cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A063979 Number of decimal digits in (n!)!; A000197.

Original entry on oeis.org

1, 1, 1, 3, 24, 199, 1747, 16474, 168187, 1859934, 22228104, 286078171, 3949867548, 58284826485, 915905054360, 15276520209206, 269617872744249, 5021159048900643, 98417586560408168, 2025488254833817394, 43675043585825292775, 984729344827900257489, 23172929656443132617906
Offset: 0

Views

Author

Robert G. Wilson v, Sep 05 2001

Keywords

Crossrefs

Programs

  • Magma
    // Using about 100 more digits of precision than needed.
    nMax:=30; SetDefaultRealField(RealField(Ceiling(Log(10,Factorial(nMax))+100))); a:=[]; for n in [0..nMax] do a[n+1]:=1+Floor(LogGamma(Factorial(n)+1)/Log(10)); end for; a; // Jon E. Schoenfield, Aug 07 2015
  • Maple
    seq(length((n)!!), n=0..19); # Zerinvary Lajos, Mar 10 2007
  • Mathematica
    LogBase10Stirling[n_] := Floor[ Log[10, 2 Pi n]/2 + n*Log[10, n/E] + Log[10, 1 + 1/(12n) + 1/(288n^2) - 139/(51840n^3) - 571/(2488320n^4) + 163879/(209018880n^5) + 5246819/(75246796800n^6)]]; (* A001163/A001164; good to at least a(1000) *) LogBase10Stirling[0] = LogBase10Stirling[1] = 0; Table[1 + LogBase10Stirling[n!], {n, 0, 101}] (* Robert G. Wilson v, Aug 05 2015 *)
  • PARI
    \\ Using 100 digits of precision.
     a(n)=localprec(100); my(t=n!);return(floor((t*log(t)-t+1/2*log(2*Pi*t)+1/(12*t))/log(10)+1))\\ Robert Gerbicz, Jul 08 2008
    

Extensions

More terms from Vladeta Jovovic, Sep 06 2001
A correspondent reported that terms a(17) - a(19) shown here were wrong. That's not true, they are correct. The correspondent was using Python, where the default precision was not large enough to calculate these terms correctly. Thanks to Brendan McKay, Max Alekseyev and Robert Gerbicz for confirming the entries. - N. J. A. Sloane, Jul 08 2008
a(20) from Brendan McKay, Jul 08 2008
a(21)-a(22) from Hugo Pfoertner, Nov 25 2023

A063944 Final nonzero digit of (n!)! (A000197).

Original entry on oeis.org

1, 1, 2, 2, 6, 6, 6, 4, 6, 8, 2, 8, 8, 6, 4, 4, 6, 6, 8, 2, 6, 4, 4, 8, 2, 2, 6, 2, 2, 6, 4, 6, 2, 2, 8, 4, 6, 8, 2, 2, 2, 2, 8, 6, 6, 6, 2, 2, 6, 8, 4, 2, 2, 2, 8, 8, 4, 4, 2, 6, 8, 6, 4, 6, 6, 4, 8, 2, 2, 4, 4, 2, 8, 2, 8, 2, 4, 2, 8, 8, 6, 8, 2, 8, 4, 4, 6, 8, 8, 6, 2, 4, 6, 2, 6, 4, 2, 6, 4, 6, 2, 6, 4, 2, 8, 2, 4, 2
Offset: 0

Views

Author

Jason Earls, Sep 01 2001

Keywords

Crossrefs

Programs

  • PARI
    for(n=0,22,m=n!!; while(Mod(m,10) == 0,m=m/10); print(Mod(m,10)))
    
  • Python
    from functools import reduce
    from math import prod, factorial
    from sympy.ntheory.factor_ import digits
    def A063944(n): return reduce(lambda x,y:x*y%10,((1,1,2,6,4)[a]*((6,2,4,8)[i*a&3] if i*a else 1) for i, a in enumerate(digits(factorial(n),5)[-1:0:-1])))*6%10 if n>1 else 1 # Chai Wah Wu, Dec 07 2023

Extensions

More terms from David W. Wilson, Sep 05 2001, who remarks that "I'll tell you, computing (107!)! took up some disk space!"

A062008 Number of divisors of (n!)!, or A000197.

Original entry on oeis.org

1, 1, 2, 30, 242880, 23565900177211392000, 2773739201349556936377871973938118055565107020522751759201737480601600000000000000
Offset: 0

Views

Author

Jason Earls, Jul 04 2001

Keywords

Crossrefs

Programs

  • Magma
    [NumberOfDivisors(Factorial(Factorial(n))): n in [0..7]]; // Vincenzo Librandi, Nov 09 2014
  • Maple
    with(numtheory): A062008:=n->tau((n!)!): seq(A062008(n), n=0..6); # Wesley Ivan Hurt, Nov 08 2014
  • Mathematica
    Table[DivisorSigma[0, (n!)!], {n, 0, 6}] (* Wesley Ivan Hurt, Nov 08 2014 *)
  • PARI
    for(n=0,6,print(numdiv(n!!)))
    
  • PARI
    { for (n=0, 7, write("b062008.txt", n, " ", numdiv(n!!)) ) } \\ [Harry J. Smith, Jul 29 2009]
    

A062274 Number of prime divisors (with repetition) of (n!)!, A000197.

Original entry on oeis.org

0, 0, 1, 7, 45, 291, 2030, 15695, 135045, 1287243, 13495669, 154516663, 1919455487, 25721712601, 369942275033
Offset: 0

Views

Author

Jason Earls, Jul 04 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimeOmega[(n!)!],{n,0,10}] (* Harvey P. Dale, Apr 29 2015 *)
  • PARI
    for(n=0, 10, print1(bigomega(n!!), ", "))
    
  • PARI
    a(n) = { my(res = 0, nf = n!); forprime(p = 2, nf, res+=val(nf, p) ); res }
    val(n, p) = my(r=0); while(n, r+=n\=p);r \\ David A. Corneth, Apr 10 2021
    
  • Python
    from sympy import factorial,factorint
    def A062274(n): return sum(sum(factorint(i).values()) for i in range(2,factorial(n)+1)) # Chai Wah Wu, Apr 10 2021

Formula

a(n) = A001222(A000197(n)). - Michel Marcus, Oct 20 2019

Extensions

More terms from David W. Wilson, Jul 06 2001
a(11)-a(13) from Jinyuan Wang, Apr 01 2020
a(14) from David A. Corneth, Apr 10 2021

A036298 (n!)!, n>0 (note that A000197 is the correct version of this sequence, with a(0) = 1, not 0).

Original entry on oeis.org

0, 1, 2, 720, 620448401733239439360000
Offset: 0

Views

Author

Keywords

A006990 Largest prime <= n!.

Original entry on oeis.org

2, 5, 23, 113, 719, 5039, 40289, 362867, 3628789, 39916787, 479001599, 6227020777, 87178291199, 1307674367953, 20922789887947, 355687428095941, 6402373705727959, 121645100408831899, 2432902008176639969, 51090942171709439969, 1124000727777607679927
Offset: 2

Views

Author

Keywords

Comments

Conjecture: For n >= 2, n! - a(n) is 1 or a prime, see A033933. - Amarnath Murthy, Mar 19 2002
a(n) is the largest prime divisor of (n!)! of the sequence A000197. - Stanislav Sykora, Jul 14 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    PrevPrime[ n_Integer ] := Module[ {k = n - 1}, While[ ! PrimeQ[ k ], k-- ]; k ]; Table[ PrevPrime[ n! ], {n, 3, 25} ]
    Join[{2},NextPrime[Range[3,30]!,-1]] (* Harvey P. Dale, Jan 24 2014 *)

Extensions

More terms from Jud McCranie; also from Robert G. Wilson v, Jan 03 2001

A058295 Products of distinct factorials.

Original entry on oeis.org

1, 2, 6, 12, 24, 48, 120, 144, 240, 288, 720, 1440, 2880, 4320, 5040, 5760, 8640, 10080, 17280, 30240, 34560, 40320, 60480, 80640, 86400, 103680, 120960, 172800, 207360, 241920, 362880, 483840, 518400, 604800, 725760, 967680, 1036800, 1209600
Offset: 1

Views

Author

Leroy Quet, Dec 07 2000

Keywords

Comments

(A075082(n)!)^2 is a member for n>0, for example, (6!)^2=6!*5!*3!. Factorials A000142 and superfactorials A000178 (without their first terms), double-superfactorials A098694 and product-of-next-n-factorials A074319 are all subsequences. Products-of-factorials A001013 is a supersequence. - Jonathan Sondow, Dec 18 2004
A000197(n)^2 is a member for n > 2, as ((n!)!)^2 = (n!)!*n!*(n!-1)!. - Jonathan Sondow, Dec 21 2004
Erdős & Graham show that there are exp((1+o(1))n log log n / log n) members of this sequence using no factorials above n.

Examples

			288 is included because 288 = 2! * 3! * 4!.
		

Crossrefs

Programs

  • Mathematica
    k=10; m=1; With[{p=With[{s=Subsets[Table[n!, {n, 2, k}]]}, Sort[Table[Apply[Times, s[[n]]], {n, Length[s]}]]]}, While[p[[m]]<(k+1)!, m++ ]; Union[Take[p, m-1]]] (* Jonathan Sondow *)
  • PARI
    list(lim)=my(v=List([1]),n=1,t=1);while((t=n++!)<=lim,for(i=1,#v,if(v[i]*t<=lim,listput(v,v[i]*t))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Mar 26 2012

Extensions

Corrected by Jonathan Sondow, Dec 18 2004

A003604 Number of primes <= n!.

Original entry on oeis.org

0, 0, 1, 3, 9, 30, 128, 675, 4231, 30969, 258689, 2428956, 25306287, 289620751, 3610490805, 48686912930, 706003798139, 10953617995740, 181035032207760, 3175094503778521, 58893601709552538, 1151825702178908788, 23688535118132456668, 511050155316058710033
Offset: 0

Views

Author

Keywords

Comments

Number of distinct prime divisors of (n!)!, (A000197). - Jason Earls, Jul 04 2001

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[n!], {n, 0, 16}]
  • PARI
    for(n=0,10,print(omega(n!!)))
    
  • PARI
    a(n)=primepi(n!) \\ Charles R Greathouse IV, Jan 21 2016
    
  • Sage
    [prime_pi(factorial(n)) for n in range(0, 14)] # Zerinvary Lajos, Jun 06 2009

Extensions

a(15) from Jud McCranie
a(16)-a(17) from Paul Zimmermann
a(18) from Donovan Johnson, Dec 18 2009
a(19) from Donovan Johnson, Feb 18 2010
a(20) from Henri Lifchitz, Nov 11 2012
a(21)-a(23) from Henri Lifchitz, Aug 26 2014

A174228 Divisors of 24!.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 60, 63, 64, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 81, 84, 85, 88, 90, 91, 92, 95
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 13 2010

Keywords

Comments

24! = 2^22 * 3^10 * 5^4 * 7^3 * 11^2 * 13 * 17 * 19 * 23;
the sequence is finite with A027423(24) = 242880 terms:
a(242880) = A000142(24) = A000197(4) = A010050(12) = 620448401733239439360000 is the last term.
Differs from the infinite sequence A080683 first for 169, 289, 338, 361 etc. - R. J. Mathar, Mar 17 2010

Crossrefs

Programs

A152168 Number of binary digits in (n!)!.

Original entry on oeis.org

1, 1, 2, 10, 80, 661, 5802, 54725, 558704, 6178565, 73840164, 950331113, 13121175977, 193618002604, 3042570732326, 50747501675076, 895651186352884, 16679929313440954, 326936145826028780, 6728526339596831313, 145085354333183129464, 3271200076443827203823
Offset: 0

Views

Author

Jon E. Schoenfield, Nov 27 2008

Keywords

Examples

			(3!)! = 6! = 720 has ten binary digits (1011010000), so a(3) = 10.
		

Crossrefs

Programs

Showing 1-10 of 17 results. Next