cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A101455 a(n) = 0 for even n, a(n) = (-1)^((n-1)/2) for odd n. Periodic sequence 1,0,-1,0,...

Original entry on oeis.org

0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0
Offset: 0

Views

Author

Gerald McGarvey, Jan 20 2005

Keywords

Comments

Called X(n) (i.e., Chi(n)) in Hardy and Wright (p. 241), who show that X(n*m) = X(n)*X(m) for all n and m (i.e., X(n) is completely multiplicative) since (n*m - 1)/2 - (n - 1)/2 - (m - 1)/2 = (n - 1)*(m - 1)/2 == 0 (mod 2) when n and m are odd.
Same as A056594 but with offset 1.
From R. J. Mathar, Jul 15 2010: (Start)
The sequence is the non-principal Dirichlet character mod 4. (The principal character is A000035.)
Associated Dirichlet L-functions are for example L(1,chi) = Sum_{n>=1} a(n)/n = A003881, or L(2,chi) = Sum_{n>=1} a(n)/n^2 = A006752, or L(3,chi) = Sum_{n>=1} a(n)/n^3 = A153071. (End)
a(n) is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 0, y = -1, z is arbitrary. - Michael Somos, Nov 27 2019

Examples

			G.f. = x - x^3 + x^5 - x^7 + x^9 - x^11 + x^13 - x^15 + x^17 - x^19 + x^21 + ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=4, Chi_2(n).
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Oxford Univ. Press, 1979, p. 241.

Crossrefs

Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), this sequence (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • GAP
    a := [1, 0];; for n in [3..10^2] do a[n] := a[n-2]; od; a; # Muniru A Asiru, Feb 02 2018
    
  • Magma
    m:=75; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x/(1+x^2))); // G. C. Greubel, Aug 23 2018
    
  • Maple
    a := n -> `if`(n mod 2=0, 0, (-1)^((n-1)/2)):
    seq(a(n), n=1..10^3); # Muniru A Asiru, Feb 02 2018
  • Mathematica
    a[ n_] := {1, 0, -1, 0}[[ Mod[ n, 4, 1]]]; (* Michael Somos, Jan 13 2014 *)
    LinearRecurrence[{0, -1}, {1, 0}, 75] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    {a(n) = if( n%2, (-1)^(n\2))}; /* Michael Somos, Sep 02 2005 */
    
  • PARI
    {a(n) = kronecker( -4, n)}; /* Michael Somos, Mar 30 2012 */
    
  • Python
    def A101455(n): return (0,1,0,-1)[n&3] # Chai Wah Wu, Jun 21 2024

Formula

Multiplicative with a(2^e) = 0, a(p^e) = (-1)^((p^e-1)/2) otherwise. - Mitch Harris May 17 2005
Euler transform of length 4 sequence [0, -1, 0, 1]. - Michael Somos, Sep 02 2005
G.f.: (x - x^3)/(1 - x^4) = x/(1 + x^2). - Michael Somos, Sep 02 2005
G.f. A(x) satisfies: 0 = f(A(x), A(x^2)) where f(u, v) = v - u^2 * (1 + 2*v). - Michael Somos, Aug 04 2011
a(n + 4) = a(n), a(n + 2) = a(-n) = -a(n), a(2*n) = 0, a(2*n + 1) = (-1)^n for all n in Z. - Michael Somos, Aug 04 2011
a(n + 1) = A056594(n). - Michael Somos, Jan 13 2014
REVERT transform is A126120. STIRLING transform of A009454. BINOMIAL transform is A146559. BINOMIAL transform of A009116. BIN1 transform is A108520. MOBIUS transform of A002654. EULER transform is A111335. - Michael Somos, Mar 30 2012
Completely multiplicative with a(p) = 2 - (p mod 4). - Werner Schulte, Feb 01 2018
a(n) = (-(n mod 2))^binomial(n, 2). - Peter Luschny, Sep 08 2018
a(n) = sin(n*Pi/2) = Im(i^n) where i is the imaginary unit. - Jianing Song, Sep 09 2018
From Jianing Song, Nov 14 2018: (Start)
a(n) = ((-4)/n) (or more generally, ((-4^i)/n) for i > 0), where (k/n) is the Kronecker symbol.
E.g.f.: sin(x).
Dirichlet g.f. is the Dirichlet beta function.
a(n) = A091337(n)*A188510(n). (End)

Extensions

a(0) prepended by Jianing Song, Nov 14 2024

A101686 a(n) = Product_{i=1..n} (i^2 + 1).

Original entry on oeis.org

1, 2, 10, 100, 1700, 44200, 1635400, 81770000, 5315050000, 435834100000, 44019244100000, 5370347780200000, 778700428129000000, 132379072781930000000, 26078677338040210000000, 5893781078397087460000000, 1514701737148051477220000000
Offset: 0

Views

Author

Ralf Stephan, Dec 13 2004

Keywords

Comments

Sum of all coefficients in Product_{k=0..n} (x + k^2).
Row sums of triangle of central factorial numbers (A008955).
"HANOWA" is a matrix whose eigenvalues lie on a vertical line. It is an N X N matrix with 2 X 2 blocks with identity matrices in the upper left and lower right blocks and diagonal matrices containing the first N integers in the upper right and lower left blocks. In MATLAB, the following code generates the sequence... for n=0:2:TERMS*2 det(gallery('hanowa',n)) end. - Paul Max Payton, Mar 31 2005
Cilleruelo shows that a(n) is a square only for n = 0 and 3. - Charles R Greathouse IV, Aug 27 2008
a(n) = A231530(n)^2 + A231531(n)^2. - Stanislav Sykora, Nov 10 2013

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 559-561, Section 147. - N. J. A. Sloane, May 29 2014

Crossrefs

Equals 2 * A051893(n+1), n>0. Cf. A156648.

Programs

  • Maple
    p := n -> mul(x^2+1, x=0..n):
    seq(p(i), i=0..14); # Gary Detlefs, Jun 03 2010
  • Mathematica
    Table[Product[k^2+1,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Nov 11 2013 *)
    Table[Pochhammer[I, n + 1] Pochhammer[-I, n + 1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
    Table[Abs[Pochhammer[1 + I, n]]^2, {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2016 *)
  • PARI
    a(n)=prod(k=1,n,k^2+1) \\ Charles R Greathouse IV, Aug 27 2008
    
  • PARI
    {a(n)=if(n==0, 1, 1-polcoeff(sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, 1+j^2*x+x*O(x^n))), n))} \\ Paul D. Hanna, Jan 07 2013
    
  • Python
    from math import prod
    def A101686(n): return prod(i**2+1 for i in range(1,n+1)) # Chai Wah Wu, Feb 22 2024

Formula

G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k^2*x). - Paul D. Hanna, Jan 07 2013
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - ((k+1)^2+1)/(1-x/(x - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
a(n) ~ (n!)^2 * sinh(Pi)/Pi. - Vaclav Kotesovec, Nov 11 2013
From Vladimir Reshetnikov, Oct 25 2015: (Start)
a(n) = Gamma(n+1+i)*Gamma(n+1-i)*sinh(Pi)/Pi.
a(n) ~ 2*exp(-2*n)*n^(2*n+1)*sinh(Pi).
G.f. for 1/a(n): hypergeom([1], [1-i, 1+i], x).
E.g.f. for a(n)/n!: hypergeom([1-i, 1+i], [1], x), where i=sqrt(-1).
D-finite with recurrence: a(0) = 1, a(n) = (n^2+1)*a(n-1). (End)
a(n+3)/a(n+2) - 2 a(n+2)/a(n+1) + a(n+1)/a(n) = 2. - Robert Israel, Oct 25 2015
a(n) = A003703(n+1)^2 + A009454(n+1)^2. - Vladimir Reshetnikov, Oct 15 2016
a(n) = A105750(n)^2 + A105751(n)^2. - Ridouane Oudra, Dec 15 2021

Extensions

More terms from Charles R Greathouse IV, Aug 27 2008
Simpler definition from Gary Detlefs, Jun 03 2010
Entry revised by N. J. A. Sloane, Dec 22 2012
Minor edits by Vaclav Kotesovec, Mar 13 2015

A003703 Expansion of e.g.f. cos(log(1+x)).

Original entry on oeis.org

1, 0, -1, 3, -10, 40, -190, 1050, -6620, 46800, -365300, 3103100, -28269800, 271627200, -2691559000, 26495469000, -238131478000, 1394099824000, 15194495654000, -936096296850000, 29697351895900000, -819329864480400000, 21683886333440500000, -570263312237604700000
Offset: 0

Views

Author

Keywords

Examples

			1 - x^2 + 3*x^3 - 10*x^4 + 40*x^5 - 190*x^6 + 1050*x^7 - 6620*x^8 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:= n-> add(Stirling1(n, 2*k) * (-1)^(k), k=0..floor(n/2)):
    seq(a(n), n=0..20);
  • Mathematica
    CoefficientList[Series[Cos[Log[1 + x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 16 2015 *)
    Table[(-1)^n Im[Pochhammer[1-I, n-1]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 13 2016 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( cos( log( 1 + x + x * O(x^n))), n))} /* Michael Somos, Jul 26 2012 */
    
  • PARI
    a(n) = (-1)^n*(prod(k=0, n-1, I+k)+prod(k=0, n-1, -I+k))/2; \\ Seiichi Manyama, Oct 10 2022
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A003703(n): return sum(stirling(n,k<<1,kind=1,signed=True)*(-1 if k&1 else 1) for k in range((n>>1)+1)) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = Sum_{k=0..n-1} (-1)^(k+1)*T(n-k, k)*sin(Pi*(n-k-1)/2) + 0^n; T(n, k)=abs(A008276(n, k)). - Paul Barry, Apr 18 2005
abs(a(n)) = abs(f(n)) with f(n)=Product_{k=1..n} i+k (where i^2=-1). - Yalcin Aktar, Jul 13 2009
a(n) = Sum_{k=0..floor(n/2)} Stirling1(n,2*k)*(-1)^k. - Vladimir Kruchinin, Jan 29 2011
a(n+2)= -a(n+1)*(2*n+1) - a(n)*(1+n^2), a(0)=1, a(1)=0. - Sergei N. Gladkovskii, Aug 17 2012
a(n) = Re(gamma(i+1)/gamma(i+1-n)). The imaginary part is A009454. - Colin Beveridge, Jul 30 2024

A105750 Real part of Product_{k = 0..n} (1 + k*i), i = sqrt(-1).

Original entry on oeis.org

1, 1, -1, -10, -10, 190, 730, -6620, -55900, 365300, 5864300, -28269800, -839594600, 2691559000, 159300557000, -238131478000, -38894192662000, -15194495654000, 11911522255750000, 29697351895900000, -4477959179352100000, -21683886333440500000, 2029107997508660900000
Offset: 0

Views

Author

Paul Barry, Apr 18 2005

Keywords

Comments

Define u(n) as in A220448 and set f(n) = u(n)*f(n-1) for n >= 2, with f(1)=1 (this defines A220449). Then a(0)=1; a(n) = (-1)^(n+1)*f(n) for n >= 1. - N. J. A. Sloane, Dec 22 2012
From Peter Bala, Jun 03 2023: (Start)
Moll (2012) studied the prime divisors of the terms of A105750 and divided the primes into three classes.
Type 1: primes p that do not divide any element of the sequence {a(n)}. The first few type 1 primes appear to be {3, 7, 11, 23, 31, 47, 59}.
Type 2: primes p such that the p-adic valuation v_p(a(n)) has asymptotically linear behavior. The first few type 2 primes appear to be {2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97}.
We conjecture that the set of type 2 primes consists of primes p == 1 (mod 4), equivalently, rational primes that split in the field extension Q(sqrt(-1)) of Q, together with the prime p = 2, which ramifies in Q(sqrt(-1)). See A002144.
Type 3: primes p such that the sequence of p-adic valuations {v_p(a(n)) : n >= 0} exhibits an oscillatory behavior (this phrase is not precisely defined).
We conjecture that the sets of type 1 and type 3 primes taken together consist of primes p == 3 (mod 4), equivalently, rational primes that remain inert in the field extension Q(sqrt(-1)) of Q. See A002145. (End)

Crossrefs

Programs

  • Maple
    A105750 := proc(n)
        mul(1-k*I,k=0..n) ;
        Re(%) ;
    end proc: # R. J. Mathar, Jan 04 2013
  • Mathematica
    x[n_] := x[n] = If[n == 1, 1, (x[n-1]+n)/(1-n*x[n-1])];
    u[n_] := n*x[n-1]-1;
    f[n_] := f[n] = If[n == 1, 1, u[n]*f[n-1]];
    a[n_] := If[n == 0, 1, (-1)^(n+1)*f[n]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 17 2023, after N. J. A. Sloane *)
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A105750(n): return sum(stirling(n+1,n+1-(k<<1),kind=1)*(-1 if k&1 else 1) for k in range((n+1>>1)+1)) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = Re( Product_{k = 0..n} (1 - k*i) ).
Conjecture: a(n) -3*a(n-1) +(n^2-n+3)*a(n-2) +(-n^2+4*n-5)*a(n-3)=0. - R. J. Mathar, May 23 2014
From Peter Bala, May 28 2023: (Start)
a(n) = Sum_{k = 0..floor((n + 1)/2)} (-1)^k*|Stirling1(n+1, n-2*k+1)|, where Stirling1(n, k) = A048994(n,k).
(n - 1)*a(n) = (2*n - 1)*a(n-1) - n*(n^2 - 2*n + 2)*a(n-2) with a(0) = a(1) = 1 (see Moll, equation 1.16). Mathar's third-order recurrence above follows easily from this.
a(2*n) = (-1)^n*A009454(2*n+1) for n >= 0.
a(2*n-1) = (-1)^n*A003703(2*n) for n >= 1. (End)

Extensions

Corrected by N. J. A. Sloane, Nov 05 2005

A105751 Imaginary part of Product_{k=0..n} (1 + k*i), i = sqrt(-1).

Original entry on oeis.org

0, 1, 3, 0, -40, -90, 1050, 6160, -46800, -549900, 3103100, 67610400, -271627200, -11186357000, 26495469000, 2416003824000, -1394099824000, -662595375078000, -936096296850000, 225382826562400000, 819329864480400000, -93217812901913700000, -570263312237604700000
Offset: 0

Views

Author

Paul Barry, Apr 18 2005

Keywords

Comments

From Peter Bala, Jun 01 2023: (Start)
Compare with A105750(n) = the real part of Product_{k = 0..n} (1 + k*sqrt(-1)). Moll (2012) studied the prime divisors of the terms of A105750 and divided the primes into three classes. Numerical calculation suggests that a similar division holds in this case.
Type 1: primes p that do not divide any element of the sequence {a(n)}.
In this case, unlike in A105750, the set of type 1 primes is empty; that is, every prime p divides some term of this sequence.
Type 2: primes p such that the p-adic valuation v_p(a(n)) has asymptotically linear behavior. An example is given below.
We conjecture that the set of type 2 primes consists of primes p == 1 (mod 4), equivalently, rational primes that split in the field extension Q(sqrt(-1)) of Q, together with the prime p = 2, which ramifies in Q(sqrt(-1)). See A002144.
Moll's conjecture 5.5 extends to this sequence and takes the form:
(i) the 2-adic valuation v_2(a(n)) ~ n/4 as n -> oo.
(ii) for the other primes of type 2, the p-adic valuation v_p(a(n)) ~ n/(p - 1) as n -> oo.
Type 3: primes p such that the sequence of p-adic valuations {v_p(a(n)) : n >= 0} exhibits an oscillatory behavior (this phrase is not precisely defined). An example is given below.
We conjecture that the set of type 3 primes consists of primes p == 3 (mod 4), equivalently, rational primes that remain inert in the field extension Q(sqrt(-1)) of Q. See A002145. (End)

Examples

			From _Peter Bala_, Jun 01 2023: (Start)
The sequence of 5-adic valuations [v_5(a(n)) : n = 4..100] = [1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 12, 11, 11, 13, 11, 12, 13, 13, 12, 12, 14, 13, 13, 14, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 20, 19, 19, 20, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 24, 25, 25, 24, 24, 25, 25, 25].
Note that v_5(a(100)) = 25 = 100/(5 - 1), in agreement with the asymptotic behavior conjectured above.
The sequence of 3-adic valuations [v_3(a(n)) : n >= 4] begins [0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 3, 1, 0, 3, 3, 0, 1, 3, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 3, ...], exhibiting the oscillatory behavior for type 3 primes conjectured above. (End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          ((2*n-1)*a(n-1)-(n^2-2*n+2)*n*a(n-2))/(n-1))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 11 2018
  • Mathematica
    Table[Im[Product[1+k*I,{k,0,n}]],{n,0,22}] (* James C. McMahon, Jan 27 2024 *)
  • PARI
    a(n) = imag(prod(k=0, n, 1+k*I)); \\ Michel Marcus, Apr 11 2018
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A105751(n): return sum(stirling(n+1,n-(k<<1),kind=1)*(-1 if k&1 else 1) for k in range((n>>1)+1)) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = ((2*n-1)*a(n-1)-(n^2-2*n+2)*n*a(n-2))/(n-1) for n > 1, a(n) = n for n < 2. - Alois P. Heinz, Apr 11 2018
From Peter Bala, May 27 2023:(Start)
a(n) = Sum_{k = 0..floor((n+1)/2)} (-1)^k*|Stirling1(n+1, n-2*k)|, where Stirling1(n, k) = A048994(n,k).
The triangular number n*(n+1)/2 divides a(n). See A164652. In particular, if p is an odd prime then p divides a(p).
a(2*n) = (-1)^(n+1)*A003703(2*n+1) for n >= 0.
a(2*n+1) = (-1)^(n+1)*A009454(2*n+2) for n >= 0. (End)

A231530 Real part of Product_{k=1..n} (k+i), where i is the imaginary unit.

Original entry on oeis.org

1, 1, 1, 0, -10, -90, -730, -6160, -55900, -549900, -5864300, -67610400, -839594600, -11186357000, -159300557000, -2416003824000, -38894192662000, -662595375078000, -11911522255750000, -225382826562400000, -4477959179352100000, -93217812901913700000, -2029107997508660900000
Offset: 0

Views

Author

Stanislav Sykora, Nov 10 2013

Keywords

Comments

Extension of factorial(n) to factim(n,m) defined by the recurrence a(0)=1, a(n) = a(n-1)*(n+m*i), where i is the imaginary unit. Hence n! = factim(n,0), while the current sequence lists the real parts of factim(n,1). The imaginary parts are in A231531 and squares of magnitudes are in A101686.

Examples

			factim(5,1) = -90 + 190*i. Hence a(5) = -90.
		

Crossrefs

Cf. A231531 (imaginary parts), A101686 (squares of magnitudes), A009454.
See A242651, A242652 for a pair of similar sequences.

Programs

  • Maple
    seq(simplify(Re(I!*(n-I)!)*sinh(Pi)/Pi),n=0..22); # Peter Luschny, Oct 23 2015
  • Mathematica
    Table[Re[Product[k+I,{k,n}]],{n,0,30}] (* Harvey P. Dale, Aug 04 2016 *)
  • PARI
    Factim(nmax,m)={local(a,k);a=vector(nmax);a[1]=1+0*I;
      for (k=2,nmax,a[k]=a[k-1]*(k-1+m*I););return(a);}
    a = Factim(1000,1); real(a)
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A231530(n): return sum(stirling(n+1,(k<<1)+1,kind=1)*(-1 if k&1 else 1) for k in range((n>>1)+1)) # Chai Wah Wu, Feb 22 2024
  • Sage
    A231530 = lambda n : rising_factorial(1-I, n).real()
    [A231530(n) for n in range(24)] # Peter Luschny, Oct 23 2015
    

Formula

From Peter Luschny, Oct 23 2015: (Start)
a(n) = Re(i!*(n-i)!)*sinh(Pi)/Pi.
a(n) = n!*[x^n](cos(log(1-x))/(1-x)).
a(n) = Sum_{k=0..floor(n/2)} (-1)^(n+k)*Stirling1(n+1,2*k+1).
a(n) = Re(rf(1+i,n)) where rf(k,n) is the rising factorial and i the imaginary unit.
a(n) = (-1)^n*A009454(n+1). (End)

A051893 a(n) = Sum_{i=1..n-1} i^2*a(i), a(1) = 1.

Original entry on oeis.org

1, 1, 5, 50, 850, 22100, 817700, 40885000, 2657525000, 217917050000, 22009622050000, 2685173890100000, 389350214064500000, 66189536390965000000, 13039338669020105000000, 2946890539198543730000000, 757350868574025738610000000, 219631751886467464196900000000
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 17 1999

Keywords

Crossrefs

Programs

  • Maple
    a := n -> `if`(n=1,1,(sinh(Pi)*GAMMA(n-I)*GAMMA(n+I))/(2*Pi)):
    seq(simplify(a(n)), n=1..18); # Peter Luschny, Oct 19 2016
  • Mathematica
    a[n_] := Pochhammer[2-I, n-2]*Pochhammer[2+I, n-2]; a[1] = 1; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Dec 21 2012, after Vladeta Jovovic *)
    Join[{1},FoldList[Times,1,Range[2,20]^2+1]] (* Harvey P. Dale, Jul 04 2013 *)
    Clear[a]; a[1]=1; a[n_]:=a[n]=Sum[i^2*a[i],{i,1,n-1}]; Table[a[n],{n,1,20}] (* Vaclav Kotesovec, Mar 13 2015 *)

Formula

a(n) = Product_{i=2..n-1} (i^2+1), for n>2. - Vladeta Jovovic, Nov 26 2002
From Vaclav Kotesovec, Mar 13 2015: (Start)
For n > 1, a(n) = A101686(n-1)/2.
a(n) ~ (n-1)!^2 * sinh(Pi)/(2*Pi).
(End)
a(n) = (A003703(n)^2 + A009454(n)^2 + A000007(n-1))/2. - Vladimir Reshetnikov, Oct 15 2016
a(n) = sinh(Pi)*Gamma(n-I)*Gamma(n+I)/(2*Pi) for n>1. - Peter Luschny, Oct 19 2016

Extensions

More terms from Harvey P. Dale, Jul 04 2013

A242652 Imaginary part of Product_{k=0..n} (i-k), where i=sqrt(-1).

Original entry on oeis.org

1, -1, 1, 0, -10, 90, -730, 6160, -55900, 549900, -5864300, 67610400, -839594600, 11186357000, -159300557000, 2416003824000, -38894192662000, 662595375078000, -11911522255750000, 225382826562400000, -4477959179352100000, 93217812901913700000, -2029107997508660900000, 46099220630461596000000
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2014

Keywords

Comments

Shifted version of A009454. - R. J. Mathar, May 30 2014

Examples

			Table of n, Product_{k=0..n} (i-k):
   0, i
   1, -1 - i
   2, 3 + i
   3, -10
   4, 40 - 10*i
   5, -190 + 90*i
   6, 1050 - 730*i
   7, -6620 + 6160*i
   8, 46800 - 55900*i
   9, -365300 + 549900*i
  10, 3103100 - 5864300*i
  11, -28269800 + 67610400*i
  12, 271627200 - 839594600*i
		

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 561-562, Section 148.

Crossrefs

Cf. A009454.
A231531 is the same except for signs.

Programs

  • Maple
    a:= n-> Im(mul(I-j, j=0..n)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 03 2021
  • PARI
    a(n) = imag(prod(k=0, n, I-k)); \\ Michel Marcus, Jan 03 2021

A296979 Expansion of e.g.f. arcsin(log(1 + x)).

Original entry on oeis.org

0, 1, -1, 3, -12, 68, -480, 4144, -42112, 494360, -6581880, 98079696, -1617373296, 29245459176, -575367843960, 12235339942344, -279650131845120, 6836254328079936, -177979145883651648, 4916243253642325056, -143602294106947553280, 4422411460743707222784
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 22 2017

Keywords

Examples

			arcsin(log(1 + x)) = x^1/1! - x^2/2! + 3*x^3/3! - 12*x^4/4! + 68*x^5/5! - 480*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(arcsin(log(1+x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[ArcSin[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[-I Log[I Log[1 + x] + Sqrt[1 - Log[1 + x]^2]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) ~ -(-1)^n * n^(n-1) / (exp(1) - 1)^(n - 1/2). - Vaclav Kotesovec, Mar 26 2019

A296980 Expansion of e.g.f. arcsinh(log(1 + x)).

Original entry on oeis.org

0, 1, -1, 1, 0, -2, -30, 446, -3248, 12412, 16020, -211356, -10756944, 284038272, -3556910448, 19122463296, 135073768320, -1286054192304, -108801241372368, 3952903127312016, -65667347037774720, 339816855220730784, 8862271481944986336
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 22 2017

Keywords

Examples

			arcsinh(log(1 + x)) = x^1/1! - x^2/2! + x^3/3! - 2*x^5/5! - 30*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(arcsinh(log(1+x)),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[ArcSinh[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Log[Log[1 + x] + Sqrt[1 + Log[1 + x]^2]], {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-10 of 12 results. Next