A000931 Padovan sequence (or Padovan numbers): a(n) = a(n-2) + a(n-3) with a(0) = 1, a(1) = a(2) = 0.
1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625
Offset: 0
Examples
G.f. = 1 + x^3 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + 4*x^11 + ...
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 47, ex. 4.
- Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller, Dawn Nelson, Zhao Pan, and Huanzhong Xu, Legal Decompositions Arising from Non-positive Linear Recurrences, Fib. Quart., 55:3 (2017), 252-275. [Note that there is an earlier version of this paper, with only five authors, on the arXiv in 2016. Note to editors: do not merge these two citations. - N. J. A. Sloane, Dec 24 2021]
- Richard K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 10-11.
- Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
- A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See P_n.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ian Stewart, L'univers des nombres, "La sculpture et les nombres", pp. 19-20, Belin-Pour La Science, Paris, 2000.
- Hans van der Laan, Het plastische getal. XV lessen over de grondslagen van de architectonische ordonnantie. Leiden, E.J. Brill, 1967.
- Don Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics (Paris, 1992), Vol. II, A. Joseph et al. (eds.), Birkhäuser, Basel, 1994, pp. 497-512.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..8180 (terms 0..1000 from T. D. Noe)
- Kouèssi Norbert Adédji, Japhet Odjoumani, and Alain Togbé, Padovan and Perrin numbers as products of two generalized Lucas numbers, Archivum Mathematicum, Vol. 59 (2023), No. 4, 315-337.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
- Andrei Asinowski, Cyril Banderier and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- Mohamadou Bachabi and Alain S. Togbé, Products of Fermat or Mersenne numbers in some sequences, Math. Comm. (2024) Vol. 29, 265-285.
- Cristina Ballantine and Mircea Merca, Padovan numbers as sums over partitions into odd parts, Journal of Inequalities and Applications, (2016) 2016:1. doi:10.1186/s13660-015-0952-5.
- Barry Balof, Restricted tilings and bijections, J. Integer Seq., Vol. 15, No. 2 (2012), Article 12.2.3, 17 pp.
- Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, Vol. 18, No. 1 (2011), #P178.
- Jean-Luc Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol. 17, No. 3 (2016), pp. 13-30. See Table 4.
- Jean-Luc Baril and Jean-Marcel Pallo, A Motzkin filter in the Tamari lattice, Discrete Mathematics, Vol. 338, No. 8 (2015), pp. 1370-1378.
- Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv preprint arXiv:1505.06339 [math.NT], 2015.
- Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear Recurrence Sequences and Their Convolutions via Bell Polynomials, Journal of Integer Sequences, Vol. 18 (2015), #15.1.2.
- Khadidja Boubellouta and Mohamed Kerada, Some Identities and Generating Functions for Padovan Numbers, Tamap Journal of Mathematics and Statistics (2019), Article SI04.
- Olivier Bouillot, The Algebra of Multitangent Functions, arXiv:1404.0992 [math.NT], 2014.
- Johann S. Brauchart, Peter D. Dragnev and Edward B. Saff, An Electrostatics Problem on the Sphere Arising from a Nearby Point Charge, arXiv preprint arXiv:1402.3367 [math-ph], 2014. See Section 2, where the Padovan sequence is represented as a spiral of cubes (see Comments above). - _N. J. A. Sloane_, Mar 26 2014
- Ulrich Brenner, Anna Hermann and Jannik Silvanus, Constructing Depth-Optimum Circuits for Adders and AND-OR Paths, arXiv:2012.05550 [cs.DM], 2020.
- D. J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett B., Vol. 393, No. 3-4 (1997), pp. 403-412. UTA-PHYS-96-44; arXiv preprint, arXiv:hep-th/9609128, 1996. Table 1 K_n.
- Francis Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [math.NT], 2011.
- Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller and Dawn Nelson, Legal Decompositions Arising from Non-positive Linear Recurrences, arXiv preprint arXiv:1606.09312 [math.CO], 2016. [Note that there is a 2017 paper in the Fib. Quart. with the same title but with seven authors - see References above. -_N. J. A. Sloane_, Dec 24 2021]
- Frédéric Chapoton, Multiple T-values with one parameter, arXiv:2108.08534 [math.NT], 2021. See p. 5.
- Phyllis Chinn and Silvia Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6 (2003), Article 03.2.3.
- Moshe Cohen, The Jones polynomials of 3-bridge knots via Chebyshev knots and billiard table diagrams, arXiv preprint arXiv:1409.6614 [math.GT], 2014.
- Mahadi Ddamulira, On the x-coordinates of Pell equations which are sums of two Padovan numbers, arXiv:1905.11322 [math.NT], 2019.
- Mahadi Ddamulira, Padovan numbers that are concatenations of two repdigits, arXiv:2003.10705 [math.NT], 2020.
- Mahadi Ddamulira, On the x-coordinates of Pell equations that are products of two Padovan numbers, Integers: Electronic Journal of Combinatorial Number Theory, State University of West Georgia, Charles University, and DIMATIA (2020), hal-02471858.
- Mahadi Ddamulira, Padovan numbers that are concatenations of two distinct repdigits, arXiv:2003.10705 [math.NT], 2020.
- Mahadi Ddamulira, Padovan numbers that are concatenations of two distinct repdigits, Cambridge Open Engage (2020), preprint.
- Mahadi Ddamulira, On the x-coordinates of Pell Equations that are Products of Two Padovan Numbers, Integers (2020) Vol. 20, #A70.
- Tomislav Doslic and I. Zubac, Counting maximal matchings in linear polymers, Ars Mathematica Contemporanea, Vol. 11 (2016), pp. 255-276.
- James East, Jitender Kumar, James D. Mitchell and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [From _James Mitchell_ and _Wilf A. Wilson_, Jul 21 2017]
- Aysel Erey, Zachary Gershkoff, Amanda Lohss and Ranjan Rohatgi, Characterization and enumeration of 3-regular permutation graphs, arXiv:1709.06979 [math.CO], 2017.
- Reinhardt Euler, The Fibonacci Number of a Grid Graph and a New Class of Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.6.
- Reinhardt Euler, Paweł Oleksik and Zdzisław Skupien, Counting Maximal Distance-Independent Sets in Grid Graphs, Discussiones Mathematicae Graph Theory, Vol. 33, No. 3 (2013), pp. 531-557, ISSN (Print) 2083-5892.
- Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications, Vol. 10, No. 3 (2019), pp. 643-651.
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
- Philippe Flajolet and Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics, Vol. 7, No. 1 (1998), pp. 15-35.
- Dale Gerdemann, Sums of Padovan numbers equal to sums of powers of plastic number, YouTube video.
- Dale Gerdemann, Tuba Fantasy (music generated from Padovan numbers), YouTube video.
- Juan B. Gil, Michael D. Weiner and Catalin Zara, Complete Padovan sequences in finite fields, arXiv:math/0605348 [math.NT], 2006.
- Juan B. Gil, Michael D. Weiner and Catalin Zara, Complete Padovan sequences in finite fields, The Fibonacci Quarterly, Vol. 45, No. 1 (Feb 2007), pp. 64-75.
- N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Proceedings of Applications of Computer Algebra ACA, 2013.
- Taras Goy, Some families of identities for Padovan numbers, Proc. Jangjeon Math. Soc., Vol. 21, No. 3 (2018), pp. 413-419.
- Taras Goy and Mark Shattuck, Determinant Identities for Toeplitz-Hessenberg Matrices with Tribonacci Number Entries, arXiv:2003.10660 [math.CO], 2020.
- T. M. Green, Recurrent sequences and Pascal's triangle, Math. Mag., Vol. 41, No. 1 (1968), pp. 13-21.
- Tony Grubman and Ian M. Wanless, Growth rate of canonical and minimal group embeddings of spherical latin trades, Journal of Combinatorial Theory, Series A, 2014, 57-72.
- Richard K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
- Rachel Wells Hall, Math for Poets and Drummers, Math Horizons, Vol. 15, No. 3 (2008), pp. 10-24; preprint; Wayback Machine link.
- Michael E. Hoffman, Quasi-symmetric functions and mod p multiple harmonic sums, Kyushu Journal of Mathematics, Vol. 69, No. 2 (2015), pp. 345-366.
- Svenja Huntemann and Neil A. McKay, Counting Domineering Positions, arXiv:1909.12419 [math.CO], 2019.
- Aleksandar Ilić, Sandi Klavžar, and Yoomi Rho, Parity index of binary words and powers of prime words, The electronic journal of combinatorics, Vol. 19, No. 3 (2012), #P44. - _N. J. A. Sloane_, Sep 27 2012
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 393.
- Milan Janjic, Recurrence Relations and Determinants, arXiv preprint arXiv:1112.2466 [math.CO], 2011.
- Milan Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.5.
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq., Vol. 21 (2018), Article 18.1.4.
- Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 90.
- Paul Johnson, Simultaneous cores with restrictions and a question of Zaleski and Zeilberger, arXiv:1802.09621 [math.CO], 2018.
- Virginia Johnson and C. K. Cook, Areas of Triangles and other Polygons with Vertices from Various Sequences, arXiv preprint arXiv:1608.02420 [math.CO], 2016.
- Vedran Krcadinac, A new generalization of the golden ratio, Fibonacci Quart., Vol. 44, No. 4 (2006), pp. 335-340.
- Wolfdieter Lang, Padovan combinatorics, explicit formula, and sequences with various inputs. - _Wolfdieter Lang_, Jun 15 2010
- Ana Cecilia García Lomelí and Santos Hernández Hernández, Repdigits as Sums of Two Padovan Numbers, J. Int. Seq., Vol. 22 (2019), Article 19.2.3.
- J. M. Luck and A. Mehta, Universality in survivor distributions: Characterising the winners of competitive dynamics, arXiv preprint arXiv:1511.04340 [q-bio.QM], 2015.
- R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, see Table 49.
- Steven J. Miller and Alexandra Newlon, The Fibonacci Quilt Game, arXiv preprint arXiv:1909.01938 [math.NT], 2019. Also Fib. Q., Vol. 58, No. 2 (2020), pp. 157-168. (See Fig. 2, The "Fibonacci Quilt" sequence.)
- Ryan Mullen, On Determining Paint by Numbers Puzzles with Nonunique Solutions, JIS, Vol. 12 (2009), Article 09.6.5.
- Mohammed L. Nadji, Moussa Ahmia, Daniel F. Checa, and José L. Ramírez, Arndt compositions with restricted parts, J. Sci. Lab. RECITS (2024), 71-74.
- Mariana Nagy, Simon R. Cowell and Valeriu Beiu, Survey of Cubic Fibonacci Identities - When Cuboids Carry Weight, arXiv:1902.05944 [math.HO], 2019.
- Wilbert Osmond, Growing Trees in Padovan Sequence For The Enhancement of L-System Algorithm, 2014.
- Richard Padovan, Dom Hans Van Der Laan And The Plastic Number, pp. 181-193 in Nexus IV: Architecture and Mathematics, eds. Kim Williams and Jose Francisco Rodrigues, Fucecchio (Florence): Kim Williams Books, 2002.
- Richard Padovan, Dom Hans van der Laan and the Plastic Number, Chapter 74, pp. 407-419, Volume II of K. Williams and M. J. Ostwald (eds.), Architecture and Mathematics from Antiquity to the Future, DOI 10.1007/978-3-319-00143-2_27, Springer International Publishing Switzerland, 2015.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Narad Rampersad and Max Wiebe, Sums of products of binomial coefficients mod 2 and 2-regular sequences, Integers (2024) Vol. 24, Art. No. A73. See p. 11.
- Salah Eddine Rihane, Chèfiath Awero Adegbindin and Alain Togbé, Fermat Padovan And Perrin Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.6.2.
- Shingo Saito, Tatsushi Tanaka and Noriko Wakabayashi, Combinatorial Remarks on the Cyclic Sum Formula for Multiple Zeta Values, J. Int. Seq., Vol. 14 (2011), Article 11.2.4, Conjecture 2.
- Yuksel Soykan, Vedat Irge, and Erkan Tasdemir, A Comprehensive Study of K-Circulant Matrices Derived from Generalized Padovan Numbers, Asian Journal of Probability and Statistics 26 (12):152-70, (2024). See p. 154.
- Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
- Steven J. Tedford, Combinatorial identities for the Padovan numbers, Fib. Q., 57:4 (2019), 291-298.
- Michel Waldschmidt, Lectures on Multiple Zeta Values (IMSC 2011).
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Minimal Edge Cover.
- Eric Weisstein's World of Mathematics, Minimal Vertex Cover.
- Eric Weisstein's World of Mathematics, Padovan Sequence.
- Eric Weisstein's World of Mathematics, Pan Graph.
- Eric Weisstein's World of Mathematics, Path Complement Graph.
- Eric Weisstein's World of Mathematics, Path Graph.
- Erv Wilson, The Scales of Mt. Meru.
- Iwona Włoch, Urszula Bednarz, Dorota Bród, Andrzej Włoch and Małgorzata Wołowiec-Musiał, On a new type of distance Fibonacci numbers, Discrete Applied Math., Vol. 161, No. 16-17 (November 2013) pp. 2695-2701.
- Richard Yanco, Letter and Email to N. J. A. Sloane, 1994.
- Richard Yanco and Ansuman Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
- Diyar O. Mustafa Zangana and Ahmet Öteleş, Padovan Numbers by the Permanents of a Certain Complex Pentadiagonal Matrix, J. of Garmian Univ., Vol. 5, No. 2 (2018), pp. 330-338.
- Sergey Zlobin, A note on arithmetic properties of multiple zeta values, arXiv:math/0601151 [math.NT], 2006.
- Index entries for linear recurrences with constant coefficients, signature (0,1,1).
Crossrefs
The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Closely related to A001608.
Doubling every term gives A291289.
Programs
-
GAP
a:=[1,0,0];; for n in [4..50] do a[n]:=a[n-2]+a[n-3]; od; a; # G. C. Greubel, Dec 30 2019
-
Haskell
a000931 n = a000931_list !! n a000931_list = 1 : 0 : 0 : zipWith (+) a000931_list (tail a000931_list) -- Reinhard Zumkeller, Feb 10 2011
-
Magma
I:=[1,0,0]; [n le 3 select I[n] else Self(n-2) + Self(n-3): n in [1..60]]; // Vincenzo Librandi, Jul 21 2015
-
Maple
A000931 := proc(n) option remember; if n = 0 then 1 elif n <= 2 then 0 else procname(n-2)+procname(n-3); fi; end; A000931:=-(1+z)/(-1+z^2+z^3); # Simon Plouffe in his 1992 dissertation; gives sequence without five leading terms a[0]:=1; a[1]:=0; a[2]:=0; for n from 3 to 50 do a[n]:=a[n-2]+a[n-3]; end do; # Francesco Daddi, Aug 04 2011
-
Mathematica
CoefficientList[Series[(1-x^2)/(1-x^2-x^3), {x, 0, 50}], x] a[0]=1; a[1]=a[2]=0; a[n_]:= a[n]= a[n-2] + a[n-3]; Table[a[n], {n, 0, 50}] (* Robert G. Wilson v, May 04 2006 *) LinearRecurrence[{0,1,1}, {1,0,0}, 50] (* Harvey P. Dale, Jan 10 2012 *) Table[RootSum[-1 -# +#^3 &, 5#^n -6#^(n+1) +4#^(n+2) &]/23, {n,0,50}] (* Eric W. Weisstein, Nov 09 2017 *)
-
PARI
Vec((1-x^2)/(1-x^2-x^3) + O(x^50)) \\ Charles R Greathouse IV, Feb 11 2011
-
PARI
{a(n) = if( n<0, polcoeff(1/(1+x-x^3) + x * O(x^-n), -n), polcoeff( (1 - x^2)/(1-x^2-x^3) + x * O(x^n), n))}; /* Michael Somos, Sep 18 2012 */
-
Python
def aupton(nn): alst = [1, 0, 0] for n in range(3, nn+1): alst.append(alst[n-2]+alst[n-3]) return alst print(aupton(49)) # Michael S. Branicky, Mar 28 2022
-
Sage
def A000931_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-x^2)/(1-x^2-x^3) ).list() A000931_list(50) # G. C. Greubel, Dec 30 2019
Formula
G.f.: (1-x^2)/(1-x^2-x^3).
a(n) is asymptotic to r^n / (2*r+3) where r = 1.3247179572447... = A060006, the real root of x^3 = x + 1. - Philippe Deléham, Jan 13 2004
a(n)^2 + a(n+2)^2 + a(n+6)^2 = a(n+1)^2 + a(n+3)^2 + a(n+4)^2 + a(n+5)^2 (Barniville, Question 16884, Ed. Times 1911).
a(n+5) = a(0) + a(1) + ... + a(n).
a(n) = central and lower right terms in the (n-3)-th power of the 3 X 3 matrix M = [0 1 0 / 0 0 1 / 1 1 0]. E.g., a(13) = 7. M^10 = [3 5 4 / 4 7 5 / 5 9 7]. - Gary W. Adamson, Feb 01 2004
G.f.: 1/(1 - x^3 - x^5 - x^7 - x^9 - ...). - Jon Perry, Jul 04 2004
a(n+4) = Sum_{k=0..floor((n-1)/2)} binomial(floor((n+k-2)/3), k). - Paul Barry, Jul 06 2004
a(n+3) = Sum_{k=0..floor(n/2)} binomial(k, n-2k). - Paul Barry, Sep 17 2004, corrected by Greg Dresden and Zi Ye, Jul 06 2021
a(n+3) is diagonal sum of A026729 (as a number triangle), with formula a(n+3) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k} (-1)^(n-k+i)*binomial(n-k, i)*binomial(i+k, i-k). - Paul Barry, Sep 23 2004
a(n) = a(n-1) + a(n-5) = A003520(n-4) + A003520(n-13) = A003520(n-3) - A003520(n-9). - Henry Bottomley, Jan 30 2005
a(n+3) = Sum_{k=0..floor(n/2)} binomial((n-k)/2, k)(1+(-1)^(n-k))/2. - Paul Barry, Sep 09 2005
The sequence 1/(1-x^2-x^3) (a(n+3)) is given by the diagonal sums of the Riordan array (1/(1-x^3), x/(1-x^3)). The row sums are A000930. - Paul Barry, Feb 25 2005
a(n) = A023434(n-7) + 1 for n >= 7. - David Callan, Jul 14 2006
a(n+5) corresponds to the diagonal sums of A030528. The binomial transform of a(n+5) is A052921. a(n+5) = Sum_{k=0..floor(n/2)} Sum_{k=0..n} (-1)^(n-k+i)*binomial(n-k, i)binomial(i+k+1, 2k+1). - Paul Barry, Jun 21 2004
r^(n-1) = (1/r)*a(n) + r*a(n+1) + a(n+2), where r = 1.32471... is the real root of x^3 - x - 1 = 0. Example: r^8 = (1/r)*a(9) + r*a(10) + a(11) = (1/r)*2 + r*3 + 4 = 9.483909... - Gary W. Adamson, Oct 22 2006
a(n) = (r^n)/(2r+3) + (s^n)/(2s+3) + (t^n)/(2t+3) where r, s, t are the three roots of x^3-x-1. - Keith Schneider (schneidk(AT)email.unc.edu), Sep 07 2007
a(n) = -k*a(n-1) + a(n-2) + (k+1)a(n-2) + k*a(n-4), n > 3, for any value of k. - Gary Detlefs, Sep 13 2010
From Francesco Daddi, Aug 04 2011: (Start)
a(0) + a(2) + a(4) + a(6) + ... + a(2*n) = a(2*n+3).
a(0) + a(3) + a(6) + a(9) + ... + a(3*n) = a(3*n+2)+1.
a(0) + a(5) + a(10) + a(15) + ... + a(5*n) = a(5*n+1)+1.
a(0) + a(7) + a(14) + a(21) + ... + a(7*n) = (a(7*n) + a(7*n+1) + 1)/2. (End)
a(n+3) = Sum_{k=0..floor((n+1)/2)} binomial((n+k)/3,k), where binomial((n+k)/3,k)=0 for noninteger (n+k)/3. - Nikita Gogin, Dec 07 2012
a(n) = A182097(n-3) for n > 2. - Jonathan Sondow, Mar 14 2014
a(n) = the k-th difference of a(n+5k) - a(n+5k-1), k>=1. For example, a(10)=3 => a(15)-a(14) => 2nd difference of a(20)-a(19) => 3rd difference of a(25)-a(24)... - Bob Selcoe, Mar 18 2014
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A=(0,0,1,0,1,0,1,...) and S=(0,1,0,0,...) or A063524. [* is convolution operation] Define S^*0=I with I=(1,0,0,...). Then a(n) = Sum_{j=1...n} T(n,j). - David Neil McGrath, Dec 19 2014
If x=a(n), y=a(n+1), z=a(n+2), then x^3 + 2*y*x^2 - z^2*x - 3*y*z*x + y^2*x + y^3 - y^2*z + z^3 = 1. - Alexander Samokrutov, Jul 20 2015
For the sequence shifted by 6 terms, a(n) = Sum_{k=ceiling(n/3)..ceiling(n/2)} binomial(k+1,3*k-n) [Doslic-Zubac]. - N. J. A. Sloane, Apr 23 2017
From Joseph M. Shunia, Jan 21 2020: (Start)
a(2n) = 2*a(n-1)*a(n) + a(n)^2 + a(n+1)^2, for n > 8.
a(2n-1) = 2*a(n)*a(n+1) + a(n-1)^2, for n > 8.
a(2n+1) = 2*a(n+1)*a(n+2) + a(n)^2, for n > 7. (End)
0*a(0) + 1*a(1) + 2*a(2) + ... + n*a(n) = n*a(n+5) - a(n+9) + 2. - Greg Dresden and Zi Ye, Jul 02 2021
From Greg Dresden and Zi Ye, Jul 06 2021: (Start)
2*a(n) = a(n+2) + a(n-5) for n >= 5.
3*a(n) = a(n+4) - a(n-9) for n >= 9.
4*a(n) = a(n+5) - a(n-9) for n >= 9. (End)
Extensions
Edited by Charles R Greathouse IV, Mar 17 2010
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
Comments