cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A001024 Powers of 15.

Original entry on oeis.org

1, 15, 225, 3375, 50625, 759375, 11390625, 170859375, 2562890625, 38443359375, 576650390625, 8649755859375, 129746337890625, 1946195068359375, 29192926025390625, 437893890380859375, 6568408355712890625, 98526125335693359375, 1477891880035400390625, 22168378200531005859375, 332525673007965087890625
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 15), L(1, 15), P(1, 15), T(1, 15). Essentially same as Pisot sequences E(15, 225), L(15, 225), P(15, 225), T(15, 225). See A008776 for definitions of Pisot sequences.
A000005(a(n)) = A000290(n+1). - Reinhard Zumkeller, Mar 04 2007
If X_1, X_2, ..., X_n is a partition of the set {1,2,...,2*n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1,2,..., 2*n}->{1,2,3,4} such that for fixed y_1,y_2,...,y_n in {1,2,3,4} we have f(X_i)<>{y_i}, (i=1,2,...,n). - Milan Janjic, May 24 2007
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 15-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Number of ways to assign truth values to n quaternary disjunctions connected by conjunctions such that the proposition is true. For example, a(2) = 225, since for the proposition (a v b v c v d) & (e v f v g v h) there are 225 assignments that make the proposition true. - Ori Milstein, Jan 26 2023

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A159991(n)/A000302(n). - Reinhard Zumkeller, May 02 2009
Row 6 of A329332.

Programs

Formula

G.f.: 1/(1-15x), e.g.f.: exp(15x)
a(n) = 15^n; a(n) = 15*a(n-1) with a(0)=1. - Vincenzo Librandi, Nov 21 2010

Extensions

More terms from James Sellers, Sep 19 2000

A060707 Base-60 (Babylonian or sexagesimal) expansion of Pi.

Original entry on oeis.org

3, 8, 29, 44, 0, 47, 25, 53, 7, 24, 57, 36, 17, 43, 4, 29, 7, 10, 3, 41, 17, 52, 36, 12, 14, 36, 44, 51, 50, 15, 33, 7, 23, 59, 9, 13, 48, 22, 12, 21, 45, 22, 56, 47, 39, 44, 28, 37, 58, 23, 21, 11, 56, 33, 22, 40, 42, 31, 6, 6, 3, 46, 16, 52, 2, 48, 33, 24, 38, 33, 22, 1, 0, 1
Offset: 1

Views

Author

Robert G. Wilson v, Feb 05 2001

Keywords

References

  • Mohammad K. Azarian, Al-Risala al-Muhitiyya: A Summary, Missouri Journal of Mathematical Sciences, Vol. 22, No. 2, 2010, pp. 64-85.
  • Mohammad K. Azarian, The Introduction of Al-Risala al-Muhitiyya: An English Translation, International Journal of Pure and Applied Mathematics, Vol. 57, No. 6, 2009, pp. 903-914.
  • Mohammad K. Azarian, Al-Kashi's Fundamental Theorem, International Journal of Pure and Applied Mathematics, Vol. 14, No. 4, 2004, pp. 499-509. Mathematical Reviews, MR2005b:01021 (01A30), February 2005, p. 919. Zentralblatt MATH, Zbl 1059.01005.
  • Mohammad K. Azarian, Meftah al-hesab: A Summary, MJMS, Vol. 12, No. 2, Spring 2000, pp. 75-95. Mathematical Reviews, MR 1 764 526. Zentralblatt MATH, Zbl 1036.01002.
  • Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), this sequence (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60). - Jason Kimberley, Dec 06 2012

Programs

  • Mathematica
    RealDigits[ Pi, 60, 75][[1]]
  • PARI
    { default(realprecision, 17900); x=Pi; for (n=1, 10000, d=floor(x); x=(x-d)*60; write("b060707.txt", n, " ", d)); } \\ Harry J. Smith, Jul 09 2009

A088157 Value of (n+1)-th digit in sexagesimal representation of n^n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 7, 21, 2, 1, 59, 5, 49, 2, 19, 57, 20, 45, 35, 30, 0, 5, 28, 50, 4, 19, 50, 23, 32, 10, 23, 38, 16, 45, 29, 6
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 20 2003

Keywords

Comments

a(n) = d(n) with n^n = Sum(d(k)*60^k: 0 <= d(k) < 60, k >= 0).

Examples

			a(0) = 1, a(k) = 0 for 0 < k < 60 and a(60) = 1.
		

Crossrefs

Programs

  • Haskell
    a088157 n = mod (div (n ^ n) (60 ^ n)) 60
    -- Reinhard Zumkeller, Mar 14 2014
  • Mathematica
    f[n_] := IntegerDigits[n^n, 60, n + 1][[1]]; f[0] = 1; Array[f, 92, 0] (* Robert G. Wilson v, Dec 27 2012 *)
  • PARI
    a(n)=lift(chinese(chinese(Mod(n,3^(n+1))^n,Mod(n,4^(n+1))^n), Mod(n,5^(n+1))^n))\60^n \\ Charles R Greathouse IV, Dec 27 2012
    

Formula

a(n) = floor(n^n / 60^n) mod 60.

A159990 Coefficients in sexagesimal expansion of the positive root of x^3 + 2*x^2 + 10*x = 20, first studied by Leonardo of Pisa (Fibonacci) in 1225.

Original entry on oeis.org

1, 22, 7, 42, 33, 4, 38, 30, 50, 15, 43, 13, 56, 48, 24, 41, 0, 48, 22, 40, 39, 37, 23, 53, 55, 57, 45, 40, 5, 46, 50, 57, 28, 45, 46, 34, 2, 6, 7, 15, 25, 25, 13, 10, 59, 30, 13, 14, 7, 6, 15, 46, 23, 53, 59, 32, 24, 20, 11, 48, 35, 4, 4, 18, 33, 50, 7, 40, 16, 16, 1, 32, 24, 10, 43, 59, 23, 44, 51, 58, 11, 22, 26, 17
Offset: 0

Views

Author

Reinhard Zumkeller, May 01 2009

Keywords

Comments

Leonardo of Pisa (Fibonacci) found a(0), ..., a(5) but gave a(6) as 40.
A159992(n)/A159993(n) = Sum_{k=0..n} a(k)/60^k = (Sum_{k=0..n} a(k)*60^(n-k))/60^n; let f(x) = x^3 + 2*x^2 + 10*x - 20, then for n > 0:
a(n) = Max(k: f(A159992(n-1)/A159993(n - 1) + k/60^n)) < 0),
a(n) + 1 = Min(k: f(A159992(n - 1)/A159993(n - 1) + k/60^n)) > 0);
A159994(n)/A159995(n) = f(A159992(n)/A159993(n)).

Examples

			The root is 1 + 22/60 + 7/60^2 + 42/60^3 + 33/60^4 + 4/60^5 + 38/60^6 + 30/60^7 + 50/60^8 + ...
Leonardo's approximation 1;22.7.42.33.4.40 is to be read as 1 + 22/60 + 7/60^2 + 42/60^3 + 33/60^4 + 4/60^5 + 40/60^6 = A159992(5)/A159993(5) + 40/60^6 = 1596577777 / 1166400000 ~= 1.3688081078532235 and f(1596577777/1166400000) ~= +6.7193226361369/10^10; compare this to A159992(6)/A159993(6) = A159992(5)/A159993(5) + 38/60^6 = 31931555539 / 23328000000 ~= 1.3688081078103566 and f(31931555539/23328000000) ~= -2.3239469709985/10^10.
Assuming that Leonardo did similar calculations, the question may arise: why he didn't find a(6) = 38 instead of 40? Supposedly he just avoided the effort to calculate f(A159992(5)/A159993(5) + k/60^6) for k = 37, 38, or 39: 37/60^6 = 37/46656000000, 38/60^6 = 19/23328000000, or 39/60^6 = 13/15552000000; finally, he did calculate only f(A159992(5)/A159993(5) + k/60^6) for k = 36 and k = 40, the less complex cases concerning sexagesimal fractional arithmetic with 36/60^6 = 1/1296000000 and 40/60^6 = 1/1166400000: f(A159992(5)/A159993(5) + 36/60^6) ~= -1.9999999988632783, f(A159992(5)/A159993(5) + 40/60^6) ~= +0.0000000006719323.
The latter result looks precise enough and could explain and justify Leonardo's 'rounding'.
		

References

  • Cox, David A., Galois theory. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2004. xx+559 pp. ISBN: 0-471-43419-1 MR2119052 (2006a:12001). See page 9.
  • A. F. Horadam, Eight hundred years young, The Australian Mathematics Teacher 31 (1975) 123-134.
  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers. New York: Prometheus Books (2007): 21.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Solve[x^3 + 2 x^2 + 10 x - 20 == 0, x][[3, 1, 2]], 60, 111][[1]] (* Robert G. Wilson v, May 11 2012 *)
    RealDigits[Root[x^3+2x^2+10x-20,1],60,90][[1]] (* Harvey P. Dale, Jun 16 2025 *)
  • PARI
    polrootsreal(x^3+2*x^2+10*x-20)[1] \\ Charles R Greathouse IV, Apr 14 2014

A009974 Powers of 30.

Original entry on oeis.org

1, 30, 900, 27000, 810000, 24300000, 729000000, 21870000000, 656100000000, 19683000000000, 590490000000000, 17714700000000000, 531441000000000000, 15943230000000000000, 478296900000000000000, 14348907000000000000000, 430467210000000000000000, 12914016300000000000000000
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 30), L(1, 30), P(1, 30), T(1, 30). Essentially same as Pisot sequences E(30, 900), L(30, 900), P(30, 900), T(30, 900). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 30-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Programs

Formula

G.f.: 1/(1-30*x). - Philippe Deléham, Nov 24 2008
a(n) = 30^n; a(n) = 30*a(n-1), n > 0; a(0)=1. - Vincenzo Librandi, Nov 21 2010
From Elmo R. Oliveira, Jul 10 2025: (Start)
E.g.f.: exp(30*x).
a(n) = A000244(n)*A011557(n) = A159991(n)/A000079(n). (End)

A159995 Denominator of f(A159992(n)/A159993(n)) with f(x)=x^3+2*x^2+10*x-20, numerator=A159994.

Original entry on oeis.org

1, 27000, 46656000000, 46656000000000, 80621568000000000000, 14348907000000000000000, 12694994583552000000000000000000, 812479653347328000000000000000000
Offset: 0

Views

Author

Reinhard Zumkeller, May 01 2009

Keywords

Crossrefs

A159991, subsequence of A051037, the 5-smooth numbers.

A269025 a(n) = Sum_{k = 0..n} 60^k.

Original entry on oeis.org

1, 61, 3661, 219661, 13179661, 790779661, 47446779661, 2846806779661, 170808406779661, 10248504406779661, 614910264406779661, 36894615864406779661, 2213676951864406779661, 132820617111864406779661, 7969237026711864406779661, 478154221602711864406779661
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 18 2016

Keywords

Comments

Partial sums of powers of 60 (A159991).
Converges in a 10-adic sense to ...762711864406779661.
More generally, the ordinary generating function for the Sum_{k = 0..n} m^k is 1/((1 - m*x)*(1 - x)). Also, Sum_{k = 0..n} m^k = (m^(n + 1) - 1)/(m - 1).

Crossrefs

Cf. A159991.
Cf. similar sequences of the form (k^n-1)/(k-1): A000225 (k=2), A003462 (k=3), A002450 (k=4), A003463 (k=5), A003464 (k=6), A023000 (k=7), A023001 (k=8), A002452 (k=9), A002275 (k=10), A016123 (k=11), A016125 (k=12), A091030 (k=13), A135519 (k=14), A135518 (k=15), A131865 (k=16), A091045 (k=17), A218721 (k=18), A218722 (k=19), A064108 (k=20), A218724-A218734 (k=21..31), A132469 (k=32), A218736-A218753 (k=33..50), this sequence (k=60), A133853 (k=64), A094028 (k=100), A218723 (k=256), A261544 (k=1000).

Programs

  • Mathematica
    Table[Sum[60^k, {k, 0, n}], {n, 0, 15}]
    Table[(60^(n + 1) - 1)/59, {n, 0, 15}]
    LinearRecurrence[{61, -60}, {1, 61}, 15]
  • PARI
    a(n)=60^n + 60^n\59 \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: 1/((1 - 60*x)*(1 - x)).
a(n) = (60^(n + 1) - 1)/59 = 60^n + floor(60^n/59).
a(n+1) = 60*a(n) + 1, a(0)=1.
a(n) = Sum_{k = 0..n} A159991(k).
Sum_{n>=0} 1/a(n) = 1.016671221665660580331...
E.g.f.: exp(x)*(60*exp(59*x) - 1)/59. - Stefano Spezia, Mar 23 2023

A091722 Babylonian sexagesimal (base 60) expansion of 1/13.

Original entry on oeis.org

4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55, 23, 4, 36, 55
Offset: 0

Views

Author

Jeppe Stig Nielsen, Feb 01 2004

Keywords

Crossrefs

Programs

A091649 Base-60 (Babylonian or sexagesimal) expansion of 2 Pi.

Original entry on oeis.org

6, 16, 59, 28, 1, 34, 51, 46, 14, 49, 55, 12, 35, 26, 8, 58, 14, 20, 7, 22, 35, 45, 12, 24, 29, 13, 29, 43, 40, 31, 6, 14, 47, 58, 18, 27, 36, 44, 24, 43, 30, 45, 53, 35, 19, 28, 57, 15, 56, 46, 42, 23, 53, 6, 45, 21, 25, 2, 12, 12, 7, 32, 33, 44, 5, 37, 6, 49, 17, 6, 44, 2, 0, 3, 20
Offset: 1

Views

Author

Eric W. Weisstein, Jan 25 2004

Keywords

Examples

			2 pi = 6 + 16/60 + 59/60^2 + 28/60^3 + ....
		

References

  • Mohammad K. Azarian, Al-Risala al-Muhitiyya: A Summary, Missouri Journal of Mathematical Sciences, Vol. 22, No. 2, 2010, pp. 64-85.
  • Mohammad K. Azarian, The Introduction of Al-Risala al-Muhitiyya: An English Translation, International Journal of Pure and Applied Mathematics, Vol. 57, No. 6, 2009 , pp. 903-914.
  • Mohammad K. Azarian, Al-Kashi's Fundamental Theorem, International Journal of Pure and Applied Mathematics, Vol. 14, No. 4, 2004, pp. 499-509. Mathematical Reviews, MR2005b:01021 (01A30), February 2005, p. 919. Zentralblatt MATH, Zbl 1059.01005.
  • Mohammad K. Azarian, Meftah al-hesab: A Summary, MJMS, Vol. 12, No. 2, Spring 2000, pp. 75-95. Mathematical Reviews, MR 1 764 526. Zentralblatt MATH, Zbl 1036.01002.
  • Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.

Crossrefs

Programs

A091721 Babylonian sexagesimal (base 60) expansion of 1/11.

Original entry on oeis.org

5, 27, 16, 21, 49, 5, 27, 16, 21, 49, 5, 27, 16, 21, 49, 5, 27, 16, 21, 49, 5, 27, 16, 21, 49, 5, 27, 16, 21, 49, 5, 27, 16, 21, 49, 5, 27, 16, 21, 49, 5, 27, 16, 21, 49, 5, 27, 16, 21, 49, 5, 27, 16, 21, 49, 5, 27, 16, 21, 49, 5, 27, 16, 21, 49, 5, 27, 16, 21, 49, 5, 27, 16, 21
Offset: 0

Views

Author

Jeppe Stig Nielsen, Feb 01 2004

Keywords

Comments

Period 5: repeat [5, 27, 16, 21, 49]. - Wesley Ivan Hurt, May 25 2024

Crossrefs

Programs

  • Mathematica
    RealDigits[ 1/11, 60, 75] [[1]] (* Robert G. Wilson v, Feb 02 2004 *)
    CoefficientList[Series[(5 + 27 x + 16 x^2 + 21 x^3 + 49 x^4)/(1 - x^5), {x, 0, 40}], x] (* Wesley Ivan Hurt, May 25 2024 *)

Formula

From Wesley Ivan Hurt, May 25 2024: (Start)
a(n+5) = a(n).
G.f.: (5+27*x+16*x^2+21*x^3+49*x^4)/(1-x^5). (End)
Previous Showing 11-20 of 25 results. Next