A053754
If k is in the sequence then 2*k and 2*k+1 are not (and 0 is in the sequence); when written in binary k has an even number of bits (0 has 0 digits).
Original entry on oeis.org
0, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148
Offset: 1
Positions of even terms in
A029837 with offset 0.
The version for Heinz numbers of partitions is
A300061, counted by
A058696.
-
a053754 n = a053754_list !! (n-1)
a053754_list = 0 : filter (even . a070939) [1..]
-- Reinhard Zumkeller, Apr 18 2015
-
Select[Range[0, 150], EvenQ @ IntegerLength[#, 2] &] (* Amiram Eldar, Feb 01 2021 *)
-
lista(nn) = {my(va = vector(nn)); for (n=2, nn, my(k=va[n-1]+1); while (#select(x->(x==k\2), va), k++); va[n] = k;); va;} \\ Michel Marcus, Oct 20 2020
-
a(n) = n-1 + (1<Kevin Ryde, Apr 30 2021
A087897
Number of partitions of n into odd parts greater than 1.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 10, 12, 13, 15, 18, 20, 23, 27, 30, 34, 40, 44, 50, 58, 64, 73, 83, 92, 104, 118, 131, 147, 166, 184, 206, 232, 256, 286, 320, 354, 394, 439, 485, 538, 598, 660, 730, 809, 891, 984, 1088, 1196, 1318, 1454, 1596, 1756
Offset: 0
1 + x^3 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + 3*x^13 + ...
q + q^73 + q^121 + q^145 + q^169 + q^193 + 2*q^217 + 2*q^241 + 2*q^265 + ...
a(10)=2 because we have [7,3] and [5,5].
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(22)=13 symmetric unimodal compositions of 22+3=25 where the maximal part appears three times:
01: [ 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 2 3 3 3 2 1 1 1 1 1 1 ]
03: [ 1 1 1 1 1 5 5 5 1 1 1 1 1 ]
04: [ 1 1 1 1 2 2 3 3 3 2 2 1 1 1 1 ]
05: [ 1 1 1 2 5 5 5 2 1 1 1 ]
06: [ 1 1 2 2 2 3 3 3 2 2 2 1 1 ]
07: [ 1 1 3 5 5 5 3 1 1 ]
08: [ 1 1 7 7 7 1 1 ]
09: [ 1 2 2 5 5 5 2 2 1 ]
10: [ 1 4 5 5 5 4 1 ]
11: [ 2 2 2 2 3 3 3 2 2 2 2 ]
12: [ 2 3 5 5 5 3 2 ]
13: [ 2 7 7 7 2 ]
(End)
From _Gus Wiseman_, Feb 16 2021: (Start)
The a(7) = 1 through a(19) = 8 partitions are the following (A..J = 10..19). The Heinz numbers of these partitions are given by A341449.
7 53 9 55 B 75 D 77 F 97 H 99 J
333 73 533 93 553 95 555 B5 755 B7 775
3333 733 B3 753 D3 773 D5 955
5333 933 5533 953 F3 973
33333 7333 B33 5553 B53
53333 7533 D33
9333 55333
333333 73333
(End)
- J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), pp. 111-112. see Eq. I
- Chai Wah Wu, Table of n, a(n) for n = 0..10000 (n = 0..1000 from Alois P. Heinz)
- C. Ballantine and M. Merca, Padovan numbers as sums over partitions into odd parts, Journal of Inequalities and Applications, (2016) 2016:1; doi.
- B. C. Berndt, B. Kim, and A. J. Yee, Ramanujan's lost notebook: Combinatorial proofs of identities associated with Heine's transformation or partial theta functions, J. Comb. Thy. Ser. A, 117 (2010), 957-973.
- Howard D. Grossman, Problem 228, Mathematics Magazine, 28 (1955), p. 160.
- R. K. Guy, Two theorems on partitions, Math. Gaz., 42 (1958), 84-86. Math. Rev. 20 #3110.
- Cristiano Husu, The butterfly sequence: the second difference sequence of the numbers of integer partitions with distinct parts, its pentagonal number structure, its combinatorial identities and the cyclotomic polynomials 1-x and 1+x+x^2, arXiv:1804.09883 [math.NT], 2018.
- James Mc Laughlin, Andrew V. Sills, and Peter Zimmer, Rogers-Ramanujan-Slater Type Identities, Electronic J. Combinatorics, DS15, 1-59, May 31, 2008.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
The version for factorizations is
A340101.
Partitions whose only even part is the smallest are counted by
A341447.
The Heinz numbers of these partitions are given by
A341449.
A025147 counts strict partitions with no 1's.
A025148 counts strict partitions with no 1's or 2's.
A026804 counts partitions whose smallest part is odd, ranked by
A340932.
A340385 counts partitions with odd length and maximum, ranked by
A340386.
-
a087897 = p [3,5..] where
p [] _ = 0
p _ 0 = 1
p ks'@(k:ks) m | m < k = 0
| otherwise = p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Aug 12 2011
-
To get 128 terms: t4 := mul((1+x^(2^n)),n=0..7); t5 := mul((1+x^k),k=1..128): t6 := series(t5/t4,x,100); t7 := seriestolist(t6);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<3, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> b(n, n-1+irem(n, 2)):
seq(a(n), n=0..80); # Alois P. Heinz, Jun 11 2013
-
max = 65; f[x_] := Product[ 1/(1 - x^(2k+1)), {k, 1, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 16 2011, after Emeric Deutsch *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<3, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]] ]; a[n_] := b[n, n-1+Mod[n, 2]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 01 2015, after Alois P. Heinz *)
Flatten[{1, Table[PartitionsQ[n+1] - PartitionsQ[n], {n, 0, 80}]}] (* Vaclav Kotesovec, Dec 01 2015 *)
Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&OddQ[Times@@#]&]],{n,0,30}] (* Gus Wiseman, Feb 16 2021 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - x) * eta(x^2 + A) / eta(x + A), n))} /* Michael Somos, Nov 13 2011 */
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A087897_T(n,k):
if n==0: return 1
if k<3 or n<0: return 0
return A087897_T(n,k-2)+A087897_T(n-k,k)
def A087897(n): return A087897_T(n,n-(n&1^1)) # Chai Wah Wu, Sep 23 2023, after Alois P. Heinz
A120452
Number of partitions of n-1 boys and one girl with no couple.
Original entry on oeis.org
1, 1, 3, 5, 9, 14, 23, 34, 52, 75, 109, 153, 216, 296, 407, 549, 739, 981, 1300, 1702, 2224, 2879, 3716, 4761, 6083, 7721, 9774, 12306, 15450, 19307, 24064, 29867, 36978, 45614, 56130, 68846, 84250, 102793, 125148, 151955, 184123, 222553, 268482
Offset: 1
n=5:
If partitions have no pair "o*", then a(5)=9 ("o" means a boy, "*" means a girl): {o, o, o, o, *}, {o, o, *, oo}, {*, oo, oo}, {o, *, ooo}, {o, o, oo*}, {oo, oo*}, {*, oooo}, {o, ooo*}, {oooo*}.
From _Gus Wiseman_, Jun 08 2021: (Start)
The a(1) = 1 through a(6) = 14 partitions of 2n with reverse-alternating sum 2:
(2) (211) (222) (332) (442) (552)
(321) (431) (541) (651)
(21111) (22211) (22222) (33222)
(32111) (32221) (33321)
(2111111) (33211) (43221)
(43111) (44211)
(2221111) (54111)
(3211111) (2222211)
(211111111) (3222111)
(3321111)
(4311111)
(222111111)
(321111111)
(21111111111)
For example, the partition (43221) has reverse-alternating sum 1 - 2 + 2 - 3 + 4 = 2, so is counted under a(6).
The a(1) = 1 through a(6) = 14 partitions of 2n with exactly two odd parts, one of which is the greatest:
(11) (31) (33) (53) (55) (75)
(51) (71) (73) (93)
(321) (332) (91) (111)
(521) (532) (543)
(3221) (541) (552)
(721) (732)
(3322) (741)
(5221) (921)
(32221) (5322)
(5421)
(7221)
(33222)
(52221)
(322221)
(End)
A000097 counts partitions of 2n with alternating sum 2.
A001700/
A088218 appear to count compositions with reverse-alternating sum 2.
A344610 counts partitions of 2n by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A344741 counts partitions of 2n with reverse-alternating sum -2.
-
a[n_] := Total[PartitionsP[Range[0, n-3]]] + PartitionsP[n-1];
Array[a, 50] (* Jean-François Alcover, Jun 05 2021 *)
More terms from Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 15 2006
A237258
Number of strict partitions of 2n that include a partition of n.
Original entry on oeis.org
1, 0, 0, 1, 1, 3, 4, 7, 9, 16, 21, 32, 43, 63, 84, 122, 158, 220, 293, 393, 511, 685, 881, 1156, 1485, 1925, 2445, 3147, 3952, 5019, 6323, 7924, 9862, 12336, 15259, 18900, 23294, 28646, 35091, 42985, 52341, 63694, 77336, 93588, 112973, 136367, 163874, 196638
Offset: 0
a(5) counts these partitions of 10: [5,4,1], [5,3,2], [4,3,2,1].
These partitions are ranked by
A357854.
-
z = 24; Table[theTotals = Map[{#, Map[Total, Subsets[#]]} &, Select[IntegerPartitions[2 nn], # == DeleteDuplicates[#] &]]; Length[Map[#[[1]] &, Select[theTotals, Length[Position[#[[2]], nn]] >= 1 &]]], {nn, z}] (* Peter J. C. Moses, Feb 04 2014 *)
A320924
Heinz numbers of multigraphical partitions.
Original entry on oeis.org
1, 4, 9, 12, 16, 25, 27, 30, 36, 40, 48, 49, 63, 64, 70, 75, 81, 84, 90, 100, 108, 112, 120, 121, 144, 147, 154, 160, 165, 169, 175, 189, 192, 196, 198, 210, 220, 225, 243, 250, 252, 256, 264, 270, 273, 280, 286, 289, 300, 324, 325, 336, 343, 351, 352, 360
Offset: 1
The sequence of all multigraphical partitions begins: (), (11), (22), (211), (1111), (33), (222), (321), (2211), (3111), (21111), (44), (422), (111111), (431), (332), (2222), (4211), (3221), (3311), (22211), (41111), (32111), (55), (221111).
From _Gus Wiseman_, May 23 2021: (Start)
The sequence of terms together with their prime indices and a multigraph realizing each begins:
1: () | {}
4: (11) | {{1,2}}
9: (22) | {{1,2},{1,2}}
12: (112) | {{1,3},{2,3}}
16: (1111) | {{1,2},{3,4}}
25: (33) | {{1,2},{1,2},{1,2}}
27: (222) | {{1,2},{1,3},{2,3}}
30: (123) | {{1,3},{2,3},{2,3}}
36: (1122) | {{1,2},{3,4},{3,4}}
40: (1113) | {{1,4},{2,4},{3,4}}
48: (11112) | {{1,2},{3,5},{4,5}}
49: (44) | {{1,2},{1,2},{1,2},{1,2}}
63: (224) | {{1,3},{1,3},{2,3},{2,3}}
(End)
These partitions are counted by
A209816.
The case with odd weights is
A322109.
The conjugate case of equality is
A340387.
The conjugate version with odd weights allowed is
A344291.
The conjugate opposite version is
A344292.
The opposite version with odd weights allowed is
A344296.
The conjugate opposite version with odd weights allowed is
A344414.
A000070 counts non-multigraphical partitions.
A025065 counts palindromic partitions.
A035363 counts partitions into even parts.
A110618 counts partitions that are the vertex-degrees of some set multipartition with no singletons.
A334201 adds up all prime indices except the greatest.
Cf.
A000041,
A000569,
A007717,
A096373,
A265640,
A283877,
A306005,
A318361,
A320459,
A320911,
A320922,
A320923,
A320925.
-
prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
Select[Range[1000],prptns[Flatten[MapIndexed[Table[#2,{#1}]&,If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]!={}&]
A357976
Numbers with a divisor having the same sum of prime indices as their quotient.
Original entry on oeis.org
1, 4, 9, 12, 16, 25, 30, 36, 40, 48, 49, 63, 64, 70, 81, 84, 90, 100, 108, 112, 120, 121, 144, 154, 160, 165, 169, 192, 196, 198, 210, 220, 225, 252, 256, 264, 270, 273, 280, 286, 289, 300, 324, 325, 336, 351, 352, 360, 361, 364, 390, 400, 432, 441, 442, 448
Offset: 1
The terms together with their prime indices begin:
1: {}
4: {1,1}
9: {2,2}
12: {1,1,2}
16: {1,1,1,1}
25: {3,3}
30: {1,2,3}
36: {1,1,2,2}
40: {1,1,1,3}
48: {1,1,1,1,2}
49: {4,4}
For example, 40 has factorization 8*5, and both factors have the same sum of prime indices 3, so 40 is in the sequence.
The partitions with these Heinz numbers are counted by
A002219.
Positions of nonzero terms in
A357879.
Cf.
A033879,
A033880,
A064914,
A181819,
A213086,
A235130,
A237194,
A276107,
A300273,
A321144,
A357975.
-
filter:= proc(n) local F,s,t,i,R;
F:= ifactors(n)[2];
F:= map(t -> [numtheory:-pi(t[1]),t[2]], F);
s:= add(t[1]*t[2],t=F)/2;
if not s::integer then return false fi;
try
R:= Optimization:-Maximize(0, [add(F[i][1]*x[i],i=1..nops(F)) = s, seq(x[i]<= F[i][2],i=1..nops(F))], assume=nonnegint, depthlimit=20);
catch "no feasible integer point found; use feasibilitytolerance option to adjust tolerance": return false;
end try;
true
end proc:
filter(1):= true:
select(filter, [$1..1000]); # Robert Israel, Oct 26 2023
-
sumprix[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]];
Select[Range[100],MemberQ[sumprix/@Divisors[#],sumprix[#]/2]&]
A320922
Heinz numbers of graphical partitions.
Original entry on oeis.org
1, 4, 12, 16, 27, 36, 40, 48, 64, 81, 90, 108, 112, 120, 144, 160, 192, 225, 243, 252, 256, 270, 300, 324, 336, 352, 360, 400, 432, 448, 480, 567, 576, 625, 630, 640, 675, 729, 750, 756, 768, 792, 810, 832, 840, 900, 972, 1000, 1008, 1024, 1056, 1080, 1120
Offset: 1
The sequence of all graphical partitions begins: (), (11), (211), (1111), (222), (2211), (3111), (21111), (111111), (2222), (3221), (22211), (41111), (32111), (221111), (311111), (2111111), (3322), (22222), (42211).
Cf.
A000070,
A000569,
A007717,
A056239,
A096373,
A112798,
A147878,
A209816,
A300061,
A320458,
A320911,
A320923,
A320924.
-
prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
Select[Range[1000],Select[prptns[Flatten[MapIndexed[Table[#2,{#1}]&,If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]],UnsameQ@@#&]!={}&]
A086543
Number of partitions of n with at least one odd part.
Original entry on oeis.org
0, 1, 1, 3, 3, 7, 8, 15, 17, 30, 35, 56, 66, 101, 120, 176, 209, 297, 355, 490, 585, 792, 946, 1255, 1498, 1958, 2335, 3010, 3583, 4565, 5428, 6842, 8118, 10143, 12013, 14883, 17592, 21637, 25525, 31185, 36711, 44583, 52382, 63261, 74173, 89134, 104303, 124754, 145698, 173525, 202268
Offset: 0
a(4)=3 because we have [3,1],[2,1,1] and [1,1,1] ([4] and [2,2] do not qualify).
These partitions have ranks
A366322.
-
g:=sum(x^(2*k-1)/product(1-x^j,j=1..2*k-1)/product(1-x^(2*j),j=k..70),k=1..70): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..45); # Emeric Deutsch, Mar 30 2006
-
nn=50;CoefficientList[Series[Sum[x^(2k-1)/Product[1-x^j,{j,1,2k-1}] /Product[(1-x^(2j)),{j,k,nn}],{k,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 28 2013 *)
Table[Length[Select[IntegerPartitions[n],Max[#]!=n/2&]],{n,0,30}] (* Gus Wiseman, Oct 12 2023 *)
-
x='x+O('x^66); concat([0], Vec(1/eta(x)-1/eta(x^2)) ) \\ Joerg Arndt, May 04 2013
A340387
Numbers whose sum of prime indices is twice their number, counted with multiplicity in both cases.
Original entry on oeis.org
1, 3, 9, 10, 27, 28, 30, 81, 84, 88, 90, 100, 208, 243, 252, 264, 270, 280, 300, 544, 624, 729, 756, 784, 792, 810, 840, 880, 900, 1000, 1216, 1632, 1872, 2080, 2187, 2268, 2352, 2376, 2430, 2464, 2520, 2640, 2700, 2800, 2944, 3000, 3648, 4896, 5440, 5616
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
9: {2,2}
10: {1,3}
27: {2,2,2}
28: {1,1,4}
30: {1,2,3}
81: {2,2,2,2}
84: {1,1,2,4}
88: {1,1,1,5}
90: {1,2,2,3}
100: {1,1,3,3}
208: {1,1,1,1,6}
243: {2,2,2,2,2}
252: {1,1,2,2,4}
Partitions of 2n into n parts are counted by
A000041.
The number of prime indices alone is
A001222.
The sum of prime indices alone is
A056239.
Allowing sum to be any multiple of length gives
A067538, ranked by
A316413.
A301987 lists numbers whose sum of prime indices equals their product, with nonprime case
A301988.
Cf.
A000720,
A001221,
A001414,
A006125,
A006129,
A112798,
A316428,
A320911,
A325037,
A325044,
A330950,
A331385,
A331416.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Total[primeMS[#]]==2*PrimeOmega[#]&]
A096441
Number of palindromic and unimodal compositions of n. Equivalently, the number of orbits under conjugation of even nilpotent n X n matrices.
Original entry on oeis.org
1, 2, 2, 4, 3, 7, 5, 11, 8, 17, 12, 26, 18, 37, 27, 54, 38, 76, 54, 106, 76, 145, 104, 199, 142, 266, 192, 357, 256, 472, 340, 621, 448, 809, 585, 1053, 760, 1354, 982, 1740, 1260, 2218, 1610, 2818, 2048, 3559, 2590, 4485, 3264, 5616, 4097, 7018, 5120, 8728, 6378
Offset: 1
Nolan R. Wallach (nwallach(AT)ucsd.edu), Aug 10 2004
From _Joerg Arndt_, Dec 27 2012: (Start)
There are a(10)=17 partitions of 10 where all differences between successive parts are even:
[ 1] [ 1 1 1 1 1 1 1 1 1 1 ]
[ 2] [ 2 2 2 2 2 ]
[ 3] [ 3 1 1 1 1 1 1 1 ]
[ 4] [ 3 3 1 1 1 1 ]
[ 5] [ 3 3 3 1 ]
[ 6] [ 4 2 2 2 ]
[ 7] [ 4 4 2 ]
[ 8] [ 5 1 1 1 1 1 ]
[ 9] [ 5 3 1 1 ]
[10] [ 5 5 ]
[11] [ 6 2 2 ]
[12] [ 6 4 ]
[13] [ 7 1 1 1 ]
[14] [ 7 3 ]
[15] [ 8 2 ]
[16] [ 9 1 ]
[17] [ 10 ]
(End)
- A. G. Elashvili and V. G. Kac, Classification of good gradings of simple Lie algebras. Lie groups and invariant theory, 85-104, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005.
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Karin Baur and Nolan Wallach, Nice parabolic subalgebras of reductive Lie algebras, Represent. Theory 9 (2005), 1-29.
- A. G. Elashvili and V. G. Kac, Classification of good gradings of simple Lie algebras, arXiv:math-ph/0312030, 2002-2004.
- Sergi Elizalde and Emeric Deutsch, The degree of asymmetry of a sequence, Enum. Combinat. Applic. 2 (2022) no 1 #S2R7, U(0,z).
The complement in partitions is counted by
A006477
A version for compositions is
A016116.
A025065 counts palindromic partitions.
A027187 counts partitions with even length/maximum.
A035377 counts partitions using multiples of 3.
A340785 counts factorizations into even factors.
Cf.
A000009,
A002865,
A027383,
A035457,
A117298,
A117989,
A168021,
A274230,
A345170,
A349060,
A349061.
-
b:= proc(n, i) option remember; `if`(i>n, 0,
`if`(irem(n, i)=0, 1, 0) +add(`if`(irem(j, 2)=0,
b(n-i*j, i+1), 0), j=0..n/i))
end:
a:= n-> b(n, 1):
seq(a(n), n=1..60); # Alois P. Heinz, Mar 26 2014
-
(* The following Mathematica program first generates all of the palindromic, unimodal compositions of n and then counts them. *)
Pal[n_] := Block[{i, j, k, m, Q, L}, If[n == 1, Return[{{1}}]]; If[n == 2, Return[{{1, 1}, {2}}]]; L = {{n}}; If[Mod[n, 2] == 0, L = Append[L, {n/2, n/2}]]; For[i = 1, i < n, i++, Q = Pal[n - 2i]; m = Length[Q]; For[j = 1, j <= m, j++, If[i <= Q[[j, 1]], L = Append[L, Append[Prepend[Q[[j]], i], i]]]]]; L] NoPal[n_] := Length[Pal[n]]
a[n_] := PartitionsQ[n] + If[EvenQ[n], PartitionsP[n/2], 0]; Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Mar 17 2014, after Vladeta Jovovic *)
Table[Length[Select[IntegerPartitions[n],And@@EvenQ/@Rest[Length/@Split[#]]&]],{n,1,30}] (* Gus Wiseman, Jan 13 2022 *)
-
my(x='x+O('x^66)); Vec(eta(x^2)/eta(x)+1/eta(x^2)-2) \\ Joerg Arndt, Jan 17 2016
Comments