cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A002033 Number of perfect partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 4, 8, 1, 13, 1, 16, 3, 3, 3, 26, 1, 3, 3, 20, 1, 13, 1, 8, 8, 3, 1, 48, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 44, 1, 3, 8, 32, 3, 13, 1, 8, 3, 13, 1, 76, 1, 3, 8, 8, 3, 13, 1, 48, 8, 3, 1, 44, 3, 3, 3, 20, 1, 44, 3, 8, 3, 3, 3, 112
Offset: 0

Views

Author

Keywords

Comments

A perfect partition of n is one which contains just one partition of every number less than n when repeated parts are regarded as indistinguishable. Thus 1^n is a perfect partition for every n; and for n = 7, 4 1^3, 4 2 1, 2^3 1 and 1^7 are all perfect partitions. [Riordan]
Also number of ordered factorizations of n+1, see A074206.
Also number of gozinta chains from 1 to n (see A034776). - David W. Wilson
a(n) is the permanent of the n X n matrix with (i,j) entry = 1 if j|i+1 and = 0 otherwise. For n=3 the matrix is {{1, 1, 0}, {1, 0, 1}, {1, 1, 0}} with permanent = 2. - David Callan, Oct 19 2005
Appears to be the number of permutations that contribute to the determinant that gives the Moebius function. Verified up to a(9). - Mats Granvik, Sep 13 2008
Dirichlet inverse of A153881 (assuming offset 1). - Mats Granvik, Jan 03 2009
Equals row sums of triangle A176917. - Gary W. Adamson, Apr 28 2010
A partition is perfect iff it is complete (A126796) and knapsack (A108917). - Gus Wiseman, Jun 22 2016
a(n) is also the number of series-reduced planted achiral trees with n + 1 unlabeled leaves, where a rooted tree is series-reduced if all terminal subtrees have at least two branches, and achiral if all branches directly under any given node are equal. Also Moebius transform of A067824. - Gus Wiseman, Jul 13 2018

Examples

			n=0: 1 (the empty partition)
n=1: 1 (1)
n=2: 1 (11)
n=3: 2 (21, 111)
n=4: 1 (1111)
n=5: 3 (311, 221, 11111)
n=6: 1 (111111)
n=7: 4 (4111, 421, 2221, 1111111)
From _Gus Wiseman_, Jul 13 2018: (Start)
The a(11) = 8 series-reduced planted achiral trees with 12 unlabeled leaves:
  (oooooooooooo)
  ((oooooo)(oooooo))
  ((oooo)(oooo)(oooo))
  ((ooo)(ooo)(ooo)(ooo))
  ((oo)(oo)(oo)(oo)(oo)(oo))
  (((ooo)(ooo))((ooo)(ooo)))
  (((oo)(oo)(oo))((oo)(oo)(oo)))
  (((oo)(oo))((oo)(oo))((oo)(oo)))
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126, see #27.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 141.
  • D. E. Knuth, The Art of Computer Programming, Pre-Fasc. 3b, Sect. 7.2.1.5, no. 67, p. 25.
  • P. A. MacMahon, The theory of perfect partitions and the compositions of multipartite numbers, Messenger Math., 20 (1891), 103-119.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 123-124.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Same as A074206, up to the offset and initial term there.
Cf. A176917.
For parity see A008966.

Programs

  • Maple
    a := array(1..150): for k from 1 to 150 do a[k] := 0 od: a[1] := 1: for j from 2 to 150 do for m from 1 to j-1 do if j mod m = 0 then a[j] := a[j]+a[m] fi: od: od: for k from 1 to 150 do printf(`%d,`,a[k]) od: # James Sellers, Dec 07 2000
    # alternative
    A002033 := proc(n)
        option remember;
        local a;
        if n <= 2 then
            return 1;
        else
            a := 0 ;
            for i from 0 to n-1 do
                if modp(n+1,i+1) = 0 then
                    a := a+procname(i);
                end if;
            end do:
        end if;
        a ;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := a[n] = a /@ Most[Divisors[n]] // Total; a /@ Range[96]  (* Jean-François Alcover, Apr 06 2011, updated Sep 23 2014. NOTE: This produces A074206(n) = a(n-1). - M. F. Hasler, Oct 12 2018 *)
  • PARI
    A002033(n) = if(n,sumdiv(n+1,i,if(i<=n,A002033(i-1))),1) \\ Michael B. Porter, Nov 01 2009, corrected by M. F. Hasler, Oct 12 2018
    
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def A002033(n):
        if n <= 1:
            return 1
        return sum(A002033(i-1) for i in divisors(n+1,generator=True) if i <= n) # Chai Wah Wu, Jan 12 2022

Formula

From David Wasserman, Nov 14 2006: (Start)
a(n-1) = Sum_{i|d, i < n} a(i-1).
a(p^k-1) = 2^(k-1).
a(n-1) = A067824(n)/2 for n > 1.
a(A122408(n)-1) = A122408(n)/2. (End)
a(A025487(n)-1) = A050324(n). - R. J. Mathar, May 26 2017
a(n) = (A253249(n+1)+1)/4, n > 0. - Geoffrey Critzer, Aug 19 2020

Extensions

Edited by M. F. Hasler, Oct 12 2018

A067824 a(1) = 1; for n > 1, a(n) = 1 + Sum_{0 < d < n, d|n} a(d).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 4, 6, 2, 16, 2, 6, 6, 16, 2, 16, 2, 16, 6, 6, 2, 40, 4, 6, 8, 16, 2, 26, 2, 32, 6, 6, 6, 52, 2, 6, 6, 40, 2, 26, 2, 16, 16, 6, 2, 96, 4, 16, 6, 16, 2, 40, 6, 40, 6, 6, 2, 88, 2, 6, 16, 64, 6, 26, 2, 16, 6, 26, 2, 152, 2, 6, 16, 16, 6, 26, 2, 96, 16, 6, 2, 88, 6, 6, 6, 40, 2, 88, 6, 16, 6, 6, 6, 224, 2, 16, 16, 52
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 08 2002

Keywords

Comments

By a result of Karhumaki and Lifshits, this is also the number of polynomials p(x) with coefficients in {0,1} that divide x^n-1 and such that (x^n-1)/ {(x-1)p(x)} has all coefficients in {0,1}.
The number of tiles of a discrete interval of length n (an interval of Z). - Eric H. Rivals (rivals(AT)lirmm.fr), Mar 13 2007
Bodini and Rivals proved this is the number of tiles of a discrete interval of length n and also is the number (A107067) of polynomials p(x) with coefficients in {0,1} that divide x^n-1 and such that (x^n-1)/ {(x-1)p(x)} has all coefficients in {0,1} (Bodini, Rivals, 2006). This structure of such tiles is also known as Krasner's factorization (Krasner and Ranulac, 1937). The proof also gives an algorithm to recognize if a set is a tile in optimal time and in this case, to compute the smallest interval it can tile (Bodini, Rivals, 2006). - Eric H. Rivals (rivals(AT)lirmm.fr), Mar 13 2007
Number of lone-child-avoiding rooted achiral (or generalized Bethe) trees with positive integer leaves summing to n, where a rooted tree is lone-child-avoiding if all terminal subtrees have at least two branches, and achiral if all branches directly under any given node are equal. For example, the a(6) = 6 trees are 6, (111111), (222), ((11)(11)(11)), (33), ((111)(111)). - Gus Wiseman, Jul 13 2018. Updated Aug 22 2020.
From Gus Wiseman, Aug 20 2020: (Start)
Also the number of strict chains of divisors starting with n. For example, the a(n) chains for n = 1, 2, 4, 6, 8, 12 are:
1 2 4 6 8 12
2/1 4/1 6/1 8/1 12/1
4/2 6/2 8/2 12/2
4/2/1 6/3 8/4 12/3
6/2/1 8/2/1 12/4
6/3/1 8/4/1 12/6
8/4/2 12/2/1
8/4/2/1 12/3/1
12/4/1
12/4/2
12/6/1
12/6/2
12/6/3
12/4/2/1
12/6/2/1
12/6/3/1
(End)
a(n) is the number of chains including n of the divisor lattice of divisors of n, which is to say, a(n) is the number of (d_1,d_2,...,d_k) such that d_1 < d_2 < ... < d_k = n and d_i divides d_{i+1} for 1 <= i <= k-1. Using this definition, the recurrence a(n) = 1 + Sum_{0 < d < n, d|n} a(d) is evident by enumerating the preceding element of n in the chains. If we count instead the chains whose LCM of members is n, then a(1) would be 2 because the empty chain is included, and we would obtain 2*A074206(n). - Jianing Song, Aug 21 2024

Examples

			a(12) = 1 + a(6) + a(4) + a(3) + a(2) + a(1)
= 1+(1+a(3)+a(2)+a(1))+(1+a(2)+a(1))+(1+a(1))+(1+a(1))+(1)
= 1+(1+(1+a(1))+(1+a(1))+1)+(1+(1+a(1))+1)+(1+1)+(1+1)+(1)
= 1+(1+(1+1)+(1+1)+1)+(1+(1+1)+1)+(1+1)+(1+1)+(1)
= 1 + 6 + 4 + 2 + 2 + 1 = 16.
		

References

  • Olivier Bodini and Eric Rivals. Tiling an Interval of the Discrete Line. In M. Lewenstein and G. Valiente, editors, Proc. of the 17th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 4009 of Lecture Notes in Computer Science, pages 117-128. Springer Verlag, 2006.
  • Juhani Karhumaki, Yury Lifshits and Wojciech Rytter, Tiling Periodicity, in Combinatorial Pattern Matching, Lecture Notes in Computer Science, Volume 4580/2007, Springer-Verlag.

Crossrefs

Cf. A122408 (fixed points).
Inverse Möbius transform of A074206.
A001055 counts factorizations.
A008480 counts maximal chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A253249 counts nonempty chains of divisors.
A337070 counts chains of divisors starting with A006939(n).
A337071 counts chains of divisors starting with n!.
A337256 counts chains of divisors.
Cf. A001221, A001222, A002033, A124010, A337074, A337105, A378223, A378225 (Dirichlet inverse).

Programs

  • Haskell
    a067824 n = 1 + sum (map a067824 [d | d <- [1..n-1], mod n d == 0])
    -- Reinhard Zumkeller, Oct 13 2011
    
  • Maple
    a:= proc(n) option remember;
          1+add(a(d), d=numtheory[divisors](n) minus {n})
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 17 2021
  • Mathematica
    a[1]=1; a[n_] := a[n] = 1+Sum[If[Mod[n,d]==0, a[d], 0], {d, 1, n-1}]; Array[a,100] (* Jean-François Alcover, Apr 28 2011 *)
  • PARI
    A=vector(100);A[1]=1; for(n=2,#A,A[n]=1+sumdiv(n,d,A[d])); A \\ Charles R Greathouse IV, Nov 20 2012

Formula

a(n) = 2*A074206(n), n>1. - Vladeta Jovovic, Jul 03 2005
a(p^k) = 2^k for primes p. - Reinhard Zumkeller, Sep 03 2006
a(n) = Sum_{d|n} A002033(d-1) = Sum_{d|n} A074206(d). - Gus Wiseman, Jul 13 2018
Dirichlet g.f.: zeta(s) / (2 - zeta(s)). - Álvar Ibeas, Dec 30 2018
G.f. A(x) satisfies: A(x) = x/(1 - x) + Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, May 18 2019

Extensions

Entry revised by N. J. A. Sloane, Aug 27 2006

A167865 Number of partitions of n into distinct parts greater than 1, with each part divisible by the next.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 3, 3, 3, 1, 5, 1, 5, 4, 3, 1, 6, 2, 5, 4, 5, 1, 9, 1, 6, 4, 4, 4, 8, 1, 6, 6, 7, 1, 11, 1, 8, 8, 4, 1, 10, 3, 10, 5, 8, 1, 11, 4, 10, 7, 6, 1, 13, 1, 10, 11, 7, 6, 15, 1, 9, 5, 11, 1, 14, 1, 9, 12, 8, 5, 15, 1, 16, 9, 8, 1, 18, 5, 12, 7, 10, 1, 21, 7, 13, 11, 5
Offset: 0

Views

Author

Max Alekseyev, Nov 13 2009

Keywords

Comments

Number of lone-child-avoiding achiral rooted trees with n + 1 vertices, where a rooted tree is lone-child-avoiding if all terminal subtrees have at least two branches, and achiral if all branches directly under any given vertex are equal. The Matula-Goebel numbers of these trees are given by A331967. - Gus Wiseman, Feb 07 2020

Examples

			a(12) = 4: [12], [10,2], [9,3], [8,4].
a(14) = 3: [14], [12,2], [8,4,2].
a(18) = 5: [18], [16,2], [15,3], [12,6], [12,4,2].
From _Gus Wiseman_, Jul 13 2018: (Start)
The a(36) = 8 lone-child-avoiding achiral rooted trees with 37 vertices:
  (oooooooooooooooooooooooooooooooooooo)
  ((oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo))
  ((ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo))
  ((ooooo)(ooooo)(ooooo)(ooooo)(ooooo)(ooooo))
  ((oooooooo)(oooooooo)(oooooooo)(oooooooo))
  (((ooo)(ooo))((ooo)(ooo))((ooo)(ooo))((ooo)(ooo)))
  ((ooooooooooo)(ooooooooooo)(ooooooooooo))
  ((ooooooooooooooooo)(ooooooooooooooooo))
(End)
		

Crossrefs

The semi-achiral version is A320268.
Matula-Goebel numbers of these trees are A331967.
The semi-lone-child-avoiding version is A331991.
Achiral rooted trees are counted by A003238.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=0, 1, add(a((n-d)/d), d=divisors(n) minus{1}))
        end:
    seq(a(n), n=0..200);  # Alois P. Heinz, Mar 28 2011
  • Mathematica
    a[0] = 1; a[n_] := a[n] = DivisorSum[n, a[(n-#)/#]&, #>1&]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 07 2015 *)
  • PARI
    { A167865(n) = if(n==0,return(1)); sumdiv(n,d, if(d>1, A167865((n-d)\d) ) ) }

Formula

a(0) = 1 and for n>=1, a(n) = Sum_{d|n, d>1} a((n-d)/d).
G.f. A(x) satisfies: A(x) = 1 + x^2*A(x^2) + x^3*A(x^3) + x^4*A(x^4) + ... - Ilya Gutkovskiy, May 09 2019

A326028 Number of factorizations of n into factors > 1 with integer geometric mean.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 15 2019

Keywords

Comments

First differs from A294336 and A316782 at a(36) = 5.

Examples

			The a(4) = 2 through a(36) = 5 factorizations (showing only the cases where n is a perfect power).
  (4)    (8)      (9)    (16)       (25)   (27)     (32)         (36)
  (2*2)  (2*2*2)  (3*3)  (2*8)      (5*5)  (3*3*3)  (2*2*2*2*2)  (4*9)
                         (4*4)                                   (6*6)
                         (2*2*2*2)                               (2*18)
                                                                 (3*12)
		

Crossrefs

Positions of terms > 1 are the perfect powers A001597.
Partitions with integer geometric mean are A067539.
Subsets with integer geometric mean are A326027.
Factorizations with integer average and geometric mean are A326647.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],IntegerQ[GeometricMean[#]]&]],{n,2,100}]
  • PARI
    A326028(n, m=n, facmul=1, facnum=0) = if(1==n,facnum>0 && ispower(facmul,facnum), my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A326028(n/d, d, facmul*d, facnum+1))); (s)); \\ Antti Karttunen, Nov 10 2024

Formula

a(2^n) = A067538(n).

Extensions

a(89) onwards from Antti Karttunen, Nov 10 2024

A320222 Number of unlabeled rooted trees with n nodes in which the non-leaf branches directly under any given node are all equal.

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 39, 78, 161, 324, 658, 1316, 2657, 5314, 10668, 21347, 42777, 85554, 171290, 342580, 685498, 1371037, 2742733, 5485466, 10972351, 21944711, 43892080, 87784323, 175574004, 351148008, 702307038, 1404614076, 2809249582, 5618499824, 11237042426
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

This is a weaker condition than achirality (cf. A003238).

Examples

			The a(1) = 1 through a(6) = 18 rooted trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (o(o))   (o(oo))    (o(ooo))
                 (((o)))  (oo(o))    (oo(oo))
                          (((oo)))   (ooo(o))
                          ((o)(o))   (((ooo)))
                          ((o(o)))   ((o(oo)))
                          (o((o)))   ((oo(o)))
                          ((((o))))  (o((oo)))
                                     (o(o)(o))
                                     (o(o(o)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o)(o)))
                                     (((o(o))))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    saue[n_]:=Sum[If[SameQ@@DeleteCases[ptn,1],If[DeleteCases[ptn,1]=={},1,saue[DeleteCases[ptn,1][[1]]]],0],{ptn,IntegerPartitions[n-1]}];
    Table[saue[n],{n,15}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(k=2, n-1, (n-1)\k*v[k])); v} \\ Andrew Howroyd, Oct 26 2018

Formula

a(n) = 1 + Sum_{k = 2..n-1} floor((n-1)/k) * a(k).
a(n) ~ c * 2^n, where c = 0.3270422384018894564479397100499014525700668391191792769625407295138546463... - Vaclav Kotesovec, Sep 07 2019

A320224 a(1) = 1; a(n > 1) = Sum_{k = 1..n-1} Sum_{d|k, d < k} a(d).

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 6, 7, 10, 12, 16, 17, 25, 26, 33, 38, 48, 49, 65, 66, 84, 92, 109, 110, 142, 146, 172, 184, 219, 220, 274, 275, 323, 341, 390, 400, 484, 485, 551, 578, 669, 670, 792, 793, 904, 952, 1062, 1063, 1243, 1250, 1408, 1458, 1632, 1633, 1870, 1890
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Crossrefs

Programs

  • Magma
    sol:=[1]; for n in [2..56] do Append(~sol, &+[sol[d]*Floor((n-1)/d-1):d in [1..n-1]]); end for; sol; // Marius A. Burtea, Sep 07 2019
    
  • Mathematica
    sau[n_]:=If[n==1,1,Sum[sau[d],{k,n-1},{d,Most[Divisors[k]]}]];
    Table[sau[n],{n,60}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(k=1, n-1, v[k]*((n-1)\k - 1))); v} \\ Andrew Howroyd, Sep 07 2019

Formula

a(1) = 1; a(n > 1) = Sum_{d = 1..n-1} a(d) * floor((n-1)/d - 1).
G.f. A(x) satisfies A(x) = x + (x/(1 - x)) * Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Sep 06 2019

A320225 a(1) = 1; a(n > 1) = Sum_{k = 1..n} Sum_{d|k, d < k} a(d).

Original entry on oeis.org

1, 1, 2, 4, 5, 9, 10, 16, 19, 26, 27, 44, 45, 57, 65, 87, 88, 120, 121, 158, 171, 200, 201, 278, 284, 331, 353, 426, 427, 536, 537, 646, 676, 766, 782, 982, 983, 1106, 1154, 1365, 1366, 1617, 1618, 1851, 1943, 2146, 2147, 2589, 2600, 2917, 3008, 3390, 3391
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Crossrefs

Programs

  • Mathematica
    sau[n_]:=If[n==1,1,Sum[sau[d],{k,n},{d,Most[Divisors[k]]}]];
    Table[sau[n],{n,30}]
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A320225(n): return 1 if n == 1 else sum(A320225(d)*(n//d-1) for d in range(1,n)) # Chai Wah Wu, Jun 08 2022

Formula

a(1) = 1; a(n > 1) = Sum_{d = 1..n-1} a(d) * floor(n/d-1).
G.f. A(x) satisfies A(x) = x + (1/(1 - x)) * Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Sep 06 2019

A317099 Number of series-reduced planted achiral trees whose leaves span an initial interval of positive integers appearing with multiplicities an integer partition of n.

Original entry on oeis.org

1, 3, 4, 9, 8, 19, 16, 35, 35, 54, 57, 113, 102, 155, 189, 279, 298, 447, 491, 702, 813, 1063, 1256, 1759, 1967, 2542, 3050, 3902, 4566, 5882, 6843, 8676, 10205, 12612, 14908, 18608, 21638, 26510, 31292, 38150, 44584, 54185, 63262, 76308, 89371, 106818, 124755
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

In these trees, achiral means that all branches directly under any given node that is not a leaf or a cover of leaves are equal, and series-reduced means that every node that is not a leaf or a cover of leaves has at least two branches.

Examples

			The a(4) = 9 trees:
  (1111), ((11)(11)), (((1)(1))((1)(1))), ((1)(1)(1)(1)),
  (1112),
  (1122), ((12)(12)),
  (1123),
  (1234).
The a(6) = 19 trees:
  (111111), ((111)(111)), (((1)(1)(1))((1)(1)(1))), ((11)(11)(11)), (((1)(1))((1)(1))((1)(1))), ((1)(1)(1)(1)(1)(1)),
  (111112),
  (111122), ((112)(112)),
  (111123),
  (111222), ((12)(12)(12)),
  (111223),
  (111234),
  (112233), ((123)(123)),
  (112234),
  (112345),
  (123456).
		

Crossrefs

Programs

  • Mathematica
    b[n_]:=1+Sum[b[n/d],{d,Rest[Divisors[n]]}];
    a[n_]:=Sum[b[GCD@@Length/@Split[ptn]],{ptn,IntegerPartitions[n]}];
    Array[a,30]

A320226 Number of integer partitions of n whose non-1 parts are all equal.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 10, 13, 15, 18, 19, 24, 25, 28, 31, 35, 36, 41, 42, 47, 50, 53, 54, 61, 63, 66, 69, 74, 75, 82, 83, 88, 91, 94, 97, 105, 106, 109, 112, 119, 120, 127, 128, 133, 138, 141, 142, 151, 153, 158, 161, 166, 167, 174, 177, 184, 187, 190, 191, 202
Offset: 0

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Examples

			The integer partitions whose non-1 parts are all equal:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (41)     (33)      (61)       (44)
             (111)  (31)    (221)    (51)      (331)      (71)
                    (211)   (311)    (222)     (511)      (611)
                    (1111)  (2111)   (411)     (2221)     (2222)
                            (11111)  (2211)    (4111)     (3311)
                                     (3111)    (22111)    (5111)
                                     (21111)   (31111)    (22211)
                                     (111111)  (211111)   (41111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@DeleteCases[#,1]&]],{n,30}]

Formula

a(n > 1) = A002541(n - 1) + 1.

A317100 Number of series-reduced planted achiral trees with n leaves spanning an initial interval of positive integers.

Original entry on oeis.org

1, 3, 5, 12, 17, 41, 65, 144, 262, 533, 1025, 2110, 4097, 8261, 16407, 32928, 65537, 131384, 262145, 524854, 1048647, 2098181, 4194305, 8390924, 16777234, 33558533, 67109132, 134226070, 268435457, 536887919, 1073741825, 2147516736, 4294968327, 8590000133
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

In these trees, achiral means that all branches directly under any given node that is not a leaf or a cover of leaves are equal, and series-reduced means that every node that is not a leaf or a cover of leaves has at least two branches.

Examples

			The a(4) = 12 trees:
  (1111), ((11)(11)), (((1)(1))((1)(1))), ((1)(1)(1)(1)),
  (1222),
  (1122), ((12)(12)),
  (1112),
  (1233),
  (1223),
  (1123),
  (1234).
		

Crossrefs

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    b[n_]:=1+Sum[b[n/d],{d,Rest[Divisors[n]]}];
    a[n_]:=Sum[b[GCD@@Length/@Split[ptn]],{ptn,allnorm[n]}];
    Array[a,10]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n]=2^(n-1) + sumdiv(n, d, v[d])); v} \\ Andrew Howroyd, Aug 19 2018

Formula

a(n) ~ 2^(n-1). - Vaclav Kotesovec, Sep 07 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 19 2018
Showing 1-10 of 12 results. Next