A001493 Erroneous version of A000637.
1, 1, 1, 2, 7, 8, 37, 40, 200, 258, 1039, 1500
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Groups of orders 1 through 10 (C_n = cyclic, D_n = dihedral of order n, Q_8 = quaternion, S_n = symmetric): 1: C_1 2: C_2 3: C_3 4: C_4, C_2 X C_2 5: C_5 6: C_6, S_3=D_6 7: C_7 8: C_8, C_4 X C_2, C_2 X C_2 X C_2, D_8, Q_8 9: C_9, C_3 X C_3 10: C_10, D_10
A000001 := Concatenation([0], List([1..500], n -> NumberSmallGroups(n))); # Muniru A Asiru, Oct 15 2017
D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n) : n in [1..1000] ]; // John Cannon, Dec 23 2006
GroupTheory:-NumGroups(n); # with(GroupTheory); loads this command - N. J. A. Sloane, Dec 28 2017
FiniteGroupCount[Range[100]] (* Harvey P. Dale, Jan 29 2013 *) a[ n_] := If[ n < 1, 0, FiniteGroupCount @ n]; (* Michael Somos, May 28 2014 *)
# GAP 4.2 Length(ConjugacyClassesSubgroups(SymmetricGroup(n)));
n := 5; #SubgroupLattice(Sym(n));
List([2..2499],NrPrimitiveGroups);
[NumberOfPrimitiveGroups(i) : i in [1..4095]];
a(3)=2: A_3 and S_3.
a:=function(n) return Length(AllTransitiveGroups(NrMovedPoints,n)); end; # Charles R Greathouse IV, May 28 2014
a[2] = 3; a[4] = 5; a[12] = 8; a[24] = 10; a[48] = a[60] = a[120] = 8; a[n_] := Switch[Mod[n, 4], 0, 7, 1, 1, 2, 5, 3, 1]; Table[a[n], {n, 1, 96}] (* Jean-François Alcover, Oct 15 2013 *)
A001051(n) = if((12==n)||(48==n)||(60==n)||(120==n),8,if(24==n,10,if((4==n)||(2==n),1+n,[1,5,1,7][1+((n-1)%4)]))); \\ Antti Karttunen, Jan 15 2019
The groups are "nn", of order n; "22n", of order 2n; "332", "432", "532" of orders 12,24,60.
a[2] = 1; a[12|24|60] = 3; a[n_] := 2-Mod[n, 2]; Array[a, 105] (* Jean-François Alcover, Nov 12 2015 *)
a(n)=if(n==2||n==12||n==24||n==60, if(n>2,3,1), if(n%2,1,2)) \\ Charles R Greathouse IV, Nov 10 2015
def a(n): if n == 2: return 1 elif n in {12, 24, 60}: return 3 else: return 2 - n % 2 # Paul Muljadi, Oct 21 2024
Cases[Import["https://oeis.org/A000019/b000019.txt", "Table"], {, }][[All, 2]] // Accumulate (* Jean-François Alcover, Jan 03 2020 *)
Comments