A334877
Number of self-avoiding walks on a 2-dimensional square lattice where the walk consists of steps with incrementing length from 1 to n.
Original entry on oeis.org
1, 4, 12, 36, 108, 324, 948, 2740, 7892, 22540, 64020, 181396, 511828, 1440652, 4045676, 11322732, 31615780, 88100644, 245143676, 681002276, 1888943100, 5233741636, 14484853148, 40043579596, 110590828396, 305133547724
Offset: 0
a(1) = 4. These are the four directions one can step away from a point on a 2D square lattice.
a(2) = 12. These consist of the two following walks:
.
*
| 1 2
. 2 *---*---.---*
|
*---*
1
.
The first walk can be taken in 8 different ways, the second in 4 ways, giving a total of 12 walks.
a(3) = 36. These consist of the following five walks:
.
* *
| |
. 3 3 .
| 3 *---.---.---* *---.---.---* | 3
. | | .
| . 2 . 2 |
* | | *---*---.---*
| *---* *---* 1 2
. 2 1 1
| *---*---.---*---.---.---*
*---* 1 2 3
1
.
The first four can be taken in 8 different ways, while the last straight walk can be taken in 4 ways, giving a total of 36 walks. Notice it is not possible to form a collision from any of these walks by adding a step of length 4.
A357857
Number of (open and closed) trails in the complete undirected graph on n labeled vertices.
Original entry on oeis.org
1, 4, 21, 232, 14425, 3653196, 17705858989, 261353065517776, 241809117107232026097
Offset: 1
A362167
a(n) = the hypergraph Catalan number C_2(n).
Original entry on oeis.org
1, 1, 6, 57, 678, 9270, 139968, 2285073, 39871926, 739129374, 14521778820, 302421450474, 6687874784484, 157491909678168, 3961138908376692, 106663881061254465, 3078671632202791782, 95213375569840078422, 3149291101933230285924, 111073721303120881912686
Offset: 0
A362172
a(n) = the hypergraph Catalan number C_7(n).
Original entry on oeis.org
1, 1, 3432, 141858288, 40309820014464, 53321581727982247680, 238681094467043912358445056, 2924960829706245011243295851200512, 84750120431280677998861681616641721991168, 5208807724759446156144077076658272647436908396544
Offset: 0
A001335
Number of n-step polygons on hexagonal lattice.
Original entry on oeis.org
1, 0, 0, 12, 24, 60, 180, 588, 1968, 6840, 24240, 87252, 318360, 1173744, 4366740, 16370700, 61780320, 234505140, 894692736, 3429028116, 13195862760, 50968206912, 197517813636, 767766750564, 2992650987408, 11694675166500, 45807740881032
Offset: 0
- A. J. Guttmann, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
- A. J. Guttmann, On Two-Dimensional Self-Avoiding Random Walks, J. Phys. A 17 (1984), 455-468.
- B. D. Hughes, Random Walks and Random Environments, vol. 1, Oxford 1995, Tables and references for self-avoiding walks counts [Annotated scanned copy of several pages of a preprint or a draft of chapter 7 "The self-avoiding walk"]
- J. L. Martin, M. F. Sykes and F. T. Hioe, Probability of initial ring closure for self-avoiding walks on the face-centered cubic and triangular lattices, J. Chem. Phys., 46 (1967), 3478-3481.
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- M. F. Sykes et al., The number of self-avoiding walks on a lattice, J. Phys. A 5 (1972), 661-666.
A001394
Number of n-step self-avoiding walks on diamond.
Original entry on oeis.org
1, 4, 12, 36, 108, 324, 948, 2796, 8196, 24060, 70188, 205284, 597996, 1744548, 5073900, 14774652, 42922452, 124814484, 362267652, 1052271732, 3051900516, 8857050204, 25671988020, 74449697484, 215677847460, 625096195404, 1810062340812, 5243388472212
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. W. Essam and M. F. Sykes, The crystal statistics of the diamond lattice, Physica, 29 (1963), 378-388.
- A. J. Guttmann, On the critical behavior of self-avoiding walks II, J. Phys. A 22 (1989), 2807-2813.
- S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, University of Kentucky Research Reports (2004).
- J. L. Martin, The exact enumeration of self-avoiding walks on a lattice, Proc. Camb. Phil. Soc., 58 (1962), 92-101.
A001413
Number of 2n-step self-avoiding cycles on the cubic lattice.
Original entry on oeis.org
0, 24, 264, 3312, 48240, 762096, 12673920, 218904768, 3891176352, 70742410800, 1309643747808, 24609869536800, 468270744898944, 9005391024862848, 174776445357365040, 3419171337633496704
Offset: 1
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
- B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.
- M. F. Sykes, D. S. McKenzie, M. G. Watts, and J. L. Martin, The number of self-avoiding walks on a lattice, J. Phys. A 5 (1972), 661-666.
Cf.
A010566 (for square lattice equivalent).
Cf.
A002896 (without self-avoidance restriction).
-
def A001413(n): # For illustration; becomes slow for n >= 5.
if not hasattr(A:=A001413, 'terms'): A.terms=[]; A.paths=((0,0,0),),
while n > len(A.terms):
for L in (0,1):
new = []; cycles = 0
for path in A.paths:
end = path[-1]
for i in (0,1,2):
for s in (1,-1):
t = tuple(end[j]if j!=i else end[j]+s for j in (0,1,2))
if t not in path: new.append(path+(t,))
elif L and t==path[0]: cycles += 1
A.paths = new
A.terms.append(cycles)
return A.terms[n-1] if n > 1 else 0 # M. F. Hasler, Jun 17 2025
A046661
Number of n-step self-avoiding walks on the square lattice with first step specified.
Original entry on oeis.org
1, 3, 9, 25, 71, 195, 543, 1479, 4067, 11025, 30073, 81233, 220375, 593611, 1604149, 4311333, 11616669, 31164683, 83779155, 224424291, 602201507, 1611140121, 4316653453, 11536599329, 30870338727, 82428196555, 220329372907
Offset: 1
- Hugo Pfoertner, Table of n, a(n) for n = 1..79
- G. T. Barkema and S. Flesia, Two-dimensional oriented self-avoiding walks with parallel contacts, J. Stat. Phys. 85 (1996) no 3/4, 363-381. [a(30) to a(34)]
- D. Bennet-Wood, J. L. Cardy, S. Flesia, A. J. Guttmann et al., Oriented self-avoiding walks with orientation-dependent interactions, J. Phys. A: Math. Gen. 28 (1995) no 18, 5143-5163. [up to a(29)]
- V. Hart, How to Snakes, Youtube Video (2011).
-
(* b = A001411 *) mo = Tuples[{-1, 1}, 2]; b[0] = 1; b[tg_, p_:{{0, 0}}] := b[tg, p] = Block[{e, mv = Complement[Last[p] + #& /@ mo, p]}, If[tg == 1, Length[mv], Sum[b[tg - 1, Append[p, e]], {e, mv}]]];
a[n_] := b[n]/4;
Table[an = a[n]; Print[an]; an, {n, 1, 16}] (* Jean-François Alcover, Nov 02 2018, after Giovanni Resta in A001411 *)
A052141
Number of paths from (0,0) to (n,n) that always move closer to (n,n) (and do not pass (n,n) and backtrack).
Original entry on oeis.org
1, 3, 26, 252, 2568, 26928, 287648, 3112896, 34013312, 374416128, 4145895936, 46127840256, 515268544512, 5775088103424, 64912164888576, 731420783788032, 8259345993203712, 93443504499523584, 1058972245409005568, 12019152955622817792, 136599995048232747008
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 6.3.9.
-
[n eq 0 select 1 else 2^(n-1)*Evaluate(LegendrePolynomial(n), 3) : n in [0..40]]; // G. C. Greubel, May 21 2023
-
a[0]=1; a[n_]:= Hypergeometric2F1[-n, n+1, 1, -1]*2^(n-1); Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Feb 23 2012, after Jon Stadler *)
Table[2^(n-1)*LegendreP[n,3] +Boole[n==0]/2, {n,0,40}] (* G. C. Greubel, May 21 2023 *)
CoefficientList[Series[(1+1/Sqrt[1-12x+4x^2])/2,{x,0,30}],x] (* Harvey P. Dale, Mar 10 2024 *)
-
def A052141(n): return 2^(n-1)*gen_legendre_P(n,0,3) + int(n==0)/2
[A052141(n) for n in range(41)] # G. C. Greubel, May 21 2023
A066534
Total number of walks with length > 0 in the Hasse diagram of a Boolean algebra of order n.
Original entry on oeis.org
0, 1, 6, 30, 152, 840, 5232, 37072, 297600, 2680704, 26812160, 294945024, 3539364864, 46011796480, 644165265408, 9662479226880, 154599668154368, 2628194359738368, 47307498477649920, 898842471080329216
Offset: 0
Peter Bertok (peter(AT)bertok.com), Jan 07 2002
a(2) = 6 because (2! / 0! * 2^0) + (2! / 1! * 2^1) = 6
-
a[ n_ ] := n!Sum[ 2^k/k!, {k, 0, n-1} ]
Table[n*Gamma[n, 2]*E^2, {n, 0, 19}] (* Ross La Haye, Oct 09 2005 *)
Comments