A001653 Numbers k such that 2*k^2 - 1 is a square.
1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965, 225058681, 1311738121, 7645370045, 44560482149, 259717522849, 1513744654945, 8822750406821, 51422757785981, 299713796309065, 1746860020068409, 10181446324101389, 59341817924539925
Offset: 1
Examples
From _Muniru A Asiru_, Mar 19 2018: (Start) For k=1, 2*1^2 - 1 = 2 - 1 = 1 = 1^2. For k=5, 2*5^2 - 1 = 50 - 1 = 49 = 7^2. For k=29, 2*29^2 - 1 = 1682 - 1 = 1681 = 41^2. ... (End) G.f. = x + 5*x^2 + 29*x^3 + 169*x^4 + 985*x^5 + 5741*x^6 + ... - _Michael Somos_, Jun 26 2022
References
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 188.
- W. Ljunggren, "Zur Theorie der Gleichung x^2+1=Dy^4", Avh. Norske Vid. Akad. Oslo I. 5, 27pp.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 91.
Links
- T. D. Noe and Eric Chen, Table of n, a(n) for n = 1..1000 (terms 1..201 from T. D. Noe)
- I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
- César Aguilera, Notes on Perfect Numbers, OSF Preprints, 2023, p 21.
- R. C. Alperin, A family of nonlinear recurrences and their linear solutions, Fib. Q., 57:4 (2019), 318-321.
- S. Barbero, U. Cerruti, and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences, J. Int. Seq. 13 (2010) # 10.9.7, proposition 16.
- A. Blondin-Massé, S. Brlek, S. Labbé, and M. Mendès France, Fibonacci snowflakes, Special Issue dedicated to Paulo Ribenboim, Annales des Sciences Mathématiques du Québec 35, No 2 (2011).
- A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, page xxxv.
- J.-P. Ehrmann et al., POLYA003: Integers of the form a/(bc) + b/(ca) + c/(ab).
- S. Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
- Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
- Daniel C. Fielder, Errata:Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- T. W. Forget and T. A. Larkin, Pythagorean triads of the form X, X+1, Z described by recurrence sequences, Fib. Quart., 6 (No. 3, 1968), 94-104.
- G. Frobenius, Uber die Markoff'schen Zahlen, Sitzungsber. Konig. Preuss. Akad. Wiss. (1913) p. 348-387, Parag. 9
- L. J. Gerstein, Pythagorean triples and inner products, Math. Mag., 78 (2005), 205-213.
- Glass, Darren B. Critical groups of graphs with dihedral actions. II. Eur. J. Comb. 61, 25-46 (2017).
- M. A. Gruber, Artemas Martin, A. H. Bell, J. H. Drummond, A. H. Holmes and H. C. Wilkes, Problem 47, Amer. Math. Monthly, 4 (1897), 25-28.
- R. J. Hetherington, Letter to N. J. A. Sloane, Oct 26 1974
- H. J. Hindin, Stars, hexes, triangular numbers and Pythagorean triples, J. Rec. Math., 16 (1983/1984), 191-193. (Annotated scanned copy)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 403
- Tanya Khovanova, Recursive Sequences
- Ron Knott, Pythagorean Triples and Online Calculators
- Giuseppe Lancia and Paolo Serafini, Polyhedra. Chapter 2 of Compact Extended Linear Programming Models (2018). EURO Advanced Tutorials on Operational Research. Springer, Cham., 11.
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
- A. Martin, Table of prime rational right-angled triangles, The Mathematical Magazine, 2 (1910), 297-324.
- A. Martin, Table of prime rational right-angled triangles (annotated scans of a few pages).
- Sam Northshield, Topographs; Conway and Otherwise, Fibonacci Quart. 58 (2020), no. 5, 172-189. See p. 16.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- James M. Parks, Computing Pythagorean Triples, arXiv:2107.06891 [math.GM], 2021.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- B. Polster and M. Ross, Marching in squares, arXiv preprint arXiv:1503.04658 [math.HO], 2015.
- José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014.
- Dan Romik, The dynamics of Pythagorean Triples, Trans. Amer. Math. Soc. 360 (2008), 6045-6064.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- P. E. Trier, "Almost Isosceles" Right-Angled Triangles, Eureka, No. 4, May 1940, pp. 9 - 11.
- Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc).
- Eric Weisstein's World of Mathematics, NSW Number
- Wikipedia, Tree of primitive Pythagorean triples.
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Index entries for two-way infinite sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
Crossrefs
Programs
-
GAP
a:=[1,5];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Mar 19 2018
-
Haskell
a001653 n = a001653_list !! n a001653_list = 1 : 5 : zipWith (-) (map (* 6) $ tail a001653_list) a001653_list -- Reinhard Zumkeller, May 07 2013
-
Magma
I:=[1,5]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 22 2014
-
Maple
a[0]:=1: a[1]:=5: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006 A001653:=-(-1+5*z)/(z**2-6*z+1); # Conjectured (correctly) by Simon Plouffe in his 1992 dissertation; gives sequence except for one of the leading 1's
-
Mathematica
LinearRecurrence[{6,-1}, {1,5}, 40] (* Harvey P. Dale, Jul 12 2011 *) a[ n_] := -(-1)^n ChebyshevU[2 n - 2, I]; (* Michael Somos, Jul 22 2018 *) Numerator[{1} ~Join~ Table[FromContinuedFraction[Flatten[Table[{1, 4}, n]]], {n, 1, 40}]]; (* Greg Dresden, Sep 10 2019 *)
-
PARI
{a(n) = subst(poltchebi(n-1) + poltchebi(n), x, 3)/4}; /* Michael Somos, Nov 02 2002 */
-
PARI
a(n)=([5,2;2,1]^(n-1))[1,1] \\ Lambert Klasen (lambert.klasen(AT)gmx.de), corrected by Eric Chen, Jun 14 2018
-
PARI
{a(n) = -(-1)^n * polchebyshev(2*n-2, 2, I)}; /* Michael Somos, Jun 26 2022 */
Formula
G.f.: x*(1-x)/(1-6*x+x^2).
a(n) = 6*a(n-1) - a(n-2) with a(1)=1, a(2)=5.
4*a(n) = A077445(n).
Can be extended backwards by a(-n+1) = a(n).
a(n) = sqrt((A002315(n)^2 + 1)/2). [Inserted by N. J. A. Sloane, May 08 2000]
a(n+1) = S(n, 6)-S(n-1, 6), n>=0, with S(n, 6) = A001109(n+1), S(-2, 6) := -1. S(n, x)=U(n, x/2) are Chebyshev's polynomials of the second kind. Cf. triangle A049310. a(n+1) = T(2*n+1, sqrt(2))/sqrt(2), n>=0, with T(n, x) Chebyshev's polynomials of the first kind. [Offset corrected by Wolfdieter Lang, Mar 06 2012]
a(n) = A000129(2n+1). - Ira M. Gessel, Sep 27 2002
a(n) ~ (1/4)*sqrt(2)*(sqrt(2) + 1)^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(n) = (((3 + 2*sqrt(2))^(n+1) - (3 - 2*sqrt(2))^(n+1)) - ((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n)) / (4*sqrt(2)). Limit_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 12 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 4) = a(n). - Benoit Cloitre, Nov 10 2002
For n and j >= 1, Sum_{k=0..j} a(k)*a(n) - Sum_{k=0..j-1} a(k)*a(n-1) = A001109(j+1)*a(n) - A001109(j)*a(n-1) = a(n+j); e.g., (1+5+29)*5 - (1+5)*1=169. - Charlie Marion, Jul 07 2003
From Charlie Marion, Jul 16 2003: (Start)
For n >= k >= 0, a(n)^2 = a(n+k)*a(n-k) - A084703(k)^2; e.g., 169^2 = 5741*5 - 144.
For n > 0, a(n) ^2 - a(n-1)^2 = 4*Sum_{k=0..2*n-1} a(k) = 4*A001109(2n); e.g., 985^2 - 169^2 = 4*(1 + 5 + 29 + ... + 195025) = 4*235416.
Sum_{k=0..n} ((-1)^(n-k)*a(k)) = A079291(n+1); e.g., -1 + 5 - 29 + 169 = 144.
(End)
Sum_{k=0...n} ((2k+1)*a(n-k)) = A001333(n+1)^2 - (1 + (-1)^(n+1))/2; e.g., 1*169 + 3*29 + 5*5 + 7*1 = 288 = 17^2 - 1; 1*29 + 3*5 + 5*1 = 49 = 7^2. - Charlie Marion, Jul 18 2003
Sum_{k=0...n} a(k)*a(n) = Sum_{k=0..n} a(2k) and Sum_{k=0..n} a(k)*a(n+1) = Sum_{k=0..n} a(2k+1); e.g., (1+5+29)*29 = 1+29+985 and (1+5+29)*169 = 5+169+5741. - Charlie Marion, Sep 22 2003
For n >= 3, a_{n} = 7(a_{n-1} - a_{n-2}) + a_{n-3}, with a_1 = 1, a_2 = 5 and a_3 = 29. a(n) = ((-1+2^(1/2))/2^(3/2))*(3 - 2^(3/2))^n + ((1+2^(1/2))/2^(3/2))*(3 + 2^(3/2))^n. - Antonio Alberto Olivares, Oct 13 2003
Let a(n) = A001652(n), b(n) = A046090(n) and c(n) = this sequence. Then for k > j, c(i)*(c(k) - c(j)) = a(k+i) + ... + a(i+j+1) + a(k-i-1) + ... + a(j-i) + k - j. For n < 0, a(n) = -b(-n-1). Also a(n)*a(n+2k+1) + b(n)*b(n+2k+1) + c(n)*c(n+2k+1) = (a(n+k+1) - a(n+k))^2; a(n)*a(n+2k) + b(n)*b(n+2k) + c(n)*c(n+2k) = 2*c(n+k)^2. - Charlie Marion, Jul 01 2003
Let a(n) = A001652(n), b(n) = A046090(n) and c(n) = this sequence. Then for n > 0, a(n)*b(n)*c(n)/(a(n)+b(n)+c(n)) = Sum_{k=0..n} c(2*k+1); e.g., 20*21*29/(20+21+29) = 5+169 = 174; a(n)*b(n)*c(n)/(a(n-1)+b(n-1)+c(n-1)) = Sum_{k=0..n} c(2*k); e.g., 119*120*169/(20+21+29) = 1+29+985+33461 = 34476. - Charlie Marion, Dec 01 2003
Also solutions x > 0 of the equation floor(x*r*floor(x/r))==floor(x/r*floor(x*r)) where r=1+sqrt(2). - Benoit Cloitre, Feb 15 2004
a(n)*a(n+3) = 24 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
For n >= k, a(n)*a(n+2*k+1) - a(n+k)*a(n+k+1) = a(k)^2-1; e.g., 29*195025-985*5741 = 840 = 29^2-1; 1*169-5*29 = 24 = 5^2-1; a(n)*a(n+2*k)-a(n+k)^2 = A001542(k)^2; e.g., 169*195025-5741^2 = 144 = 12^2; 1*29-5^2 = 4 = 2^2. - Charlie Marion Jun 02 2004
For all k, a(n) is a factor of a((2n+1)*k+n). a((2*n+1)*k+n) = a(n)*(Sum_{j=0..k-1} (-1)^j*(a((2*n+1)*(k-j)) + a((2*n+1)*(k-j)-1))+(-1)^k); e.g., 195025 = 5*(33461+5741-169-29+1); 7645370045 = 169*(6625109+1136689-1).- Charlie Marion, Jun 04 2004
a(n) = Sum_{k=0..n} binomial(n+k, 2*k)4^k. - Paul Barry, Aug 30 2004 [offset 0]
a(n) = Sum_{k=0..n} binomial(2*n+1, 2*k+1)*2^k. - Paul Barry, Sep 30 2004 [offset 0]
For n < k, a(n)*A001541(k) = A011900(n+k)+A053141(k-n-1); e.g., 5*99 = 495 = 493+2. For n >= k, a(n)*A001541(k) = A011900(n+k)+A053141(n-k); e.g., 29*3 = 87 = 85+2. - Charlie Marion, Oct 18 2004
a(n) = (-1)^n*U(2*n, i*sqrt(4)/2) = (-1)^n*U(2*n, i), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005 [offset 0]
a(n) = Pell(2*n+1) = Pell(n)^2 + Pell(n+1)^2. - Paul Barry, Jul 18 2005 [offset 0]
a(n)*a(n+k) = A000129(k)^2 + A000129(2n+k+1)^2; e.g., 29*5741 = 12^2+169^2. - Charlie Marion, Aug 02 2005
Let a(n)*a(n+k) = x. Then 2*x^2-A001541(k)*x+A001109(k)^2 = A001109(2*n+k+1)^2; e.g., let x=29*985; then 2x^2-17x+6^2 = 40391^2; cf. A076218. - Charlie Marion, Aug 02 2005
With a=3+2*sqrt(2), b=3-2*sqrt(2): a(n) = (a^((2n+1)/2)+b^((2n+1)/2))/(2*sqrt(2)). a(n) = A001109(n+1)-A001109(n). - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
If k is in the sequence, then the next term is floor(k*(3+2*sqrt(2))). - Lekraj Beedassy, Jul 19 2005
a(n) = Jacobi_P(n,-1/2,1/2,3)/Jacobi_P(n,-1/2,1/2,1). - Paul Barry, Feb 03 2006 [offset 0]
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n,j)*C(n-j,k)*Pell(n-j+1), where Pell = A000129. - Paul Barry, May 19 2006 [offset 0]
a(n) = round(sqrt(A002315(n)^2/2)). - Lekraj Beedassy, Jul 15 2006
a(n+1) = 3*a(n) + sqrt(8*a(n)^2-4), a(1)=1. - Richard Choulet, Sep 18 2007
6*a(n)*a(n+1) = a(n)^2+a(n+1)^2+4; e.g., 6*5*29 = 29^2+5^2+4; 6*169*985 = 169^2+985^2+4. - Charlie Marion, Oct 07 2007
2*A001541(k)*a(n)*a(n+k) = a(n)^2+a(n+k)^2+A001542(k)^2; e.g., 2*3*5*29 = 5^2+29^2+2^2; 2*99*29*5741 = 2*99*29*5741=29^2+5741^2+70^2. - Charlie Marion, Oct 12 2007
[a(n), A001109(n)] = [1,4; 1,5]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
From Charlie Marion, Apr 10 2009: (Start)
In general, for n >= k, a(n+k) = 2*A001541(k)*a(n)-a(n-k);
e.g., a(n+0) = 2*1*a(n)-a(n); a(n+1) = 6*a(n)-a(n-1); a(6+0) = 33461 = 2*33461-33461; a(5+1) = 33461 = 6*5741-985; a(4+2) = 33461 = 34*985-29; a(3+3) = 33461 = 198*169-1.
(End)
G.f.: sqrt(x)*tan(4*arctan(sqrt(x)))/4. - Johannes W. Meijer, Aug 01 2010
Given k = (sqrt(2)+1)^2 = 3+2*sqrt(2) and a(0)=1, then a(n) = a(n-1)*k-((k-1)/(k^n)). - Charles L. Hohn, Mar 06 2011
Given k = (sqrt(2)+1)^2 = 3+2*sqrt(2) and a(0)=1, then a(n) = (k^n)+(k^(-n))-a(n-1) = A003499(n) - a(n-1). - Charles L. Hohn, Apr 04 2011
Let T(n) be the n-th triangular number; then, for n > 0, T(a(n)) + A001109(n-1) = A046090(n)^2. See also A046090. - Charlie Marion, Apr 25 2011
For k > 0, a(n+2*k-1) - a(n) = 4*A001109(n+k-1)*A002315(k-1); a(n+2*k) - a(n) = 4*A001109(k)*A002315(n+k-1). - Charlie Marion, Jan 06 2012
G.f.: G(0)*(1-x)/(2-6*x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
a(n+1) = 4*A001652(n) + 3*a(n) + 2 [Mohamed Bouhamida's 2009 (p,q)(r,s) comment above rewritten]. - Hermann Stamm-Wilbrandt, Jul 27 2014
Sum_{n >= 2} 1/( a(n) - 1/a(n) ) = 1/4. - Peter Bala, Mar 25 2015
a(n) = Sum_{k=0..n} binomial(n,k) * 3^(n-k) * 2^k * 2^floor(k/2). - David Pasino, Jul 09 2016
E.g.f.: (sqrt(2)*sinh(2*sqrt(2)*x) + 2*cosh(2*sqrt(2)*x))*exp(3*x)/2. - Ilya Gutkovskiy, Jul 09 2016
a(n+2) = (a(n+1)^2 + 4)/a(n). - Vladimir M. Zarubin, Sep 06 2016
a(n) = 2*A053141(n)+1. - R. J. Mathar, Aug 16 2019
For n>1, a(n) is the numerator of the continued fraction [1,4,1,4,...,1,4] with (n-1) repetitions of 1,4. For the denominators see A005319. - Greg Dresden, Sep 10 2019
a(n) = round(((2+sqrt(2))*(3+2*sqrt(2))^(n-1))/4). - Paul Weisenhorn, May 23 2020
a(n+1) = Sum_{k >= n} binomial(2*k,2*n)*(1/2)^(k+1). Cf. A102591. - Peter Bala, Nov 29 2021
a(n+1) = 3*a(n) + A077444(n). - César Aguilera, Jul 13 2023
Extensions
Additional comments from Wolfdieter Lang, Feb 10 2000
Better description from Harvey P. Dale, Jan 15 2002
Edited by N. J. A. Sloane, Nov 02 2002
Comments