A109347 Zsigmondy numbers for a = 5, b = 3: Zs(n, 5, 3) is the greatest divisor of 5^n - 3^n (A005058) that is relatively prime to 5^m - 3^m for all positive integers m < n.
2, 1, 49, 17, 1441, 19, 37969, 353, 19729, 421, 24325489, 481, 609554401, 10039, 216001, 198593, 381405156481, 12979, 9536162033329, 288961, 18306583, 6125659, 5960417405949649, 346561, 103408180634401, 152787181, 3853528045489, 179655841, 93132223146359169121
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Zsigmondy's Theorem
Programs
-
PARI
rad(n) = factorback(factor(n)[, 1]) lista(nn) = {prad = 1; for (n=1, nn, val = 5^n-3^n; d = divisors(val); gd = 1; forstep(k=#d, 1, -1, if (gcd(d[k], prad) == 1, g = d[k]; break)); print1(g, ", "); prad = ra(prad*val););} \\ Michel Marcus, Nov 15 2016
Extensions
Edited, corrected and extended by Ray Chandler, Aug 26 2005
Definition corrected by Jerry Metzger, Nov 04 2009
More terms from Michel Marcus, Nov 14 2016
Comments