cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A101686 a(n) = Product_{i=1..n} (i^2 + 1).

Original entry on oeis.org

1, 2, 10, 100, 1700, 44200, 1635400, 81770000, 5315050000, 435834100000, 44019244100000, 5370347780200000, 778700428129000000, 132379072781930000000, 26078677338040210000000, 5893781078397087460000000, 1514701737148051477220000000
Offset: 0

Views

Author

Ralf Stephan, Dec 13 2004

Keywords

Comments

Sum of all coefficients in Product_{k=0..n} (x + k^2).
Row sums of triangle of central factorial numbers (A008955).
"HANOWA" is a matrix whose eigenvalues lie on a vertical line. It is an N X N matrix with 2 X 2 blocks with identity matrices in the upper left and lower right blocks and diagonal matrices containing the first N integers in the upper right and lower left blocks. In MATLAB, the following code generates the sequence... for n=0:2:TERMS*2 det(gallery('hanowa',n)) end. - Paul Max Payton, Mar 31 2005
Cilleruelo shows that a(n) is a square only for n = 0 and 3. - Charles R Greathouse IV, Aug 27 2008
a(n) = A231530(n)^2 + A231531(n)^2. - Stanislav Sykora, Nov 10 2013

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 559-561, Section 147. - N. J. A. Sloane, May 29 2014

Crossrefs

Equals 2 * A051893(n+1), n>0. Cf. A156648.

Programs

  • Maple
    p := n -> mul(x^2+1, x=0..n):
    seq(p(i), i=0..14); # Gary Detlefs, Jun 03 2010
  • Mathematica
    Table[Product[k^2+1,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Nov 11 2013 *)
    Table[Pochhammer[I, n + 1] Pochhammer[-I, n + 1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
    Table[Abs[Pochhammer[1 + I, n]]^2, {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2016 *)
  • PARI
    a(n)=prod(k=1,n,k^2+1) \\ Charles R Greathouse IV, Aug 27 2008
    
  • PARI
    {a(n)=if(n==0, 1, 1-polcoeff(sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, 1+j^2*x+x*O(x^n))), n))} \\ Paul D. Hanna, Jan 07 2013
    
  • Python
    from math import prod
    def A101686(n): return prod(i**2+1 for i in range(1,n+1)) # Chai Wah Wu, Feb 22 2024

Formula

G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k^2*x). - Paul D. Hanna, Jan 07 2013
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - ((k+1)^2+1)/(1-x/(x - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
a(n) ~ (n!)^2 * sinh(Pi)/Pi. - Vaclav Kotesovec, Nov 11 2013
From Vladimir Reshetnikov, Oct 25 2015: (Start)
a(n) = Gamma(n+1+i)*Gamma(n+1-i)*sinh(Pi)/Pi.
a(n) ~ 2*exp(-2*n)*n^(2*n+1)*sinh(Pi).
G.f. for 1/a(n): hypergeom([1], [1-i, 1+i], x).
E.g.f. for a(n)/n!: hypergeom([1-i, 1+i], [1], x), where i=sqrt(-1).
D-finite with recurrence: a(0) = 1, a(n) = (n^2+1)*a(n-1). (End)
a(n+3)/a(n+2) - 2 a(n+2)/a(n+1) + a(n+1)/a(n) = 2. - Robert Israel, Oct 25 2015
a(n) = A003703(n+1)^2 + A009454(n+1)^2. - Vladimir Reshetnikov, Oct 15 2016
a(n) = A105750(n)^2 + A105751(n)^2. - Ridouane Oudra, Dec 15 2021

Extensions

More terms from Charles R Greathouse IV, Aug 27 2008
Simpler definition from Gary Detlefs, Jun 03 2010
Entry revised by N. J. A. Sloane, Dec 22 2012
Minor edits by Vaclav Kotesovec, Mar 13 2015

A105750 Real part of Product_{k = 0..n} (1 + k*i), i = sqrt(-1).

Original entry on oeis.org

1, 1, -1, -10, -10, 190, 730, -6620, -55900, 365300, 5864300, -28269800, -839594600, 2691559000, 159300557000, -238131478000, -38894192662000, -15194495654000, 11911522255750000, 29697351895900000, -4477959179352100000, -21683886333440500000, 2029107997508660900000
Offset: 0

Views

Author

Paul Barry, Apr 18 2005

Keywords

Comments

Define u(n) as in A220448 and set f(n) = u(n)*f(n-1) for n >= 2, with f(1)=1 (this defines A220449). Then a(0)=1; a(n) = (-1)^(n+1)*f(n) for n >= 1. - N. J. A. Sloane, Dec 22 2012
From Peter Bala, Jun 03 2023: (Start)
Moll (2012) studied the prime divisors of the terms of A105750 and divided the primes into three classes.
Type 1: primes p that do not divide any element of the sequence {a(n)}. The first few type 1 primes appear to be {3, 7, 11, 23, 31, 47, 59}.
Type 2: primes p such that the p-adic valuation v_p(a(n)) has asymptotically linear behavior. The first few type 2 primes appear to be {2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97}.
We conjecture that the set of type 2 primes consists of primes p == 1 (mod 4), equivalently, rational primes that split in the field extension Q(sqrt(-1)) of Q, together with the prime p = 2, which ramifies in Q(sqrt(-1)). See A002144.
Type 3: primes p such that the sequence of p-adic valuations {v_p(a(n)) : n >= 0} exhibits an oscillatory behavior (this phrase is not precisely defined).
We conjecture that the sets of type 1 and type 3 primes taken together consist of primes p == 3 (mod 4), equivalently, rational primes that remain inert in the field extension Q(sqrt(-1)) of Q. See A002145. (End)

Crossrefs

Programs

  • Maple
    A105750 := proc(n)
        mul(1-k*I,k=0..n) ;
        Re(%) ;
    end proc: # R. J. Mathar, Jan 04 2013
  • Mathematica
    x[n_] := x[n] = If[n == 1, 1, (x[n-1]+n)/(1-n*x[n-1])];
    u[n_] := n*x[n-1]-1;
    f[n_] := f[n] = If[n == 1, 1, u[n]*f[n-1]];
    a[n_] := If[n == 0, 1, (-1)^(n+1)*f[n]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 17 2023, after N. J. A. Sloane *)
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A105750(n): return sum(stirling(n+1,n+1-(k<<1),kind=1)*(-1 if k&1 else 1) for k in range((n+1>>1)+1)) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = Re( Product_{k = 0..n} (1 - k*i) ).
Conjecture: a(n) -3*a(n-1) +(n^2-n+3)*a(n-2) +(-n^2+4*n-5)*a(n-3)=0. - R. J. Mathar, May 23 2014
From Peter Bala, May 28 2023: (Start)
a(n) = Sum_{k = 0..floor((n + 1)/2)} (-1)^k*|Stirling1(n+1, n-2*k+1)|, where Stirling1(n, k) = A048994(n,k).
(n - 1)*a(n) = (2*n - 1)*a(n-1) - n*(n^2 - 2*n + 2)*a(n-2) with a(0) = a(1) = 1 (see Moll, equation 1.16). Mathar's third-order recurrence above follows easily from this.
a(2*n) = (-1)^n*A009454(2*n+1) for n >= 0.
a(2*n-1) = (-1)^n*A003703(2*n) for n >= 1. (End)

Extensions

Corrected by N. J. A. Sloane, Nov 05 2005

A009454 Expansion of e.g.f. sin(log(1+x)).

Original entry on oeis.org

0, 1, -1, 1, 0, -10, 90, -730, 6160, -55900, 549900, -5864300, 67610400, -839594600, 11186357000, -159300557000, 2416003824000, -38894192662000, 662595375078000, -11911522255750000, 225382826562400000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sin[Log[1+x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 24 2015 *)
    FullSimplify[Table[-((-1)^n*(Gamma[1 + I]*Gamma[-I + n] + Gamma[1 - I]*Gamma[I + n])*Sinh[Pi]) / (2*Pi), {n, 0, 20}]] (* Vaclav Kotesovec, Jan 24 2015 *)
    Table[-(-1)^n Re[Pochhammer[1+I, n-1]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 13 2016 *)
  • Maxima
    sum(stirling1(n,2*k+1)*(-1)^(k),k,0,n/2) /* Vladimir Kruchinin, Aug 03 2010 */
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A009454(n): return sum(stirling(n,(k<<1)+1,kind=1,signed=True)*(-1 if k&1 else 1) for k in range(n+1>>1)) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = Sum_{k=0..n-1} (-1)^k*T(n-1, k)*cos(Pi*(n-k-1)/2); T(n, k) = abs(A008276(n, k)). - Paul Barry, Apr 18 2005
abs(a(n)) = abs(Re(Product_{k=1..n-1} (k+I))) with I^2 = -1. - Yalcin Aktar, Jul 02 2005
a(n+2) = -(2n+1)*a(n+1)-(n^2+1)*a(n), a(0)=0, a(1)=1. - Remy Lachaud (pacifik31(AT)aol.com), Dec 25 2005
a(n) = Sum_{k=0..n/2} Stirling1(n,2k+1)*(-1)^k. - Vladimir Kruchinin, Aug 03 2010
a(n) = Im(gamma(i+1)/gamma(i+1-n)). The real part is A003703. - Colin Beveridge, Jul 30 2024

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997

A231531 Imaginary part of Product_{k = 1..n} (k + i), i = sqrt(-1).

Original entry on oeis.org

0, 1, 3, 10, 40, 190, 1050, 6620, 46800, 365300, 3103100, 28269800, 271627200, 2691559000, 26495469000, 238131478000, 1394099824000, -15194495654000, -936096296850000, -29697351895900000, -819329864480400000, -21683886333440500000, -570263312237604700000, -15145164178973569000000, -409583160925827252000000
Offset: 0

Views

Author

Stanislav Sykora, Nov 10 2013

Keywords

Comments

Extension of factorial(n) to factim(n,m) defined by the recurrence a(0)=1, a(n)=a(n-1)*(n+m*i). Hence n! = factim(n,0), while the current sequence shows the imaginary parts of factim(n,1). The real parts are in A231530 and squares of magnitudes are in A101686.
From Peter Bala, Jun 01 2023: (Start)
Compare with A105751(n) = the imaginary part of Product_{k = 0..n} (1 + k*sqrt(-1)). Moll (2012) studied the prime divisors of the terms of A105750 - the real part of Product_{k = 0..n} (1 + k*sqrt(-1)) - and divided the primes into three types. Calculation suggests that a similar division holds in this case.
Type 1: the prime p does not divide any element of the sequence. It appears that for this sequence, unlike in A105750, there are no type 1 primes; i.e., every prime p divides some term of the sequence.
Type 2: primes p such that the p-adic valuation v_p(a(n)) has asymptotically linear behavior. An example is given below.
We conjecture that the set of type 2 primes consists of p = 2 and all primes of the form p == 1 (mod 4). See A002144.
Moll's conjecture 5.5 about type 2 primes extends to this sequence and takes the form:
(i) the 2-adic valuation v_2(a(n)) ~ n/4 as n -> oo.
(ii) for a type 2 prime p, the p-adic valuation v_p(a(n)) ~ n/(p - 1) as n -> oo.
Type 3: primes p such that the sequence of p-adic valuations {v_p(a(n)) : n >= 0} exhibits an oscillatory behavior (this phrase is not precisely defined). An example is given below.
We conjecture that the set of type 3 primes is A002145, primes of the form 4*k + 3. (End)

Examples

			factim(5,1) = -90+190*i. Hence a(5) = 190.
From _Peter Bala_, Jun 01 2023: (Start)
Asymptotic linearity for the type 2 prime p = 5: the sequence of 5-adic valuations [ v_5(a(n)) : n = 1..100] = [0, 0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 11, 11, 11, 13, 11, 12, 12, 13, 12, 12, 13, 13, 13, 14, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 18, 19, 18, 18, 18, 19, 19, 19, 20, 19, 20, 21, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 24, 25, 24, 24, 24, 25, 25, 25].
Note that v_5(a(100)) = 25 = 100/(5 - 1), in line with Moll's conjecture 5.5 above.
Oscillatory behavior for the type 3 prime p = 3: the sequence of 3-adic valuations [ v_3(a(n)) : n = 1..100] = [0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 3, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 3, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 4, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0]. It appears that v_3(a(n)) = 0 unless n == 0 or 2 (mod 6). (End)
		

Crossrefs

Cf. A231530 (real parts), A101686 (squares of magnitudes), A003703, A105750, A105751.
See A242651, A242652 for a pair of similar sequences.

Programs

  • Maple
    seq(simplify(-sinh(Pi)*Im(I!*(n-I)!)/Pi), n=0..19); # Peter Luschny, Oct 23 2015
  • Mathematica
    Table[Im[Pochhammer[1+I, n]], {n, 0, 20}]
    Table[Sum[(-1)^(n+k) StirlingS1[n+1, 2k], {k, 0, (n+1)/2}], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
  • PARI
    Factim(nmax, m)={local(a, k); a=vector(nmax); a[1]=1+0*I;
      for (k=2, nmax, a[k]=a[k-1]*(k-1+m*I); ); return(a); }
    a = Factim(1000,1); imag(a)
    
  • PARI
    t(n) = if( n<0, 0, n! * polcoeff(cos(log(1+x+x*O(x^n))), n));
    vector(50, n, n--; (-1)^n*t(n+1)) \\ Altug Alkan, Oct 22 2015
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A231531(n): return sum(stirling(n+1,k<<1,kind=1)*(1 if k&1 else -1) for k in range((n+1>>1)+1)) # Chai Wah Wu, Feb 22 2024

Formula

From Vladimir Reshetnikov, Oct 22 2015: (Start)
a(n) = Im((1+i)_n) = -Re(Gamma(i)*Gamma(n+1-i))*sinh(Pi)/Pi, where (a)_n is the Pochhammer symbol, i=sqrt(-1).
a(n) = (-1)^n*A003703(n+1).
E.g.f.: sin(log(1-x))/(x-1). (End)
P-recursive: a(n) = (2*n - 1)*a(n-1) - (n^2 - 2*n + 2)*a(n-2) with a(0) = 0 and a(1) = 1. - Peter Bala, Jun 01 2023

A105751 Imaginary part of Product_{k=0..n} (1 + k*i), i = sqrt(-1).

Original entry on oeis.org

0, 1, 3, 0, -40, -90, 1050, 6160, -46800, -549900, 3103100, 67610400, -271627200, -11186357000, 26495469000, 2416003824000, -1394099824000, -662595375078000, -936096296850000, 225382826562400000, 819329864480400000, -93217812901913700000, -570263312237604700000
Offset: 0

Views

Author

Paul Barry, Apr 18 2005

Keywords

Comments

From Peter Bala, Jun 01 2023: (Start)
Compare with A105750(n) = the real part of Product_{k = 0..n} (1 + k*sqrt(-1)). Moll (2012) studied the prime divisors of the terms of A105750 and divided the primes into three classes. Numerical calculation suggests that a similar division holds in this case.
Type 1: primes p that do not divide any element of the sequence {a(n)}.
In this case, unlike in A105750, the set of type 1 primes is empty; that is, every prime p divides some term of this sequence.
Type 2: primes p such that the p-adic valuation v_p(a(n)) has asymptotically linear behavior. An example is given below.
We conjecture that the set of type 2 primes consists of primes p == 1 (mod 4), equivalently, rational primes that split in the field extension Q(sqrt(-1)) of Q, together with the prime p = 2, which ramifies in Q(sqrt(-1)). See A002144.
Moll's conjecture 5.5 extends to this sequence and takes the form:
(i) the 2-adic valuation v_2(a(n)) ~ n/4 as n -> oo.
(ii) for the other primes of type 2, the p-adic valuation v_p(a(n)) ~ n/(p - 1) as n -> oo.
Type 3: primes p such that the sequence of p-adic valuations {v_p(a(n)) : n >= 0} exhibits an oscillatory behavior (this phrase is not precisely defined). An example is given below.
We conjecture that the set of type 3 primes consists of primes p == 3 (mod 4), equivalently, rational primes that remain inert in the field extension Q(sqrt(-1)) of Q. See A002145. (End)

Examples

			From _Peter Bala_, Jun 01 2023: (Start)
The sequence of 5-adic valuations [v_5(a(n)) : n = 4..100] = [1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 12, 11, 11, 13, 11, 12, 13, 13, 12, 12, 14, 13, 13, 14, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 20, 19, 19, 20, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 24, 25, 25, 24, 24, 25, 25, 25].
Note that v_5(a(100)) = 25 = 100/(5 - 1), in agreement with the asymptotic behavior conjectured above.
The sequence of 3-adic valuations [v_3(a(n)) : n >= 4] begins [0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 3, 1, 0, 3, 3, 0, 1, 3, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 3, ...], exhibiting the oscillatory behavior for type 3 primes conjectured above. (End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          ((2*n-1)*a(n-1)-(n^2-2*n+2)*n*a(n-2))/(n-1))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 11 2018
  • Mathematica
    Table[Im[Product[1+k*I,{k,0,n}]],{n,0,22}] (* James C. McMahon, Jan 27 2024 *)
  • PARI
    a(n) = imag(prod(k=0, n, 1+k*I)); \\ Michel Marcus, Apr 11 2018
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A105751(n): return sum(stirling(n+1,n-(k<<1),kind=1)*(-1 if k&1 else 1) for k in range((n>>1)+1)) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = ((2*n-1)*a(n-1)-(n^2-2*n+2)*n*a(n-2))/(n-1) for n > 1, a(n) = n for n < 2. - Alois P. Heinz, Apr 11 2018
From Peter Bala, May 27 2023:(Start)
a(n) = Sum_{k = 0..floor((n+1)/2)} (-1)^k*|Stirling1(n+1, n-2*k)|, where Stirling1(n, k) = A048994(n,k).
The triangular number n*(n+1)/2 divides a(n). See A164652. In particular, if p is an odd prime then p divides a(p).
a(2*n) = (-1)^(n+1)*A003703(2*n+1) for n >= 0.
a(2*n+1) = (-1)^(n+1)*A009454(2*n+2) for n >= 0. (End)

A009024 Expansion of e.g.f.: x*cos(log(1+x)).

Original entry on oeis.org

0, 1, 0, -3, 12, -50, 240, -1330, 8400, -59580, 468000, -4018300, 37237200, -367507400, 3802780800, -40373385000, 423927504000, -4048235126000, 25093796832000, 288695417426000, -18721925937000000, 623644389813900000
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:= [0] cat Coefficients(R!(x*Cos(Log(1+x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 22 2018
  • Mathematica
    With[{nmax = 30}, CoefficientList[Series[x*Cos[Log[1 + x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 22 2018 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(serlaplace(x*cos(log(1+x))))) \\ G. C. Greubel, Jul 22 2018
    

Formula

a(n) = n * A003703(n-1).
a(n+3) = -a(n+2)*(2*n+1)*(n+3)/(n+2) - a(n+1)*(1+n^2)*(n+3)/(n+1), a(0)=0, a(1)=1, a(2)=0. - Sergei N. Gladkovskii, Aug 17 2012

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997

A357720 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cos( sqrt(k) * log(1+x) ).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, -1, 0, 1, 0, -2, 3, 0, 1, 0, -3, 6, -10, 0, 1, 0, -4, 9, -18, 40, 0, 1, 0, -5, 12, -24, 60, -190, 0, 1, 0, -6, 15, -28, 60, -216, 1050, 0, 1, 0, -7, 18, -30, 40, -84, 756, -6620, 0, 1, 0, -8, 21, -30, 0, 200, -756, -1620, 46800, 0, 1, 0, -9, 24, -28, -60, 630, -3360, 13104, -14256, -365300, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 10 2022

Keywords

Examples

			Square array begins:
  1,   1,   1,   1,   1,   1, ...
  0,   0,   0,   0,   0,   0, ...
  0,  -1,  -2,  -3,  -4,  -5, ...
  0,   3,   6,   9,  12,  15, ...
  0, -10, -18, -24, -28, -30, ...
  0,  40,  60,  60,  40,   0, ...
		

Crossrefs

Columns k=0-4 give: A000007, (-1)^n * A003703, A357693, A357718, A357719.
Main diagonal gives A357721.

Programs

  • PARI
    T(n, k) = sum(j=0, n\2, (-k)^j*stirling(n, 2*j, 1));
    
  • PARI
    T(n, k) = (-1)^n*round((prod(j=0, n-1, sqrt(k)*I+j)+prod(j=0, n-1, -sqrt(k)*I+j)))/2;

Formula

T(n,k) = Sum_{j=0..floor(n/2)} (-k)^j * Stirling1(n,2*j).
T(n,k) = (-1)^n * ( (sqrt(k) * i)_n + (-sqrt(k) * i)_n )/2, where (x)_n is the Pochhammer symbol and i is the imaginary unit.
T(0,k) = 1, T(1,k) = 0; T(n,k) = -(2*n-3) * T(n-1,k) - (n^2-4*n+4+k) * T(n-2,k).

A357828 a(n) = Sum_{k=0..floor(n/3)} |Stirling1(n,3*k)|.

Original entry on oeis.org

1, 0, 0, 1, 6, 35, 226, 1645, 13454, 122661, 1236018, 13656951, 164290182, 2138379243, 29949509226, 449188719525, 7183702249542, 122039922034485, 2194928052851898, 41666342509646127, 832547791827455886, 17466905709043534107, 383908421683657311714
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, abs(stirling(n, 3*k, 1)));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N\3, (-log(1-x))^(3*k)/(3*k)!)))
    
  • PARI
    Pochhammer(x, n) = prod(k=0, n-1, x+k);
    a(n) = my(w=(-1+sqrt(3)*I)/2); round(Pochhammer(1, n)+Pochhammer(w, n)+Pochhammer(w^2, n))/3;

Formula

Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . Then the e.g.f. for the sequence is F(-log(1-x)).
a(n) = ( (1)_n + (w)_n + (w^2)_n )/3, where (x)_n is the Pochhammer symbol.
a(n) ~ n!/3. - Vaclav Kotesovec, Jun 10 2025

A051893 a(n) = Sum_{i=1..n-1} i^2*a(i), a(1) = 1.

Original entry on oeis.org

1, 1, 5, 50, 850, 22100, 817700, 40885000, 2657525000, 217917050000, 22009622050000, 2685173890100000, 389350214064500000, 66189536390965000000, 13039338669020105000000, 2946890539198543730000000, 757350868574025738610000000, 219631751886467464196900000000
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 17 1999

Keywords

Crossrefs

Programs

  • Maple
    a := n -> `if`(n=1,1,(sinh(Pi)*GAMMA(n-I)*GAMMA(n+I))/(2*Pi)):
    seq(simplify(a(n)), n=1..18); # Peter Luschny, Oct 19 2016
  • Mathematica
    a[n_] := Pochhammer[2-I, n-2]*Pochhammer[2+I, n-2]; a[1] = 1; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Dec 21 2012, after Vladeta Jovovic *)
    Join[{1},FoldList[Times,1,Range[2,20]^2+1]] (* Harvey P. Dale, Jul 04 2013 *)
    Clear[a]; a[1]=1; a[n_]:=a[n]=Sum[i^2*a[i],{i,1,n-1}]; Table[a[n],{n,1,20}] (* Vaclav Kotesovec, Mar 13 2015 *)

Formula

a(n) = Product_{i=2..n-1} (i^2+1), for n>2. - Vladeta Jovovic, Nov 26 2002
From Vaclav Kotesovec, Mar 13 2015: (Start)
For n > 1, a(n) = A101686(n-1)/2.
a(n) ~ (n-1)!^2 * sinh(Pi)/(2*Pi).
(End)
a(n) = (A003703(n)^2 + A009454(n)^2 + A000007(n-1))/2. - Vladimir Reshetnikov, Oct 15 2016
a(n) = sinh(Pi)*Gamma(n-I)*Gamma(n+I)/(2*Pi) for n>1. - Peter Luschny, Oct 19 2016

Extensions

More terms from Harvey P. Dale, Jul 04 2013

A242651 Real part of Product_{k=0..n} (i-k), where i = sqrt(-1).

Original entry on oeis.org

0, -1, 3, -10, 40, -190, 1050, -6620, 46800, -365300, 3103100, -28269800, 271627200, -2691559000, 26495469000, -238131478000, 1394099824000, 15194495654000, -936096296850000, 29697351895900000, -819329864480400000, 21683886333440500000, -570263312237604700000, 15145164178973569000000
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2014

Keywords

Comments

Shifted version of A003703. - R. J. Mathar, May 30 2014

Examples

			Table of n, Product_{k=0..n} (i-k):
   0,         i
   1,        -1 -           i
   2,         3 +           i
   3,       -10
   4,        40 -        10*i
   5,      -190 +        90*i
   6,      1050 -       730*i
   7,     -6620 +      6160*i
   8,     46800 -     55900*i
   9,   -365300 +    549900*i
  10,   3103100 -   5864300*i
  11, -28269800 +  67610400*i
  12, 271627200 - 839594600*i
		

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 561-562, Section 148.

Crossrefs

A231531 is the same except for signs.

Programs

  • Mathematica
    Table[Re[(I - n)*Pochhammer[1 + I - n, n]], {n, 0, 25}] (* Vaclav Kotesovec, May 23 2021 *)
  • PARI
    a(n) = real(prod(k=0, n, I-k)); \\ Michel Marcus, Jan 03 2021

Formula

a(n) = Sum_{k=0..floor((n+1)/2)} (-1)^k*Stirling1(n+1,2*k). - Ammar Khatab, May 23 2021
Showing 1-10 of 16 results. Next