cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A335434 Number of separable factorizations of n into factors > 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 6, 1, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 1, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 3, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 03 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.

Examples

			The a(n) factorizations for n = 2, 6, 16, 12, 30, 24, 36, 48, 60:
  2  6    16     12     30     24     36       48       60
     2*3  2*8    2*6    5*6    3*8    4*9      6*8      2*30
          2*2*4  3*4    2*15   4*6    2*18     2*24     3*20
                 2*2*3  3*10   2*12   3*12     3*16     4*15
                        2*3*5  2*2*6  2*2*9    4*12     5*12
                               2*3*4  2*3*6    2*3*8    6*10
                                      3*3*4    2*4*6    2*5*6
                                      2*2*3*3  3*4*4    3*4*5
                                               2*2*12   2*2*15
                                               2*2*3*4  2*3*10
                                                        2*2*3*5
		

Crossrefs

The version for partitions is A325534.
The inseparable version is A333487.
The version for multisets with prescribed multiplicities is A335127.
Factorizations are A001055.
Anti-run compositions are A003242.
Inseparable partitions are A325535.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]!={}&]],{n,100}]

Formula

A333487(n) + a(n) = A001055(n).

A335127 A multiset whose multiplicities are the prime indices of n is separable.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 77, 80, 81, 84, 90, 96, 98, 99, 100, 105, 108, 110, 112, 120, 121, 125, 126, 128, 132, 135, 140, 143, 144, 147, 150, 154, 160, 162, 165
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The sequence together with the corresponding multisets begins:
   1: {}
   2: {1}
   4: {1,2}
   6: {1,1,2}
   8: {1,2,3}
   9: {1,1,2,2}
  12: {1,1,2,3}
  15: {1,1,1,2,2}
  16: {1,2,3,4}
  18: {1,1,2,2,3}
  20: {1,1,1,2,3}
  24: {1,1,2,3,4}
  25: {1,1,1,2,2,2}
  27: {1,1,2,2,3,3}
  30: {1,1,1,2,2,3}
		

Crossrefs

The complement is A335126.
Anti-run compositions are A003242.
Anti-runs are ranked by A333489.
Separable partitions are A325534.
Inseparable partitions are A325535.
Separable factorizations are A335434.
Inseparable factorizations are A333487.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.
Patterns contiguously matched by compositions are A335457.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Select[Permutations[nrmptn[#]],!MatchQ[#,{_,x_,x_,_}]&]!={}&]

A114938 Number of permutations of the multiset {1,1,2,2,...,n,n} with no two consecutive terms equal.

Original entry on oeis.org

1, 0, 2, 30, 864, 39480, 2631600, 241133760, 29083420800, 4467125013120, 851371260364800, 197158144895712000, 54528028997584665600, 17752366094818747392000, 6720318485119046923315200, 2927066537906697348594432000, 1453437879238150456164433920000
Offset: 0

Views

Author

Hugo Pfoertner, Jan 08 2006

Keywords

Comments

a(n) is also the number of (0,1)-matrices A=(a_ij) of size n X 2n such that each row has exactly two 1's and each column has exactly one 1 and with the restriction that no 1 stands on the line from a_11 to a_22. - Shanzhen Gao, Feb 24 2010
a(n) is the number of permutations of the multiset {1,1,2,2,...,n,n} with no fixed points. - Alexander Burstein, May 16 2020
Also the number of 2-uniform ordered set partitions of {1...2n} containing no two successive vertices in the same block. - Gus Wiseman, Jul 04 2020

Examples

			a(2) = 2 because there are two permutations of {1,1,2,2} avoiding equal consecutive terms: 1212 and 2121.
		

References

  • R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997. Chapter 2, Sieve Methods, Example 2.2.3, page 68.

Crossrefs

Cf. A114939 = preferred seating arrangements of n couples.
Cf. A007060 = arrangements of n couples with no adjacent spouses; A007060(n) = 2^n * A114938(n) (this sequence).
Cf. A278990 = number of loopless linear chord diagrams with n chords.
Cf. A000806 = Bessel polynomial y_n(-1).
The version for multisets with prescribed multiplicities is A335125.
The version for prime indices is A335452.
Anti-run compositions are counted by A003242.
Anti-run compositions are ranked by A333489.
Inseparable partitions are counted by A325535.
Inseparable partitions are ranked by A335448.
Separable partitions are counted by A325534.
Separable partitions are ranked by A335433.
Other sequences involving the multiset {1,1,2,2,...,n,n}: A001147, A007717, A020555, A094574, A316972.
Row n=2 of A322093.

Programs

  • Magma
    [1] cat [n le 2 select 2*(n-1) else n*(2*n-1)*Self(n-1) + (n-1)*n*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Aug 10 2015
    
  • Mathematica
    Table[Sum[Binomial[n,i](2n-i)!/2^(n-i) (-1)^i,{i,0,n}],{n,0,20}]  (* Geoffrey Critzer, Jan 02 2013, and adapted to the extension by Stefano Spezia, Nov 15 2018 *)
    Table[Length[Select[Permutations[Join[Range[n],Range[n]]],!MatchQ[#,{_,x_,x_,_}]&]],{n,0,5}] (* Gus Wiseman, Jul 04 2020 *)
    A114938[n_] := ((2 n)! Hypergeometric1F1[-n, -2 n, -2]) / 2^n;
    Array[A114938, 17, 0]  (* Peter Luschny, Sep 04 2025 *)
  • PARI
    A114938(n)=sum(k=0, n, binomial(n, k)*(-1)^(n-k)*(n+k)!/2^k);
    vector(20, n, A114938(n-1)) \\ Michel Marcus, Aug 10 2015
    
  • SageMath
    def A114938(n): return (-1)^n*sum(binomial(n,k)*factorial(n+k)//(-2)^k for k in range(n+1))
    [A114938(n) for n in range(31)] # G. C. Greubel, Sep 26 2023

Formula

a(n) = Sum_{k=0..n} ((binomial(n, k)*(-1)^(n-k)*(n+k)!)/2^k).
a(n) = (-1)^n * n! * A000806(n), n>0. - Vladeta Jovovic, Nov 19 2009
a(n) = n*(2*n-1)*a(n-1) + (n-1)*n*a(n-2). - Vaclav Kotesovec, Aug 07 2013
a(n) ~ 2^(n+1)*n^(2*n)*sqrt(Pi*n)/exp(2*n+1). - Vaclav Kotesovec, Aug 07 2013
a(n) = n! * A278990(n). - Alexander Burstein, May 16 2020
From G. C. Greubel, Sep 26 2023: (Start)
a(n) = (-1)^n * (i/e)*sqrt(2/Pi) * n! * BesselK(n+1/2, -1).
a(n) = [n! * (1/x) * p_{n+1}(x)]|A104548%20for%20p">{x= -1} (See A104548 for p{n}(x)).
E.g.f.: sqrt(Pi/(2*x)) * exp(-(1+x)^2/(2*x)) * erfi((1+x)/sqrt(2*x)).
Sum_{n >= 0} a(n)*x^n/(n!)^2 = exp(sqrt(1-2*x))/sqrt(1-2*x).
Sum_{n >= 0} a(n)*x^n/(n!*(n+1)!) = ( 1 - exp(-1 + sqrt(1-2*x)) )/x. (End)
a(n) = ((2*n)!/2^n) * hypergeom([-n], [-2*n], -2]) = A007060(n) / 2^n. - Peter Luschny, Sep 04 2025

Extensions

a(0)=1 prepended by Seiichi Manyama, Nov 15 2018

A345166 Number of separable integer partitions of n without an alternating permutation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 5, 6, 7, 10, 14, 18, 21, 27, 35, 42, 54, 65, 78, 95, 117, 140, 170, 202, 239, 286, 343, 401, 476, 562, 660, 775, 910, 1056, 1241, 1444, 1678, 1948, 2267, 2615, 3031, 3502, 4036, 4647, 5356, 6143, 7068, 8101, 9274, 10613, 12151, 13856
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

A partition is separable if it has an anti-run permutation (no adjacent parts equal).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
The partitions counted by this sequence are those with 2m-1 parts with m being the multiplicity of a part which is neither the smallest or largest part. For example, 4322221 is such a partition since the multiplicity of 2 is 4, the total number of parts is 7, and 2 is neither the smallest or largest part. - Andrew Howroyd, Jan 15 2024

Examples

			The a(10) = 1 through a(16) = 6 partitions:
    32221  42221  52221  62221    43331    43332    53332
                         3222211  72221    53331    63331
                                  4222211  82221    92221
                                           3322221  4322221
                                           5222211  6222211
                                                    322222111
		

Crossrefs

Allowing alternating permutations gives A325534, ranked by A335433.
Not requiring separability gives A345165, ranked by A345171.
Permutations of this type are ranked by A345169.
The Heinz numbers of these partitions are A345173.
Numbers with a factorization of this type are A348609.
A000041 counts integer partitions.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325535 counts inseparable partitions, ranked by A335448.
A344654 counts non-twin partitions w/o alt permutation, rank A344653.
A345162 counts normal partitions w/o alt permutation, complement A345163.
A345170 counts partitions w/ alt permutation, ranked by A345172.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]!={}&&Select[Permutations[#],wigQ]=={}&]],{n,0,15}]

Formula

The Heinz numbers of these partitions are A345173 = A345171 /\ A335433.
a(n) = A325534(n) - A345170(n). - Andrew Howroyd, Jan 15 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 15 2024

A336103 Number of separable multisets of size n covering an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 3, 5, 13, 24, 56, 108, 236, 464, 976, 1936, 3984, 7936, 16128, 32192, 64960, 129792, 260864, 521472, 1045760, 2091008, 4188160, 8375296, 16763904, 33525760, 67080192, 134156288, 268374016, 536739840, 1073610752, 2147205120, 4294688768, 8589344768, 17179279360, 34358493184
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of its remaining multiplicities plus one. Hence a(n) is the number of compositions of n whose greatest part is at most one more than the sum of its other parts. For example, the a(1) = 1 through a(5) = 13 compositions are:
(1) (11) (12) (22) (23)
(21) (112) (32)
(111) (121) (113)
(211) (122)
(1111) (131)
(212)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)

Examples

			The a(1) = 1 through a(5) = 13 separable multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,2}
              {1,2,2}  {1,1,2,3}  {1,1,1,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,2,2}
                       {1,2,3,3}  {1,1,2,2,3}
                       {1,2,3,4}  {1,1,2,3,3}
                                  {1,1,2,3,4}
                                  {1,2,2,2,3}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
		

Crossrefs

The inseparable version is A336102.
The strong (weakly decreasing multiplicities) case is A336106.
Sequences covering an initial interval are A000670.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Separable partitions are A325534.
Inseparable partitions are A325535.
Inseparable factorizations are A333487.
Anti-run compositions are ranked by A333489.
Heinz numbers of inseparable partitions are A335448.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{_,x_,x_,_}]&]!={};
    Table[Length[Select[allnorm[n],sepQ]],{n,0,5}]
    (* or *)
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],With[{mx=Max@@#},mx<=1+Total[DeleteCases[#,mx,{1},1]]]&]],{n,0,15}] (* or *)
    CoefficientList[Series[(x - 1) (2 x^5 + 7 x^4 - 5 x^2 + 1)/((2 x - 1) (2 x^2 - 1)^2), {x, 0, 36}], x] (* Michael De Vlieger, Apr 07 2021 *)

Formula

a(n) = 2^(n-1) - (floor(n/2)+1) * 2^(floor(n/2)-2) for n >= 2. - David A. Corneth, Jul 09 2020
From Chai Wah Wu, Apr 07 2021: (Start)
a(n) = 2*a(n-1) + 4*a(n-2) - 8*a(n-3) - 4*a(n-4) + 8*a(n-5) for n > 6.
G.f.: (x - 1)*(2*x^5 + 7*x^4 - 5*x^2 + 1)/((2*x - 1)*(2*x^2 - 1)^2). (End)

Extensions

a(26)-a(36) from David A. Corneth, Jul 09 2020

A345173 Numbers whose multiset of prime factors is separable but has no alternating permutation.

Original entry on oeis.org

270, 378, 594, 702, 918, 1026, 1242, 1566, 1620, 1674, 1750, 1998, 2214, 2268, 2322, 2538, 2625, 2750, 2862, 3186, 3250, 3294, 3564, 3618, 3834, 3942, 4050, 4125, 4212, 4250, 4266, 4482, 4750, 4806, 4875, 5238, 5454, 5508, 5562, 5670, 5750, 5778, 5886, 6102
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

A multiset is separable if it has an anti-run permutation (no adjacent parts equal).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   270: {1,2,2,2,3}
   378: {1,2,2,2,4}
   594: {1,2,2,2,5}
   702: {1,2,2,2,6}
   918: {1,2,2,2,7}
  1026: {1,2,2,2,8}
  1242: {1,2,2,2,9}
  1566: {1,2,2,2,10}
  1620: {1,1,2,2,2,2,3}
  1674: {1,2,2,2,11}
  1750: {1,3,3,3,4}
  1998: {1,2,2,2,12}
  2214: {1,2,2,2,13}
  2268: {1,1,2,2,2,2,4}
  2322: {1,2,2,2,14}
		

Crossrefs

The partitions with these Heinz numbers are counted by A345166.
Permutations of this type are ranked by A345169.
Numbers with a factorization of this type are counted by A348609.
A000041 counts integer partitions.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A025047 counts alternating compositions, ascend A025048, descend A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344606 counts alternating permutations of prime indices with twins.
A344740 counts twins and partitions with an alternating permutation.
A345164 counts alternating permutations of prime factors.
A345165 counts partitions without an alternating permutation.
A345170 counts partitions with an alternating permutation.
A345192 counts non-alternating compositions, without twins A348377.
A348379 counts factorizations with an alternating permutation.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    sepQ[y_]:=!MatchQ[y,{_,x_,x_,_}];
    Select[Range[1000],Select[Permutations[primeMS[#]],wigQ]=={}&&!Select[Permutations[primeMS[#]],sepQ]=={}&]

Formula

Equals A345171 /\ A335433.

A335125 Number of anti-run permutations of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 0, 6, 2, 0, 0, 6, 0, 0, 1, 24, 0, 12, 0, 2, 0, 0, 0, 36, 2, 0, 30, 0, 0, 10, 0, 120, 0, 0, 1, 84, 0, 0, 0, 24, 0, 3, 0, 0, 38, 0, 0, 240, 2, 18, 0, 0, 0, 246, 0, 6, 0, 0, 0, 96, 0, 0, 24, 720, 0, 0, 0, 0, 0, 14, 0, 660, 0, 0, 74, 0, 1, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
An anti-run is a sequence with no adjacent equal parts.

Examples

			The a(n) permutations for n = 2, 4, 42, 8, 30, 18:
  (1)  (12)  (1212131)  (123)  (121213)  (12123)
       (21)  (1213121)  (132)  (121231)  (12132)
             (1312121)  (213)  (121312)  (12312)
                        (231)  (121321)  (12321)
                        (312)  (123121)  (13212)
                        (321)  (131212)  (21213)
                               (132121)  (21231)
                               (212131)  (21312)
                               (213121)  (21321)
                               (312121)  (23121)
                                         (31212)
                                         (32121)
		

Crossrefs

Positions of zeros are A335126.
Positions of nonzeros are A335127.
The version for the prime indices themselves is A335452.
Anti-run compositions are A003242.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Separable factorizations are A335434.
Inseparable partitions are ranked by A335448.
Patterns contiguously matched by compositions are A335457.
Strict permutations of prime indices are A335489.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Length[Select[Permutations[nrmptn[n]],!MatchQ[#,{_,x_,x_,_}]&]],{n,100}]

A336102 Number of inseparable multisets of size n covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 8, 8, 20, 20, 48, 48, 112, 112, 256, 256, 576, 576, 1280, 1280, 2816, 2816, 6144, 6144, 13312, 13312, 28672, 28672, 61440, 61440, 131072, 131072, 278528, 278528, 589824, 589824, 1245184, 1245184, 2621440, 2621440, 5505024, 5505024, 11534336
Offset: 0

Views

Author

Gus Wiseman, Jul 08 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of its remaining multiplicities plus one.
Also the number of compositions of n whose greatest part is greater than the sum of its remaining parts plus one. For example, the a(2) = 1 through a(7) = 8 compositions are:
(2) (3) (4) (5) (6) (7)
(1,3) (1,4) (1,5) (1,6)
(3,1) (4,1) (2,4) (2,5)
(4,2) (5,2)
(5,1) (6,1)
(1,1,4) (1,1,5)
(1,4,1) (1,5,1)
(4,1,1) (5,1,1)

Examples

			The a(2) = 1 through a(7) = 8 multisets:
  {11}  {111}  {1111}  {11111}  {111111}  {1111111}
               {1112}  {11112}  {111112}  {1111112}
               {1222}  {12222}  {111122}  {1111122}
                                {111123}  {1111123}
                                {112222}  {1122222}
                                {122222}  {1222222}
                                {122223}  {1222223}
                                {123333}  {1233333}
		

Crossrefs

The strong (weakly decreasing multiplicities) case is A025065.
The bisection is A049610.
The separable version is A336103.
Sequences covering an initial interval are A000670.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Separable partitions are A325534.
Inseparable partitions are A325535.
Inseparable factorizations are A333487.
Anti-run compositions are ranked by A333489.
Heinz numbers of inseparable partitions are A335448.

Programs

  • Mathematica
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],With[{mx=Max@@#},mx>1+Total[DeleteCases[#,mx,{1},1]]]&]],{n,0,15}]
    (* Second program: *)
    CoefficientList[Series[x^2*(1 - x) (x + 1)^2/(2 x^2 - 1)^2, {x, 0, 43}], x] (* Michael De Vlieger, Apr 07 2021 *)

Formula

a(2*n) = a(2*n + 1) = A049610(n + 1).
a(n) = 2^(n-1) - A336103(n).
A001792 repeated for n > 1. David A. Corneth, Jul 09 2020
From Chai Wah Wu, Apr 07 2021: (Start)
a(n) = 4*a(n-2) - 4*a(n-4) for n > 5.
G.f.: x^2*(1 - x)*(x + 1)^2/(2*x^2 - 1)^2. (End)

A336106 Number of integer partitions of n whose greatest part is at most one more than the sum of the other parts.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 11, 15, 23, 30, 44, 58, 82, 105, 146, 186, 252, 318, 423, 530, 695, 863, 1116, 1380, 1763, 2164, 2738, 3345, 4192, 5096, 6334, 7665, 9459, 11395, 13968, 16765, 20425, 24418, 29588, 35251, 42496, 50460, 60547, 71669, 85628
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2020

Keywords

Comments

Also the number of separable strong multisets of length n covering an initial interval of positive integers. A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.

Examples

			The a(1) = 1 through a(8) = 15 partitions:
  (1)  (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (211)   (221)    (222)     (322)      (332)
                    (1111)  (311)    (321)     (331)      (422)
                            (2111)   (2211)    (421)      (431)
                            (11111)  (3111)    (2221)     (2222)
                                     (21111)   (3211)     (3221)
                                     (111111)  (4111)     (3311)
                                               (22111)    (4211)
                                               (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The inseparable version is A025065.
The Heinz numbers of these partitions are A335127.
The non-strong version is A336103.
Sequences covering an initial interval are A000670.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Separable partitions are A325534.
Inseparable partitions are A325535.
Separable factorizations are A335434.
Heinz numbers of separable partitions are A335433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],2*Max@@#<=1+n&]],{n,0,15}]

A333487 Number of inseparable factorizations of n into factors > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.

Examples

			The a(n) factorizations for n = 4, 16, 96, 144, 64, 192:
  2*2  4*4      2*2*2*12     12*12        8*8          3*4*4*4
       2*2*2*2  2*2*2*2*6    2*2*2*18     4*4*4        2*2*2*24
                2*2*2*2*2*3  2*2*2*2*9    2*2*2*8      2*2*2*2*12
                             2*2*2*2*3*3  2*2*2*2*4    2*2*2*2*2*6
                                          2*2*2*2*2*2  2*2*2*2*3*4
                                                       2*2*2*2*2*2*3
		

Crossrefs

The version for partitions is A325535.
The version for multisets with prescribed multiplicities is A335126.
The separable version is A335434.
Anti-run compositions are A003242.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.
Patterns contiguously matched by compositions are A335457.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]=={}&]],{n,100}]

Formula

a(n) + A335434(n) = A001055(n).
Previous Showing 11-20 of 41 results. Next