cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A109347 Zsigmondy numbers for a = 5, b = 3: Zs(n, 5, 3) is the greatest divisor of 5^n - 3^n (A005058) that is relatively prime to 5^m - 3^m for all positive integers m < n.

Original entry on oeis.org

2, 1, 49, 17, 1441, 19, 37969, 353, 19729, 421, 24325489, 481, 609554401, 10039, 216001, 198593, 381405156481, 12979, 9536162033329, 288961, 18306583, 6125659, 5960417405949649, 346561, 103408180634401, 152787181, 3853528045489, 179655841, 93132223146359169121
Offset: 1

Views

Author

Jonathan Vos Post, Aug 21 2005

Keywords

Crossrefs

Programs

  • PARI
    rad(n) = factorback(factor(n)[, 1])
    lista(nn) = {prad = 1; for (n=1, nn, val = 5^n-3^n; d = divisors(val); gd = 1; forstep(k=#d, 1, -1, if (gcd(d[k], prad) == 1, g = d[k]; break)); print1(g, ", "); prad = ra(prad*val););} \\ Michel Marcus, Nov 15 2016

Extensions

Edited, corrected and extended by Ray Chandler, Aug 26 2005
Definition corrected by Jerry Metzger, Nov 04 2009
More terms from Michel Marcus, Nov 14 2016

A121877 Numbers k such that (5^k - 3^k)/2 = A005059(k) is prime.

Original entry on oeis.org

13, 19, 23, 31, 47, 127, 223, 281, 2083, 5281, 7411, 7433, 19051, 27239, 35863, 70327, 128941, 147571, 182099, 866029
Offset: 1

Views

Author

Alexander Adamchuk, Aug 31 2006, Oct 08 2006

Keywords

Comments

All terms are primes. Their indices are listed in A123704.
Corresponding primes are listed in A123705.
If it exists, a(17) > 125000. - Robert Price, Aug 15 2011
If it exists, a(21) > 1000000. - Jon Grantham, Jul 29 2023

Crossrefs

Programs

  • Mathematica
    Do[f=(5^n-3^n)/2;If[PrimeQ[f],Print[{n,f}]],{n,1,300}]
  • PARI
    forprime(p=2,1e4,if(ispseudoprime((5^p-3^p)>>1),print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011

Formula

a(n) = prime(A123704(n)).

Extensions

More terms from Farideh Firoozbakht, Oct 11 2006
a(13)-a(16) from Robert Price, Aug 15 2011
a(17)-a(19) from Kellen Shenton, May 18 2022
a(20) from Jon Grantham, Jul 29 2023

A122853 Numbers k such that (3^k + 5^k)/8 = A074606(k)/8 is a prime.

Original entry on oeis.org

3, 5, 7, 17, 19, 109, 509, 661, 709, 1231, 12889, 13043, 26723, 43963, 44789
Offset: 1

Views

Author

Alexander Adamchuk, Sep 14 2006

Keywords

Comments

(3^k + 5^k)/8 = A074606(k)/8 = A081186(k)/4.
Corresponding primes of the form (3^k + 5^k)/2^3 are listed in {A121938(n)} = {A079773(a(n))} = {19, 421, 10039, 95383574161, 2384331073699, ...}.
No other terms less than 100000. - Robert Price, Apr 28 2012

Crossrefs

Programs

  • Mathematica
    Do[f=5^n+3^n;If[PrimeQ[f/2^3],Print[{n,f/2^3}]],{n,1,1231}]
  • PARI
    select(n->isprime((3^n + 5^n)/8), vector(2000,i,i)) \\ Charles R Greathouse IV, Feb 13 2011

Extensions

a(11)-a(15) from Robert Price, Apr 28 2012

A007798 Expected number of random moves in Tower of Hanoi problem with n disks starting with a randomly chosen position and ending at a position with all disks on the same peg.

Original entry on oeis.org

0, 0, 2, 18, 116, 660, 3542, 18438, 94376, 478440, 2411882, 12118458, 60769436, 304378620, 1523487422, 7622220078, 38125449296, 190670293200, 953480606162, 4767790451298, 23840114517956, 119204059374180, 596030757224102, 2980185167180118, 14901019979079416
Offset: 0

Views

Author

David G. Poole (dpoole(AT)trentu.ca)

Keywords

Comments

All 3^n possible starting positions are chosen with equal probability.

Crossrefs

Partial sums of A005058.
Cf. A134939.

Programs

  • Magma
    [(5^n-2*3^n+1)/4: n in [0..25]]; // Vincenzo Librandi, Oct 11 2011
    
  • Maple
    seq( (1 -2*3^n +5^n)/4, n=0..25); # G. C. Greubel, Mar 05 2020
  • Mathematica
    Table[(1 -2*3^n +5^n)/4, {n,0,25}] (* G. C. Greubel, Mar 05 2020 *)
  • PARI
    concat([0,0], Vec(-2*x^2/((x-1)*(3*x-1)*(5*x-1)) + O(x^30))) \\ Colin Barker, Sep 17 2014
    
  • Sage
    [(1 -2*3^n +5^n)/4 for n in (0..25)] # G. C. Greubel, Mar 05 2020

Formula

For n>1, a(n) = 8*a(n-1) - 15*a(n-2) + 2 = 2*A016209(n-2). - Henry Bottomley, Jun 06 2000
a(n) = (5^n - 2*3^n + 1) / 4. - Henry Bottomley, Jun 06 2000, proved by Max Alekseyev, Feb 04 2008
From Colin Barker, Sep 17 2014: (Start)
a(n) = 9*a(n-1) - 23*a(n-2) + 15*a(n-3).
G.f.: 2*x^2/((1-x)*(1-3*x)*(1-5*x)). (End)
E.g.f.: (exp(x) - 2*exp(3*x) + exp(5*x))/4. - G. C. Greubel, Mar 05 2020

Extensions

More precise definition and more terms from Max Alekseyev, Feb 04 2008
a(0)=0 prepended by Max Alekseyev, Sep 08 2014

A121938 Primes of the form (3^k + 5^k)/2^3 = A074606(k)/8.

Original entry on oeis.org

19, 421, 10039, 95383574161, 2384331073699, 1925929944387235853055979210606894889560480247048440342330377620014353281101
Offset: 1

Views

Author

Zak Seidov, Sep 10 2006

Keywords

Comments

Corresponding numbers k such that (3^k + 5^k)/8 is prime are listed in A122853. All these numbers are primes. - Alexander Adamchuk, Sep 14 2006
The next term is too large to include. - Alexander Adamchuk, Sep 14 2006

Crossrefs

Programs

  • Mathematica
    Do[f=5^n+3^n;If[PrimeQ[f/2^3],Print[{n,f/2^3}]],{n,1,1231}] (* Alexander Adamchuk, Sep 14 2006 *)

Formula

a(n) = (A122853(n)^3 + A122853(n)^5)/8. a(n) = A074606[A122853(n)]/8 = A081186[A122853(n)]/4. a(n) = A079773[A122853(n)]. - Alexander Adamchuk, Sep 14 2006

Extensions

More terms from Alexander Adamchuk, Sep 14 2006

A195986 Exponent of the largest power of 2 that divides 5^n - 3^n.

Original entry on oeis.org

1, 4, 1, 5, 1, 4, 1, 6, 1, 4, 1, 5, 1, 4, 1, 7, 1, 4, 1, 5, 1, 4, 1, 6, 1, 4, 1, 5, 1, 4, 1, 8, 1, 4, 1, 5, 1, 4, 1, 6, 1, 4, 1, 5, 1, 4, 1, 7, 1, 4, 1, 5, 1, 4, 1, 6, 1, 4, 1, 5, 1, 4, 1, 9, 1, 4, 1, 5, 1, 4, 1, 6, 1, 4, 1, 5, 1, 4, 1, 7, 1, 4, 1, 5, 1, 4
Offset: 1

Views

Author

John W. Layman, Oct 12 2011

Keywords

Comments

Conjecture: a(n) = 1 if A090740 = 1, else a(n) = A090740(n)+1.

Crossrefs

Programs

  • Mathematica
    Table[IntegerExponent[5^n - 3^n, 2], {n, 100}] (* T. D. Noe, Oct 12 2011 *)
  • PARI
    A195986(n) = valuation(5^n - 3^n,2); \\ Antti Karttunen, Nov 06 2018

Formula

a(n) = A007814(A005058(n)). - Antti Karttunen, Nov 06 2018

Extensions

Name clarified by Antti Karttunen, Nov 06 2018

A226511 a(n) = 3*(5^n-3^n)/2.

Original entry on oeis.org

0, 3, 24, 147, 816, 4323, 22344, 113907, 576096, 2900163, 14559864, 72976467, 365413776, 1828663203, 9148098984, 45754843827, 228817265856, 1144215469443, 5721464767704, 28608486099987, 143045917284336, 715240046774883, 3576231614934024, 17881252217848947, 89406543518781216
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2013

Keywords

Crossrefs

Cf. A005058.

Programs

  • Magma
    [(3/2)*(5^n-3^n): n in [0..30]]; // Vincenzo Librandi, Jun 12 2013
  • Mathematica
    CoefficientList[Series[3 x / ((1 - 5 x) (1 - 3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 12 2013 *)
    Table[3 (5^n - 3^n)/2, {n, 0, 25}] (* Bruno Berselli, Jun 12 2013 *)

Formula

G.f.: 3*x/((1-5*x)*(1-3*x)). - Vincenzo Librandi, Jun 12 2013
a(n) = 8*a(n-1) -15*a(n-2) for n>1, a(0)=0, a(1)=3. - Vincenzo Librandi, Jun 12 2013
a(n) = A005059(n)*3 = A005058(n)*3/2.

A248225 a(n) = 6^n - 3^n.

Original entry on oeis.org

0, 3, 27, 189, 1215, 7533, 45927, 277749, 1673055, 10058013, 60407127, 362619909, 2176250895, 13059099693, 78359381127, 470170635669, 2821066860735, 16926530304573, 101559569247927, 609358577749029, 3656154953278575, 21936940180024653
Offset: 0

Views

Author

Vincenzo Librandi, Oct 04 2014

Keywords

Crossrefs

Cf. sequences of the form k^n-3^n: A005061 (k=4), A005058 (k=5), this sequence (k=6), A190541 (k=7), A190543 (k=8), A059410 (k=9), A248226 (k=10), A139741 (k=11).

Programs

  • Magma
    [6^n-3^n: n in [0..30]];
  • Mathematica
    Table[6^n - 3^n, {n, 0, 25}] (* or *) CoefficientList[Series[3 x / ((1 - 3 x) (1 - 6 x)), {x, 0, 30}], x]
    LinearRecurrence[{9,-18},{0,3},30] (* Harvey P. Dale, Jul 12 2025 *)

Formula

G.f.: 3*x/((1-3*x)*(1-6*x)).
a(n) = 9*a(n-1) - 18*a(n-2).
a(n) = 3^n*(2^n - 1) = A000244(n)*A000225(n).
E.g.f.: 2*exp(9*x/2)*sinh(3*x/2). - Elmo R. Oliveira, Mar 31 2025

A120948 8n+3^n+5^n.

Original entry on oeis.org

2, 16, 50, 176, 738, 3408, 16402, 80368, 397250, 1972880, 9824754, 49005360, 244672162, 1222297552, 6108298706, 30531927152, 152630937474, 763068593424, 3815084686258, 19074648589744, 95370918425186, 476847618556496
Offset: 0

Views

Author

Mohammad K. Azarian, Aug 19 2006

Keywords

Crossrefs

Programs

  • Magma
    [8*n+3^n+5^n: n in [0..25]]; // Bruno Berselli, Feb 27 2013
  • Mathematica
    CoefficientList[Series[2 (1 - 2 x - 23 x^2 + 56 x^3)/((1-5 x) (1 - 3 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 26 2013 *)
    Table[8 n + 3^n + 5^n, {n, 0, 25}] (* Bruno Berselli, Feb 27 2013 *)
  • PARI
    for(n=0, 25, print1(8*n+3^n+5^n", ")); \\ Bruno Berselli, Feb 27 2013
    

Formula

G.f.: 2*(1-2*x-23*x^2+56*x^3)/((1-5*x)*(1-3*x)*(1-x)^2). - Vincenzo Librandi, Feb 26 2013

Extensions

Edited by Ray Chandler, Sep 06 2006

A120949 2n+3^n+5^n.

Original entry on oeis.org

2, 10, 38, 158, 714, 3378, 16366, 80326, 397202, 1972826, 9824694, 49005294, 244672090, 1222297474, 6108298622, 30531927062, 152630937378, 763068593322, 3815084686150, 19074648589630, 95370918425066, 476847618556370
Offset: 0

Views

Author

Mohammad K. Azarian, Aug 19 2006

Keywords

Crossrefs

Programs

  • Magma
    [2*n+3^n+5^n: n in [0..30]]; // Vincenzo Librandi, Feb 27 2013
    
  • Mathematica
    Table[2 n + 3^n + 5^n, {n, 0, 30}] (* or *) CoefficientList[Series[2 (1 - 5 x + x^2 + 11 x^3)/((1 -5 x) (1 - 3 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 26 2013 *)
    LinearRecurrence[{10,-32,38,-15},{2,10,38,158},30] (* Harvey P. Dale, Jan 18 2021 *)
  • PARI
    a(n)=2*n+3^n+5^n \\ Charles R Greathouse IV, Feb 27 2013

Formula

G.f.: 2*(1-5*x+x^2+11*x^3)/((1-5*x)*(1-3*x)*(1-x)^2). - Vincenzo Librandi, Feb 26 2013

Extensions

Edited by Ray Chandler, Sep 06 2006
Showing 1-10 of 14 results. Next