cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001493 Erroneous version of A000637.

Original entry on oeis.org

1, 1, 1, 2, 7, 8, 37, 40, 200, 258, 1039, 1500
Offset: 0

Views

Author

Keywords

A000001 Number of groups of order n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51, 1, 2, 1, 14, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 52, 2, 5, 1, 5, 1, 15, 2, 13, 2, 2, 1, 13, 1, 2, 4, 267, 1, 4, 1, 5, 1, 4, 1, 50, 1, 2, 3, 4, 1, 6, 1, 52, 15, 2, 1, 15, 1, 2, 1, 12, 1, 10, 1, 4, 2
Offset: 0

Views

Author

Keywords

Comments

Also, number of nonisomorphic subgroups of order n in symmetric group S_n. - Lekraj Beedassy, Dec 16 2004
Also, number of nonisomorphic primitives (antiderivatives) of the combinatorial species Lin[n-1], or X^{n-1}; see Rajan, Summary item (i). - Nicolae Boicu, Apr 29 2011
In (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), a(n) is called the "group number of n", denoted by gnu(n), and the first occurrence of k is called the "minimal order attaining k", denoted by moa(k) (see A046057). - Daniel Forgues, Feb 15 2017
It is conjectured in (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008) that the sequence n -> a(n) -> a(a(n)) = a^2(n) -> a(a(a(n))) = a^3(n) -> ... -> consists ultimately of 1s, where a(n), denoted by gnu(n), is called the "group number of n". - Muniru A Asiru, Nov 19 2017
MacHale (2020) shows that there are infinitely many values of n for which there are more groups than rings of that order (cf. A027623). He gives n = 36355 as an example. It would be nice to have enough values of n to create an OEIS entry for them. - N. J. A. Sloane, Jan 02 2021
I conjecture that a(i) * a(j) <= a(i*j) for all nonnegative integers i and j. - Jorge R. F. F. Lopes, Apr 21 2024

Examples

			Groups of orders 1 through 10 (C_n = cyclic, D_n = dihedral of order n, Q_8 = quaternion, S_n = symmetric):
1: C_1
2: C_2
3: C_3
4: C_4, C_2 X C_2
5: C_5
6: C_6, S_3=D_6
7: C_7
8: C_8, C_4 X C_2, C_2 X C_2 X C_2, D_8, Q_8
9: C_9, C_3 X C_3
10: C_10, D_10
		

References

  • S. R. Blackburn, P. M. Neumann, and G. Venkataraman, Enumeration of Finite Groups, Cambridge, 2007.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 302, #35.
  • J. H. Conway et al., The Symmetries of Things, Peters, 2008, p. 209.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 134.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 150.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley Publ. Co., Reading, MA, 1989, Section 6.6 'Fibonacci Numbers' pp. 281-283.
  • M. Hall, Jr. and J. K. Senior, The Groups of Order 2^n (n <= 6). Macmillan, NY, 1964.
  • D. Joyner, 'Adventures in Group Theory', Johns Hopkins Press. Pp. 169-172 has table of groups of orders < 26.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.24, p. 481.
  • M. F. Newman and E. A. O'Brien, A CAYLEY library for the groups of order dividing 128. Group theory (Singapore, 1987), 437-442, de Gruyter, Berlin-New York, 1989.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The main sequences concerned with group theory are A000001 (this one), A000679, A001034, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A000688, A060689, A051532.
A003277 gives n for which A000001(n) = 1, A063756 (partial sums).
A046057 gives first occurrence of each k.
A027623 gives the number of rings of order n.

Programs

  • GAP
    A000001 := Concatenation([0], List([1..500], n -> NumberSmallGroups(n))); # Muniru A Asiru, Oct 15 2017
  • Magma
    D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n) : n in [1..1000] ]; // John Cannon, Dec 23 2006
    
  • Maple
    GroupTheory:-NumGroups(n); # with(GroupTheory); loads this command - N. J. A. Sloane, Dec 28 2017
  • Mathematica
    FiniteGroupCount[Range[100]] (* Harvey P. Dale, Jan 29 2013 *)
    a[ n_] := If[ n < 1, 0, FiniteGroupCount @ n]; (* Michael Somos, May 28 2014 *)

Formula

From Mitch Harris, Oct 25 2006: (Start)
For p, q, r primes:
a(p) = 1, a(p^2) = 2, a(p^3) = 5, a(p^4) = 14, if p = 2, otherwise 15.
a(p^5) = 61 + 2*p + 2*gcd(p-1,3) + gcd(p-1,4), p >= 5, a(2^5)=51, a(3^5)=67.
a(p^e) ~ p^((2/27)e^3 + O(e^(8/3))).
a(p*q) = 1 if gcd(p,q-1) = 1, 2 if gcd(p,q-1) = p. (p < q)
a(p*q^2) is one of the following:
---------------------------------------------------------------------------
| a(p*q^2) | p*q^2 of the form | Sequences (p*q^2) |
---------- ------------------------------------------ ---------------------
| (p+9)/2 | q == 1 (mod p), p odd | A350638 |
| 5 | p=3, q=2 => p*q^2 = 12 |Special case with A_4|
| 5 | p=2, q odd | A143928 |
| 5 | p == 1 (mod q^2) | A350115 |
| 4 | p == 1 (mod q), p > 3, p !== 1 (mod q^2) | A349495 |
| 3 | q == -1 (mod p), p and q odd | A350245 |
| 2 | q !== +-1 (mod p) and p !== 1 (mod q) | A350422 |
---------------------------------------------------------------------------
[Table from Bernard Schott, Jan 18 2022]
a(p*q*r) (p < q < r) is one of the following:
q == 1 (mod p) r == 1 (mod p) r == 1 (mod q) a(p*q*r)
-------------- -------------- -------------- --------
No No No 1
No No Yes 2
No Yes No 2
No Yes Yes 4
Yes No No 2
Yes No Yes 3
Yes Yes No p+2
Yes Yes Yes p+4
[table from Derek Holt].
(End)
a(n) = A000688(n) + A060689(n). - R. J. Mathar, Mar 14 2015

Extensions

More terms from Michael Somos
Typo in b-file description fixed by David Applegate, Sep 05 2009

A000638 Number of permutation groups of degree n; also number of conjugacy classes of subgroups of symmetric group S_n; also number of molecular species of degree n.

Original entry on oeis.org

1, 1, 2, 4, 11, 19, 56, 96, 296, 554, 1593, 3094, 10723, 20832, 75154, 159129, 686165, 1466358, 7274651
Offset: 0

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 147.
  • Labelle, Jacques. "Quelques espèces sur les ensembles de petite cardinalité.", Ann. Sc. Math. Québec 9.1 (1985): 31-58.
  • G. Pfeiffer, Counting Transitive Relations, preprint 2004.
  • C. C. Sims, Computational methods in the study of permutation groups, pp. 169-183 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A000637.
Cf. A000001, A000019. Unlabeled version of A005432.

Programs

  • GAP
    # GAP 4.2
    Length(ConjugacyClassesSubgroups(SymmetricGroup(n)));
  • Magma
    n := 5; #SubgroupLattice(Sym(n));
    

Formula

Euler Transform of A005226. Define b(n), c(n), d(n): b(1)=d(1)=0. b(k)=A005227(k), k>1. c(k)=a(k), k>0, d(k)=A005226(k), k>1. d is Dirichlet convolution of b and c. - Christian G. Bower, Feb 23 2006

Extensions

a(11) corrected and a(12) added by Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
Extended to a(18) using Derek Holt's data from A000637. - N. J. A. Sloane, Jul 31 2010

A000019 Number of primitive permutation groups of degree n.

Original entry on oeis.org

1, 1, 2, 2, 5, 4, 7, 7, 11, 9, 8, 6, 9, 4, 6, 22, 10, 4, 8, 4, 9, 4, 7, 5, 28, 7, 15, 14, 8, 4, 12, 7, 4, 2, 6, 22, 11, 4, 2, 8, 10, 4, 10, 4, 9, 2, 6, 4, 40, 9, 2, 3, 8, 4, 8, 9, 5, 2, 6, 9, 14, 4, 8, 74, 13, 7, 10, 7, 2, 2, 10, 4, 16, 4, 2, 2, 4, 6, 10, 4, 155, 10, 6, 6, 6, 2, 2, 2, 10, 4, 10, 2
Offset: 1

Views

Author

Keywords

Comments

A check found errors in Theißen's data (degree 121 and 125) as well as in Short's work (degree 169). - Alexander Hulpke, Feb 19 2002
There is an error at n=574 in the Dixon-Mortimer paper. - Colva M. Roney-Dougal.

References

  • CRC Handbook of Combinatorial Designs, 1996, pp. 595ff.
  • K. Harada and H. Yamaki, The irreducible subgroups of GL_n(2) with n <= 6, C. R. Math. Rep. Acad. Sci. Canada 1, 1979, 75-78.
  • A. Hulpke, Konstruktion transitiver Permutationsgruppen, Dissertation, RWTH Aachen, 1996.
  • M. W. Short, The Primitive Soluble Permutation Groups of Degree less than 256, LNM 1519, 1992, Springer
  • C. C. Sims, Computational methods in the study of permutation groups, pp. 169-183 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. Theißen, Eine Methode zur Normalisatorberechnung in Permutationsgruppen mit Anwendungen in der Konstruktion primitiver Gruppen, Dissertation, RWTH, RWTH-A, 1997 [But see comment above about errors! ]

Crossrefs

Programs

  • GAP
    List([2..2499],NrPrimitiveGroups);
    
  • Magma
    [NumberOfPrimitiveGroups(i) : i in [1..4095]];

Extensions

More terms and additional references from Alexander Hulpke

A002106 Number of transitive permutation groups of degree n.

Original entry on oeis.org

1, 1, 2, 5, 5, 16, 7, 50, 34, 45, 8, 301, 9, 63, 104, 1954, 10, 983, 8, 1117, 164, 59, 7, 25000, 211, 96, 2392, 1854, 8, 5712, 12, 2801324, 162, 115, 407, 121279, 11, 76, 306, 315842, 10, 9491, 10, 2113, 10923, 56, 6
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that this is the number of Galois groups for irreducible polynomials of order n. (All such Galois groups are transitive.) - Charles R Greathouse IV, May 28 2014
Let G be a transitive permutation groups of degree n. Then G occurs as a Galois group for an irreducible polynomial of degree n with coefficients K if and only if K admits a Galois extension with Galois group G. ("=>" is true by definition of the Galois group for an irreducible polynomial; for "<=", see user631's answer in the Math Overflow link). Hence the conjecture above is equivalent to the inverse Galois problem. Every finite group can be realized as a Galois group of some extension L/K, but for a fixed base field K (for example, K = Q is the field of rational numbers) the question is usually open. - Jianing Song, May 26 2025

Examples

			a(3)=2: A_3 and S_3.
		

References

  • G. Butler and J. McKay, personal communication.
  • C. C. Sims, Computational methods in the study of permutation groups, pp. 169-183 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=function(n)
    return Length(AllTransitiveGroups(NrMovedPoints,n));
    end; # Charles R Greathouse IV, May 28 2014

Extensions

Corrected and extended to degree 31 by Alexander Hulpke, Aug 15 1996
Further corrections from Alexander Hulpke, Feb 19 2002
Degree 32 extended by Artur Jasinski, Feb 17 2011
Extended to degree 47 by Gabriel Verret, May 07 2016

A005226 Number of atomic species of degree n; also number of connected permutation groups of degree n.

Original entry on oeis.org

0, 1, 1, 2, 6, 6, 27, 20, 130, 124, 598, 641, 4850, 4772, 35625, 46074, 389839, 487408, 4617554
Offset: 0

Views

Author

Keywords

Comments

An atomic species is one that is not the product of smaller species. - Christian G. Bower, Feb 23 2006
A permutation group is connected if it is not the direct product of smaller permutation groups. - Christian G. Bower, Feb 23 2006

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 147.
  • Jacques Labelle, Quelques espèces sur les ensembles de petite cardinalité, Ann. Sc. Math. Québec 9.1 (1985): 31-58.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005227. Unlabeled version of A116655.

Programs

  • Mathematica
    A000638 = Cases[Import["https://oeis.org/A000638/b000638.txt", "Table"], {, }][[All, 2]];
    (* EulerInvTransform is defined in A022562 *)
    {0} ~Join~ EulerInvTransform[A000638 // Rest] (* Jean-François Alcover, Dec 03 2019, updated Mar 17 2020 *)

Formula

Inverse Euler transform of A000638. Define b(n), c(n), d(): b(1)=d(1)=0. b(k)=A005227(k), k>1. c(k)=A000638(k), k>0. d(k)=a(k), k>1. d is Dirichlet convolution of b and c. - Christian G. Bower, Feb 23 2006

Extensions

a(11) corrected and a(12) added by Christian G. Bower, Feb 23 2006 based on Goetz Pfeiffer's edit to A000638.
Could be extended to a(18) now using the new terms for A000637. - N. J. A. Sloane, Jul 30 2010
a(13) from Liam Naughton, Nov 23 2012
a(14)-a(18) from the inverse Euler transform of A000637. - R. J. Mathar, Mar 03 2015

A001051 Number of subgroups of order n in orthogonal group O(3).

Original entry on oeis.org

1, 3, 1, 5, 1, 5, 1, 7, 1, 5, 1, 8, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 10, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 8, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 8, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 7, 1, 5, 1, 8
Offset: 1

Views

Author

Keywords

Crossrefs

The main sequences concerned with group theory are A000001, A000679, A001034, A001051, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A051881.

Programs

  • Mathematica
    a[2] = 3; a[4] = 5; a[12] = 8; a[24] = 10; a[48] = a[60] = a[120] = 8; a[n_] := Switch[Mod[n, 4], 0, 7, 1, 1, 2, 5, 3, 1]; Table[a[n], {n, 1, 96}] (* Jean-François Alcover, Oct 15 2013 *)
  • PARI
    A001051(n) = if((12==n)||(48==n)||(60==n)||(120==n),8,if(24==n,10,if((4==n)||(2==n),1+n,[1,5,1,7][1+((n-1)%4)]))); \\ Antti Karttunen, Jan 15 2019

Formula

Has period 1 5 1 7 except that a(2) = 3, a(4) = 5, a(12) = 8, a(24) = 10, a(48) = a(60) = a(120) = 8.

Extensions

Data section extended up to a(120) by Antti Karttunen, Jan 15 2019

A051881 Number of subgroups of order n in special orthogonal group SO(3).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Keywords

Examples

			The groups are "nn", of order n; "22n", of order 2n; "332", "432", "532" of orders 12,24,60.
		

Crossrefs

The main sequences concerned with group theory are A000001, A000679, A001034, A001051, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A051881.

Programs

  • Mathematica
    a[2] = 1; a[12|24|60] = 3; a[n_] := 2-Mod[n, 2]; Array[a, 105] (* Jean-François Alcover, Nov 12 2015 *)
  • PARI
    a(n)=if(n==2||n==12||n==24||n==60, if(n>2,3,1), if(n%2,1,2)) \\ Charles R Greathouse IV, Nov 10 2015
    
  • Python
    def a(n):
        if n == 2:
            return 1
        elif n in {12, 24, 60}:
            return 3
        else:
            return 2 - n % 2 # Paul Muljadi, Oct 21 2024

Formula

Has period 1, 2 except for a(2) = 1, a(12) = a(24) = a(60) = 3.

Extensions

More terms from James Sellers and David W. Wilson, Dec 16 1999

A116693 Number of fixed-point-free subgroups of the symmetric group S_n.

Original entry on oeis.org

1, 0, 1, 2, 15, 50, 874, 3515, 94638, 634630, 18368060, 149965474, 7392944314, 61596293433, 4042125261152, 46326163964879, 4045711099761347, 47868661342996788, 6066544790946772416
Offset: 0

Views

Author

Christian G. Bower, Feb 23 2006

Keywords

Crossrefs

Labeled version of A000637. Inverse binomial Transform of A005432.

Programs

Extensions

More terms from inverse binomial transform of A005432 by R. J. Mathar, Mar 03 2015

A173397 Partial sums of A000019.

Original entry on oeis.org

1, 2, 4, 6, 11, 15, 22, 29, 40, 49, 57, 63, 72, 76, 82, 104, 114, 118, 126, 130, 139, 143, 150, 155, 183, 190, 205, 219, 227, 231, 243, 250, 254, 256, 262, 284, 295, 299, 301, 309, 319, 323, 333, 337, 346, 348, 354, 358, 398, 407, 409, 412, 420, 424, 432, 441
Offset: 1

Views

Author

Jonathan Vos Post, Feb 17 2010

Keywords

Comments

Partial sums of number of primitive permutation groups of degree n. The subsequence of primes in this partial sum begins: 2, 11, 29, 139, 227, 337, 409, 463, 563, 593, 821, 853, 881 (and other powers include 243). The subsequence of squares in this partial sum begins: 1, 4, 49, 256, 441, 576.

Crossrefs

Programs

Formula

a(n) = Sum_{i=1..n} A000019(i).
Showing 1-10 of 11 results. Next