. - Gary W. Adamson, Oct 20 2021
From Gary W. Adamson, Nov 30 2021 (Start)
Given the first (phi(n))/2 terms for odd n, the number of even terms in the set is equal to the number of positive roots in MPR2(n, x). The number of odd terms is equal to the number of negative roots in MPR2(n, x). For n = 11, (phi(11))/2 = 5, and the set is (1, 2, 3, 4, 5); having two even and three odd terms.
Given MPR2(11, x) = x^5 + x^4 - 4x^3 - 3x^2 + 3x + 1, there are two roots with positive signs: 1.682508..., and .830830...; and three roots with negative signs: -1.918985..., -1.309921..., and -.284629....Using the Descartes' rule for signs, MPR2(11, x) has coefficients signed (+ + - - + +); having two sign changes indicating two positive roots. With all real roots there are three (= 5 - 2) roots signed negative. (End)

Examples

			The table a(n,m) begins:
n\m   0   1    2    3    4    5   6   7   8   9 ...
1:   -2   1
2:    2   1
3:    1   1
4:    0   1
5:   -1   1    1
6:   -1   1
7:   -1  -2    1    1
8:   -2   0    1
9:    1  -3    0    1
10:  -1  -1    1
11:   1   3   -3   -4    1    1
12:  -3   0    1
13:  -1   3    6   -4   -5    1   1
14:   1  -2   -1    1
15:   1   4   -4   -1    1
16:   2   0   -4    0    1
17:   1  -4  -10   10   15   -6  -7   1   1
18:  -1  -3    0    1
19:   1   5  -10  -20   15   21  -7  -8   1   1
20:   5   0   -5    0    1
...
MPR2(14, x) = C(7, x) = 1  - 2*x  - x^2  + x^3.
MPR2(7, x) = (x - (-2 + z^2))*(x - (-2 + (-1 - z + z^2)^2))*
  (x - (-2 + (2 - z^2)^2)), with z = rho(7). Expanded and reduced with C(7, z) = 0 this becomes finally MPR2(7, x) = -1 - 2*x + x^2 + x^3.
MPR2(7, x) = -C(7, -x). - _Wolfdieter Lang_, Apr 12 2018
		

Crossrefs

Cf. A023022 (degree), A055034, A187360 (C polynomials).
Cf. A181877, A181875/A181876. - Wolfdieter Lang, Nov 29 2013
Cf. A065941.
Cf. A003558.

Programs

  • Mathematica
    ro[n_] := (MPR2 = CoefficientList[p = MinimalPolynomial[2*Cos[2*(Pi/n)], x], x]; MPR2); Flatten[Table[ro[n], {n, 30}]] (* Jianing Song, Jul 09 2019 *)

Formula

a(n,m) = [x^m] MPR2(n, x), n >= 1, m=0, 1, ..., deg(n), with MPR2(n, x) the (monic) minimal polynomials of 2*cos(2*Pi/n), explained in a comment above. The degree is deg(1) = deg(2) = 1, deg(n) = phi(n)/2 = A023022(n), n >= 3 (phi is the Euler totient function A000010).
From Jianing Song, Jul 09 2019: (Start)
MPR2(n, x) = Product_{0<=m<=n/2, gcd(m, n)=1} (x - 2*cos(2*Pi*m/n)).
If 4 divides n, then MPR2(n, x) = Product_{k|(n/2)} U((n/2)/k, x)^mu(k), where U(n, x) is the polynomial defined in comment and mu = A008683. For odd n, MPR2(n, x)*MPR2(2n, x) = Product_{k|n} U(n/k, x)^mu(k).
If 4 divides n and n > 4, then a(n,2k+1) = 0, that is, MPR2(n, x) contains even powers of x only.
For odd n > 1, a(2n,k) = a(n,k)*(-1)^(A023022(n)-k). (End)

A300482 a(n) = 2 * Integral_{t>=0} T_n(t/2) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.

Original entry on oeis.org

2, 1, 0, 3, 18, 95, 592, 4277, 35010, 320589, 3249648, 36137959, 437555090, 5730924667, 80743426272, 1217763999465, 19576502192898, 334180669811993, 6037275621582880, 115081732852805771, 2308342741080096402
Offset: 0

Author

Max Alekseyev, Mar 06 2018

Keywords

Crossrefs

Row m=0 in A300480 and A300481.

Programs

  • PARI
    { A300482(n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, x/2)), x, 1); }

Formula

a(n) = Sum_{i=0..n} A127672(n,i) * i!.
Previous Showing 31-40 of 81 results. Next