cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A028246 Triangular array a(n,k) = (1/k)*Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*i^n; n >= 1, 1 <= k <= n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 12, 6, 1, 15, 50, 60, 24, 1, 31, 180, 390, 360, 120, 1, 63, 602, 2100, 3360, 2520, 720, 1, 127, 1932, 10206, 25200, 31920, 20160, 5040, 1, 255, 6050, 46620, 166824, 317520, 332640, 181440, 40320, 1, 511, 18660, 204630, 1020600, 2739240, 4233600, 3780000, 1814400, 362880
Offset: 1

Views

Author

N. J. A. Sloane, Doug McKenzie (mckfam4(AT)aol.com)

Keywords

Comments

Let M = n X n matrix with (i,j)-th entry a(n+1-j, n+1-i), e.g., if n = 3, M = [1 1 1; 3 1 0; 2 0 0]. Given a sequence s = [s(0)..s(n-1)], let b = [b(0)..b(n-1)] be its inverse binomial transform and let c = [c(0)..c(n-1)] = M^(-1)*transpose(b). Then s(k) = Sum_{i=0..n-1} b(i)*binomial(k,i) = Sum_{i=0..n-1} c(i)*k^i, k=0..n-1. - Gary W. Adamson, Nov 11 2001
From Gary W. Adamson, Aug 09 2008: (Start)
Julius Worpitzky's 1883 algorithm generates Bernoulli numbers.
By way of example [Wikipedia]:
B0 = 1;
B1 = 1/1 - 1/2;
B2 = 1/1 - 3/2 + 2/3;
B3 = 1/1 - 7/2 + 12/3 - 6/4;
B4 = 1/1 - 15/2 + 50/3 - 60/4 + 24/5;
B5 = 1/1 - 31/2 + 180/3 - 390/4 + 360/5 - 120/6;
B6 = 1/1 - 63/2 + 602/3 - 2100/4 + 3360/5 - 2520/6 + 720/7;
...
Note that in this algorithm, odd n's for the Bernoulli numbers sum to 0, not 1, and the sum for B1 = 1/2 = (1/1 - 1/2). B3 = 0 = (1 - 7/2 + 13/3 - 6/4) = 0. The summation for B4 = -1/30. (End)
Pursuant to Worpitzky's algorithm and given M = A028246 as an infinite lower triangular matrix, M * [1/1, -1/2, 1/3, ...] (i.e., the Harmonic series with alternate signs) = the Bernoulli numbers starting [1/1, 1/2, 1/6, ...]. - Gary W. Adamson, Mar 22 2012
From Tom Copeland, Oct 23 2008: (Start)
G(x,t) = 1/(1 + (1-exp(x*t))/t) = 1 + 1 x + (2 + t)*x^2/2! + (6 + 6t + t^2)*x^3/3! + ... gives row polynomials for A090582, the f-polynomials for the permutohedra (see A019538).
G(x,t-1) = 1 + 1*x + (1 + t)*x^2 / 2! + (1 + 4t + t^2)*x^3 / 3! + ... gives row polynomials for A008292, the h-polynomials for permutohedra.
G[(t+1)x,-1/(t+1)] = 1 + (1+ t) x + (1 + 3t + 2 t^2) x^2 / 2! + ... gives row polynomials for the present triangle. (End)
The Worpitzky triangle seems to be an apt name for this triangle. - Johannes W. Meijer, Jun 18 2009
If Pascal's triangle is written as a lower triangular matrix and multiplied by A028246 written as an upper triangular matrix, the product is a matrix where the (i,j)-th term is (i+1)^j. For example,
1,0,0,0 1,1,1, 1 1,1, 1, 1
1,1,0,0 * 0,1,3, 7 = 1,2, 4, 8
1,2,1,0 0,0,2,12 1,3, 9,27
1,3,3,1 0,0,0, 6 1,4,16,64
So, numbering all three matrices' rows and columns starting at 0, the (i,j) term of the product is (i+1)^j. - Jack A. Cohen (ProfCohen(AT)comcast.net), Aug 03 2010
The Fi1 and Fi2 triangle sums are both given by sequence A000670. For the definition of these triangle sums see A180662. The mirror image of the Worpitzky triangle is A130850. - Johannes W. Meijer, Apr 20 2011
Let S_n(m) = 1^m + 2^m + ... + n^m. Then, for n >= 0, we have the following representation of S_n(m) as a linear combination of the binomial coefficients:
S_n(m) = Sum_{i=1..n+1} a(i+n*(n+1)/2)*C(m,i). E.g., S_2(m) = a(4)*C(m,1) + a(5)*C(m,2) + a(6)*C(m,3) = C(m,1) + 3*C(m,2) + 2*C(m,3). - Vladimir Shevelev, Dec 21 2011
Given the set X = [1..n] and 1 <= k <= n, then a(n,k) is the number of sets T of size k of subset S of X such that S is either empty or else contains 1 and another element of X and such that any two elemements of T are either comparable or disjoint. - Michael Somos, Apr 20 2013
Working with the row and column indexing starting at -1, a(n,k) gives the number of k-dimensional faces in the first barycentric subdivision of the standard n-dimensional simplex (apply Brenti and Welker, Lemma 2.1). For example, the barycentric subdivision of the 2-simplex (a triangle) has 1 empty face, 7 vertices, 12 edges and 6 triangular faces giving row 4 of this triangle as (1,7,12,6). Cf. A053440. - Peter Bala, Jul 14 2014
See A074909 and above g.f.s for associations among this array and the Bernoulli polynomials and their umbral compositional inverses. - Tom Copeland, Nov 14 2014
An e.g.f. G(x,t) = exp[P(.,t)x] = 1/t - 1/[t+(1-t)(1-e^(-xt^2))] = (1-t) * x + (-2t + 3t^2 - t^3) * x^2/2! + (6t^2 - 12t^3 + 7t^4 - t^5) * x^3/3! + ... for the shifted, reverse, signed polynomials with the first element nulled, is generated by the infinitesimal generator g(u,t)d/du = [(1-u*t)(1-(1+u)t)]d/du, i.e., exp[x * g(u,t)d/du] u eval. at u=0 generates the polynomials. See A019538 and the G. Rzadkowski link below for connections to the Bernoulli and Eulerian numbers, a Ricatti differential equation, and a soliton solution to the KdV equation. The inverse in x of this e.g.f. is Ginv(x,t) = (-1/t^2)*log{[1-t(1+x)]/[(1-t)(1-tx)]} = [1/(1-t)]x + [(2t-t^2)/(1-t)^2]x^2/2 + [(3t^2-3t^3+t^4)/(1-t)^3]x^3/3 + [(4t^3-6t^4+4t^5-t^6)/(1-t)^4]x^4/4 + ... . The numerators are signed, shifted A135278 (reversed A074909), and the rational functions are the columns of A074909. Also, dG(x,t)/dx = g(G(x,t),t) (cf. A145271). (Analytic G(x,t) added, and Ginv corrected and expanded on Dec 28 2015.) - Tom Copeland, Nov 21 2014
The operator R = x + (1 + t) + t e^{-D} / [1 + t(1-e^(-D))] = x + (1+t) + t - (t+t^2) D + (t+3t^2+2t^3) D^2/2! - ... contains an e.g.f. of the reverse row polynomials of the present triangle, i.e., A123125 * A007318 (with row and column offset 1 and 1). Umbrally, R^n 1 = q_n(x;t) = (q.(0;t)+x)^n, with q_m(0;t) = (t+1)^(m+1) - t^(m+1), the row polynomials of A074909, and D = d/dx. In other words, R generates the Appell polynomials associated with the base sequence A074909. For example, R 1 = q_1(x;t) = (q.(0;t)+x) = q_1(0;t) + q__0(0;t)x = (1+2t) + x, and R^2 1 = q_2(x;t) = (q.(0;t)+x)^2 = q_2(0:t) + 2q_1(0;t)x + q_0(0;t)x^2 = 1+3t+3t^2 + 2(1+2t)x + x^2. Evaluating the polynomials at x=0 regenerates the base sequence. With a simple sign change in R, R generates the Appell polynomials associated with A248727. - Tom Copeland, Jan 23 2015
For a natural refinement of this array, see A263634. - Tom Copeland, Nov 06 2015
From Wolfdieter Lang, Mar 13 2017: (Start)
The e.g.f. E(n, x) for {S(n, m)}{m>=0} with S(n, m) = Sum{k=1..m} k^n, n >= 0, (with undefined sum put to 0) is exp(x)*R(n+1, x) with the exponential row polynomials R(n, x) = Sum_{k=1..n} a(n, k)*x^k/k!. E.g., e.g.f. for n = 2, A000330: exp(x)*(1*x/1!+3*x^2/2!+2*x^3/3!).
The o.g.f. G(n, x) for {S(n, m)}{m >=0} is then found by Laplace transform to be G(n, 1/p) = p*Sum{k=1..n} a(n+1, k)/(p-1)^(2+k).
Hence G(n, x) = x/(1 - x)^(n+2)*Sum_{k=1..n} A008292(n,k)*x^(k-1).
E.g., n=2: G(2, 1/p) = p*(1/(p-1)^2 + 3/(p-1)^3 + 2/(p-1)^4) = p^2*(1+p)/(p-1)^4; hence G(2, x) = x*(1+x)/(1-x)^4.
This works also backwards: from the o.g.f. to the e.g.f. of {S(n, m)}_{m>=0}. (End)
a(n,k) is the number of k-tuples of pairwise disjoint and nonempty subsets of a set of size n. - Dorian Guyot, May 21 2019
From Rajesh Kumar Mohapatra, Mar 16 2020: (Start)
a(n-1,k) is the number of chains of length k in a partially ordered set formed from subsets of an n-element set ordered by inclusion such that the first term of the chains is either the empty set or an n-element set.
Also, a(n-1,k) is the number of distinct k-level rooted fuzzy subsets of an n-set ordered by set inclusion. (End)
The relations on p. 34 of Hasan (also p. 17 of Franco and Hasan) agree with the relation between A019538 and this entry given in the formula section. - Tom Copeland, May 14 2020
T(n,k) is the size of the Green's L-classes in the D-classes of rank (k-1) in the semigroup of partial transformations on an (n-1)-set. - Geoffrey Critzer, Jan 09 2023
T(n,k) is the number of strongly connected binary relations on [n] that have period k (A367948) and index 1. See Theorem 5.4.25(6) in Ki Hang Kim reference. - Geoffrey Critzer, Dec 07 2023

Examples

			The triangle a(n, k) starts:
n\k 1   2    3     4      5      6      7      8     9
1:  1
2:  1   1
3:  1   3    2
4:  1   7   12     6
5:  1  15   50    60     24
6:  1  31  180   390    360    120
7:  1  63  602  2100   3360   2520    720
8:  1 127 1932 10206  25200  31920  20160   5040
9:  1 255 6050 46620 166824 317520 332640 181440 40320
... [Reformatted by _Wolfdieter Lang_, Mar 26 2015]
-----------------------------------------------------
Row 5 of triangle is {1,15,50,60,24}, which is {1,15,25,10,1} times {0!,1!,2!,3!,4!}.
From _Vladimir Shevelev_, Dec 22 2011: (Start)
Also, for power sums, we have
S_0(n) = C(n,1);
S_1(n) = C(n,1) +    C(n,2);
S_2(n) = C(n,1) +  3*C(n,2) +  2*C(n,3);
S_3(n) = C(n,1) +  7*C(n,2) + 12*C(n,3) +  6*C(n,4);
S_4(n) = C(n,1) + 15*C(n,2) + 50*C(n,3) + 60*C(n,4) + 24*C(n,5); etc.
(End)
For X = [1,2,3], the sets T are {{}}, {{},{1,2}}, {{},{1,3}}, {{},{1,2,3}}, {{},{1,2},{1,2,3}}, {{},{1,3},{1,2,3}} and so a(3,1)=1, a(3,2)=3, a(3,3)=2. - _Michael Somos_, Apr 20 2013
		

References

  • Ki Hang Kim, Boolean Matrix Theory and Applications, Marcel Dekker, New York and Basel (1982).

Crossrefs

Dropping the column of 1's gives A053440.
Without the k in the denominator (in the definition), we get A019538. See also the Stirling number triangle A008277.
Row sums give A000629(n-1) for n >= 1.
Cf. A027642, A002445. - Gary W. Adamson, Aug 09 2008
Appears in A161739 (RSEG2 triangle), A161742 and A161743. - Johannes W. Meijer, Jun 18 2009
Binomial transform is A038719. Cf. A131689.
Cf. A119879.
From Rajesh Kumar Mohapatra, Mar 29 2020: (Start)
A000007(n-1) (column k=1), A000225(n-1) (column k=2), A028243(n-1) (column k=3), A028244(n-1) (column k=4), A028245(n-1) (column k=5), for n > 0.
Diagonal gives A000142(n-1), for n >=1.
Next-to-last diagonal gives A001710,
Third, fourth, fifth, sixth, seventh external diagonal respectively give A005460, A005461, A005462, A005463, A005464. (End)

Programs

  • GAP
    Flat(List([1..10], n-> List([1..n], k-> Stirling2(n,k)* Factorial(k-1) ))); # G. C. Greubel, May 30 2019
    
  • Magma
    [[StirlingSecond(n,k)*Factorial(k-1): k in [1..n]]: n in [1..10]]; // G. C. Greubel, May 30 2019
    
  • Maple
    a := (n,k) -> add((-1)^(k-i)*binomial(k,i)*i^n, i=0..k)/k;
    seq(print(seq(a(n,k),k=1..n)),n=1..10);
    T := (n,k) -> add(eulerian1(n,j)*binomial(n-j,n-k), j=0..n):
    seq(print(seq(T(n,k),k=0..n)),n=0..9); # Peter Luschny, Jul 12 2013
  • Mathematica
    a[n_, k_] = Sum[(-1)^(k-i) Binomial[k,i]*i^n, {i,0,k}]/k; Flatten[Table[a[n, k], {n, 10}, {k, n}]] (* Jean-François Alcover, May 02 2011 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, n! * polcoeff( (x / log(1 + x + x^2 * O(x^n) ))^(n+1), n-k))}; /* Michael Somos, Oct 02 2002 */
    
  • PARI
    {T(n,k) = stirling(n,k,2)*(k-1)!}; \\ G. C. Greubel, May 31 2019
    
  • Python
    # Assuming offset (n, k) = (0, 0).
    def T(n, k):
        if k >  n: return 0
        if k == 0: return 1
        return k*T(n - 1, k - 1) + (k + 1)*T(n - 1, k)
    for n in range(9):
        print([T(n, k) for k in range(n + 1)])  # Peter Luschny, Apr 26 2022
  • Sage
    def A163626_row(n) :
        x = polygen(ZZ,'x')
        A = []
        for m in range(0, n, 1) :
            A.append((-x)^m)
            for j in range(m, 0, -1):
                A[j - 1] = j * (A[j - 1] - A[j])
        return list(A[0])
    for i in (1..7) : print(A163626_row(i))  # Peter Luschny, Jan 25 2012
    
  • Sage
    [[stirling_number2(n,k)*factorial(k-1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, May 30 2019
    

Formula

E.g.f.: -log(1-y*(exp(x)-1)). - Vladeta Jovovic, Sep 28 2003
a(n, k) = S2(n, k)*(k-1)! where S2(n, k) is a Stirling number of the second kind (cf. A008277). Also a(n,k) = T(n,k)/k, where T(n, k) = A019538.
Essentially same triangle as triangle [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...] where DELTA is Deléham's operator defined in A084938, but the notation is different.
Sum of terms in n-th row = A000629(n) - Gary W. Adamson, May 30 2005
The row generating polynomials P(n, t) are given by P(1, t)=t, P(n+1, t) = t(t+1)(d/dt)P(n, t) for n >= 1 (see the Riskin and Beckwith reference). - Emeric Deutsch, Aug 09 2005
From Gottfried Helms, Jul 12 2006: (Start)
Delta-matrix as can be read from H. Hasse's proof of a connection between the zeta-function and Bernoulli numbers (see link below).
Let P = lower triangular matrix with entries P[row,col] = binomial(row,col).
Let J = unit matrix with alternating signs J[r,r]=(-1)^r.
Let N(m) = column matrix with N(m)(r) = (r+1)^m, N(1)--> natural numbers.
Let V = Vandermonde matrix with V[r,c] = (r+1)^c.
V is then also N(0)||N(1)||N(2)||N(3)... (indices r,c always beginning at 0).
Then Delta = P*J * V and B' = N(-1)' * Delta, where B is the column matrix of Bernoulli numbers and ' means transpose, or for the single k-th Bernoulli number B_k with the appropriate column of Delta,
B_k = N(-1)' * Delta[ *,k ] = N(-1)' * P*J * N(k).
Using a single column instead of V and assuming infinite dimension, H. Hasse showed that in x = N(-1) * P*J * N(s), where s can be any complex number and s*zeta(1-s) = x.
His theorem reads: s*zeta(1-s) = Sum_{n>=0..inf} (n+1)^-1*delta(n,s), where delta(n,s) = Sum_{j=0..n} (-1)^j * binomial(n,j) * (j+1)^s.
(End)
a(n,k) = k*a(n-1,k) + (k-1)*a(n-1,k-1) with a(n,1) = 1 and a(n,n) = (n-1)!. - Johannes W. Meijer, Jun 18 2009
Rephrasing the Meijer recurrence above: Let M be the (n+1)X(n+1) bidiagonal matrix with M(r,r) = M(r,r+1) = r, r >= 1, in the two diagonals and the rest zeros. The row a(n+1,.) of the triangle is row 1 of M^n. - Gary W. Adamson, Jun 24 2011
From Tom Copeland, Oct 11 2011: (Start)
With e.g.f.. A(x,t) = G[(t+1)x,-1/(t+1)]-1 (from 2008 comment) = -1 + 1/[1-(1+t)(1-e^(-x))] = (1+t)x + (1+3t+2t^2)x^2/2! + ..., the comp. inverse in x is
B(x,t)= -log(t/(1+t)+1/((1+t)(1+x))) = (1/(1+t))x - ((1+2t)/(1+t)^2)x^2/2 + ((1+3t+3t^2)/(1+t)^3)x^3/3 + .... The numerators are the row polynomials of A074909, and the rational functions are (omitting the initial constants) signed columns of the re-indexed Pascal triangle A007318.
Let h(x,t)= 1/(dB/dx) = (1+x)(1+t(1+x)), then the row polynomial P(n,t) = (1/n!)(h(x,t)*d/dx)^n x, evaluated at x=0, A=exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t), with P(1,t)=1+t. (Series added Dec 29 2015.)(End)
Let denote the Eulerian numbers A173018(n,k), then T(n,k) = Sum_{j=0..n} *binomial(n-j,n-k). - Peter Luschny, Jul 12 2013
Matrix product A007318 * A131689. The n-th row polynomial R(n,x) = Sum_{k >= 1} k^(n-1)*(x/(1 + x))^k, valid for x in the open interval (-1/2, inf). Cf A038719. R(n,-1/2) = (-1)^(n-1)*(2^n - 1)*Bernoulli(n)/n. - Peter Bala, Jul 14 2014
a(n,k) = A141618(n,k) / C(n,k-1). - Tom Copeland, Oct 25 2014
For the row polynomials, A028246(n,x) = A019538(n-1,x) * (1+x). - Tom Copeland, Dec 28 2015
n-th row polynomial R(n,x) = (1+x) o (1+x) o ... o (1+x) (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See example E11 in the Bala link. - Peter Bala, Jan 12 2018
From Dorian Guyot, May 21 2019: (Start)
Sum_{i=0..k} binomial(k,i) * a(n,i) = (k+1)^n.
Sum_{k=0..n} a(n,k) = 2*A000670(n).
(End)
With all offsets 0, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of this entry, A028246, are given by x^n * A_n(1 + 1/x;0). Other specializations of A_n(x;y) give A046802, A090582, A119879, A130850, and A248727. - Tom Copeland, Jan 24 2020
The row generating polynomials R(n,x) = Sum_{i=1..n} a(n,i) * x^i satisfy the recurrence equation R(n+1,x) = R(n,x) + Sum_{k=0..n-1} binomial(n-1,k) * R(k+1,x) * R(n-k,x) for n >= 1 with initial value R(1,x) = x. - Werner Schulte, Jun 17 2021

Extensions

Definition corrected by Li Guo, Dec 16 2006
Typo in link corrected by Johannes W. Meijer, Oct 17 2009
Error in title corrected by Johannes W. Meijer, Sep 24 2010
Edited by M. F. Hasler, Oct 29 2014

A062139 Coefficient triangle of generalized Laguerre polynomials n!*L(n,2,x) (rising powers of x).

Original entry on oeis.org

1, 3, -1, 12, -8, 1, 60, -60, 15, -1, 360, -480, 180, -24, 1, 2520, -4200, 2100, -420, 35, -1, 20160, -40320, 25200, -6720, 840, -48, 1, 181440, -423360, 317520, -105840, 17640, -1512, 63, -1, 1814400, -4838400, 4233600
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

The row polynomials s(n,x) := n!*L(n,2,x) = Sum_{m=0..n} a(n,m)*x^m have e.g.f. exp(-z*x/(1-z))/(1-z)^3. They are Sheffer polynomials satisfying the binomial convolution identity s(n,x+y) = Sum_{k=0..n} binomial(n,k)*s(k,x)*p(n-k,y), with polynomials p(n,x) = Sum_{m=1..n} |A008297(n,m)|*(-x)^m, n >= 1 and p(0,x)=1 (for Sheffer polynomials see A048854 for S. Roman reference).
This unsigned matrix is embedded in the matrix for n!*L(n,-2,-x). Introduce 0,0 to each unsigned row and then add 1,-1,1 to the array as the first two rows to generate n!*L(n,-2,-x). - Tom Copeland, Apr 20 2014
The unsigned n-th row reverse polynomial equals the numerator polynomial of the finite continued fraction 1 - x/(1 + (n+1)*x/(1 + n*x/(1 + n*x/(1 + ... + 2*x/(1 + 2*x/(1 + x/(1 + x/(1)))))))). Cf. A089231. The denominator polynomial of the continued fraction is the (n+1)-th row polynomial of A144084. An example is given below. - Peter Bala, Oct 06 2019

Examples

			Triangle begins:
     1;
     3,    -1;
    12,    -8,    1;
    60,   -60,   15,   -1;
   360,  -480,  180,  -24,  1;
  2520, -4200, 2100, -420, 35, -1;
  ...
2!*L(2,2,x) = 12 - 8*x + x^2.
Unsigned row 3 polynomial in reverse form as the numerator of a continued fraction: 1 - x/(1 + 4*x/(1 + 3*x/(1 + 3*x/(1 + 2*x/(1 + 2*x/(1 + x/(1 + x))))))) = (60*x^3 + 60*x^2 + 15*x + 1)/(24*x^4 + 96*x^3 + 72*x^2 + 16*x + 1). - _Peter Bala_, Oct 06 2019
		

Crossrefs

For m=0..5 the (unsigned) columns give A001710, A005990, A005461, A062193-A062195. The row sums (signed) give A062197, the row sums (unsigned) give A052852.

Programs

  • Maple
    with(PolynomialTools):
    p := n -> (n+2)!*hypergeom([-n],[3],x)/2:
    seq(CoefficientList(simplify(p(n)), x), n=0..9); # Peter Luschny, Apr 08 2015
  • Mathematica
    Flatten[Table[((-1)^m)*n!*Binomial[n+2,n-m]/m!,{n,0,8},{m,0,n}]] (* Indranil Ghosh, Feb 24 2017 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(((-1)^k)*n!*binomial(n+2, n-k)/k!, ", ");); print(););} \\ Michel Marcus, May 06 2014
    
  • PARI
    row(n) = Vecrev(n!*pollaguerre(n, 2)); \\ Michel Marcus, Feb 06 2021
    
  • Python
    import math
    f=math.factorial
    def C(n,r):return f(n)//f(r)//f(n-r)
    i=0
    for n in range(16):
        for m in range(n+1):
            i += 1
            print(i,((-1)**m)*f(n)*C(n+2,n-m)//f(m)) # Indranil Ghosh, Feb 24 2017
    
  • Python
    from functools import cache
    @cache
    def T(n, k):
        if k < 0 or k > n: return 0
        if k == n: return (-1)**n
        return (n + k + 2) * T(n-1, k) - T(n-1, k-1)
    for n in range(7): print([T(n,k) for k in range(n + 1)])
    # Peter Luschny, Mar 25 2024

Formula

T(n, m) = ((-1)^m)*n!*binomial(n+2, n-m)/m!.
E.g.f. for m-th column sequence: ((-x/(1-x))^m)/(m!*(1-x)^3), m >= 0.
n!*L(n,2,x) = (n+2)!*hypergeom([-n],[3],x)/2. - Peter Luschny, Apr 08 2015
From Werner Schulte, Mar 24 2024: (Start)
T(n, k) = (n+k+2) * T(n-1, k) - T(n-1, k-1) with initial values T(0, 0) = 1 and T(i, j) = 0 if j < 0 or j > i.
T = T^(-1), i.e., T is matrix inverse of T. (End)

A130850 Triangle read by rows, 0 <= k <= n, T(n,k) = Sum_{j=0..n} A(n,j)*binomial(n-j,k) where A(n,j) are the Eulerian numbers A173018.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 12, 7, 1, 24, 60, 50, 15, 1, 120, 360, 390, 180, 31, 1, 720, 2520, 3360, 2100, 602, 63, 1, 5040, 20160, 31920, 25200, 10206, 1932, 127, 1, 40320, 181440, 332640, 317520, 166824, 46620, 6050, 255, 1, 362880, 1814400, 3780000, 4233600, 2739240, 1020600, 204630, 18660, 511, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 20 2007

Keywords

Comments

Old name was: Triangle T(n,k), 0<=k<=n, read by rows given by [1,1,2,2,3,3,4,4,5,5,...] DELTA [1,0,2,0,3,0,4,0,5,0,6,0,...] where DELTA is the operator defined in A084938.
Vandervelde (2018) refers to this as the Worpitzky number triangle - N. J. A. Sloane, Mar 27 2018 [Named after the German mathematician Julius Daniel Theodor Worpitzky (1835-1895). - Amiram Eldar, Jun 24 2021]
Triangle given by A123125*A007318 (as infinite lower triangular matrices), A123125 = Euler's triangle, A007318 = Pascal's triangle; A007318*A123125 gives A046802.
Taylor coefficients of Eulerian polynomials centered at 1. - Louis Zulli, Nov 28 2015
A signed refinement is A263634. - Tom Copeland, Nov 14 2016
With all offsets 0, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of A046802 (the h-polynomials of the stellahedra) are given by h_n(x) = A_n(x;1); the row polynomials of A248727 (the face polynomials of the stellahedra), by f_n(x) = A_n(1 + x;1); the Swiss-knife polynomials of A119879, by Sw_n(x) = A_n(-1;1 + x); and the row polynomials of this entry (the Worpitsky triangle, A130850), by w_n(x) = A(1 + x;0). Other specializations of A_n(x;y) give A090582 (the f-polynomials of the permutohedra, cf. also A019538) and A028246 (another version of the Worpitsky triangle). - Tom Copeland, Jan 24 2020

Examples

			Triangle begins:
1
1      1
2      3       1
6      12      7       1
24     60      50      15      1
120    360     390     180     31      1
720    2520    3360    2100    602     63      1
5040   20160   31920   25200   10206   1932    127    1
40320  181440  332640  317520  166824  46620   6050   255   1
362880 1814400 3780000 4233600 2739240 1020600 204630 18660 511 1
...
		

Crossrefs

Programs

  • Mathematica
    Table[(n-k)!*StirlingS2[n+1, n-k+1], {n, 0, 10}, {k, 0, n}] (* G. C. Greubel, Nov 15 2015 *)
  • PARI
    t(n, k) = (n-k)!*stirling(n+1, n-k+1, 2);
    tabl(nn) = for (n=0, 10, for (k=0, n, print1(t(n,k),", ")); print()); \\ Michel Marcus, Nov 16 2015
  • Sage
    from sage.combinat.combinat import eulerian_number
    def A130850(n, k):
        return add(eulerian_number(n, j)*binomial(n-j, k) for j in (0..n))
    for n in (0..7): [A130850(n, k) for k in (0..n)] # Peter Luschny, May 21 2013
    

Formula

T(n,k) = (-1)^k*A075263(n,k).
T(n,k) = (n-k)!*A008278(n+1,k+1).
T(n,n-1) = 2^n - 1 for n > 0. - Derek Orr, Dec 31 2015
E.g.f.: x/(e^(-x*t)*(1+x)-1). - Tom Copeland, Nov 14 2016
Sum_{k=1..floor(n/2)} T(n,2k) = Sum_{k=0..floor(n/2)} T(n,2k+1) = A000670(n). - Jacob Sprittulla, Oct 03 2021

Extensions

New name from Peter Luschny, May 21 2013

A005462 Number of simplices in barycentric subdivision of n-simplex.

Original entry on oeis.org

1, 31, 602, 10206, 166824, 2739240, 46070640, 801496080, 14495120640, 273158645760, 5368729766400, 110055327782400, 2351983118284800, 52361635508582400, 1213240925049753600, 29227769646147072000, 731310069474496512000, 18984684514588176384000
Offset: 3

Views

Author

Keywords

References

  • R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
  • R. K. Guy, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Factorial(n-3)*StirlingSecond(n+2,n-2): n in [3..30]]; // G. C. Greubel, Nov 22 2022
    
  • Mathematica
    Table[(n-3)!*StirlingS2[n+2,n-2], {n,3,30}] (* G. C. Greubel, Nov 22 2022 *)
  • SageMath
    [factorial(n-3)*stirling_number2(n+2,n-2) for n in range(3,31)] # G. C. Greubel, Nov 22 2022

Formula

Essentially Stirling numbers of second kind - see A028246.
a(n) = Stirling2(n+2,n-2)*(n-3)!. - Alois P. Heinz, Aug 28 2022

A005463 Number of simplices in barycentric subdivision of n-simplex.

Original entry on oeis.org

1, 63, 1932, 46620, 1020600, 21538440, 451725120, 9574044480, 207048441600, 4595022432000, 105006251750400, 2475732702643200, 60284572969420800, 1516762345722624000, 39433286715863040000, 1059143615076298752000, 29378569022287220736000, 841159994641469927424000
Offset: 4

Views

Author

Keywords

References

  • R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
  • R. K. Guy, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Factorial(n-4)*StirlingSecond(n+2,n-3): n in [4..35]]; // G. C. Greubel, Nov 22 2022
    
  • Maple
    a:= n-> Stirling2(2+n,n-3)*(n-4)!:
    seq(a(n), n=4..21);  # Alois P. Heinz, Apr 27 2022
  • Mathematica
    Table[(n-4)!*StirlingS2[n+2, n-3], {n,4,35}] (* G. C. Greubel, Nov 22 2022 *)
  • SageMath
    [factorial(n-4)*stirling_number2(n+2,n-3) for n in range(4,36)] # G. C. Greubel, Nov 22 2022

Formula

Essentially Stirling numbers of second kind - see A028246.
a(n) = (n-4)! * Stirling2(n+2, n-3). - Alois P. Heinz, Apr 27 2022

Extensions

More terms from Alois P. Heinz, Apr 27 2022

A005464 Number of simplices in barycentric subdivision of n-simplex.

Original entry on oeis.org

1, 127, 6050, 204630, 5921520, 158838240, 4115105280, 105398092800, 2706620716800, 70309810771200, 1858166876966400, 50148628078348800, 1385482985542656000, 39245951652171264000, 1140942623868343296000, 34060437199245929472000, 1044402668566817624064000, 32895725269182358302720000
Offset: 5

Views

Author

Keywords

References

  • R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
  • R. K. Guy, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Factorial(n-5)*StirlingSecond(n+2,n-4): n in [5..35]]; // G. C. Greubel, Nov 22 2022
    
  • Maple
    seq((d+2)!*(63*d^5-945*d^4+5355*d^3-13951*d^2+15806*d-5304)/2903040,d=5..30) ; # R. J. Mathar, Mar 19 2018
  • Mathematica
    Table[(n-5)!*StirlingS2[n+2, n-4], {n,5,35}] (* G. C. Greubel, Nov 22 2022 *)
  • SageMath
    [factorial(n-5)*stirling_number2(n+2,n-4) for n in range(5,36)] # G. C. Greubel, Nov 22 2022

Formula

Essentially Stirling numbers of second kind - see A028246.
a(n) = (n-5)! * Stirling2(n+2, n-4). - G. C. Greubel, Nov 22 2022

A062193 Fourth (unsigned) column sequence of triangle A062139 (generalized a=2 Laguerre).

Original entry on oeis.org

1, 24, 420, 6720, 105840, 1693440, 27941760, 479001600, 8562153600, 159826867200, 3116623910400, 63465795993600, 1348648164864000, 29877743960064000, 689322235650048000, 16543733655601152000, 412559358036553728000, 10678006913887272960000, 286526518855975157760000
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n+3)*binomial(n+5, 5)/Factorial(3): n in [0..30]]; // G. C. Greubel, May 11 2018
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1+15*x+30*x^2+10*x^3)/(1-x)^9, {x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 02 2018 *)
  • PARI
    { f=2; for (n=0, 100, f*=n + 3; write("b062193.txt", n, " ", f*binomial(n + 5, 5)/6) ) } \\ Harry J. Smith, Aug 02 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((1+15*x+30*x^2+10*x^3)/(1-x)^9)) \\ G. C. Greubel, May 11 2018
    
  • Sage
    [binomial(n,5)*factorial (n-2)/6 for n in range(5, 21)] # Zerinvary Lajos, Jul 07 2009
    

Formula

E.g.f.: (1+15*x+30*x^2+10*x^3)/(1-x)^9.
a(n) = A062139(n+3, 3).
a(n) = (n+3)!*binomial(n+5, 5)/3!.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n-3) = (-1)^(n-1)*f(n,3,-6), (n>=3). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 75*(Ei(1) - gamma) - 30*e - 65/4, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=0} (-1)^n/a(n) = 315*(gamma - Ei(-1)) - 180/e - 735/4, where Ei(-1) = -A099285. (End)

A062194 Fifth column sequence of triangle A062139 (generalized a=2 Laguerre).

Original entry on oeis.org

1, 35, 840, 17640, 352800, 6985440, 139708800, 2854051200, 59935075200, 1298593296000, 29088489830400, 674324082432000, 16183777978368000, 402104637462528000, 10339833534750720000, 275039572024369152000
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Crossrefs

Programs

  • GAP
    List([0..15],n->Factorial(n+4)*Binomial(n+6,6)/Factorial(4)); # Muniru A Asiru, Jul 01 2018
  • Magma
    [Factorial(n+4)*Binomial(n+6, 6)/Factorial(4): n in [0..20]]; // G. C. Greubel, May 12 2018
    
  • Mathematica
    Table[(n+4)!*Binomial[n+6,6]/4!, {n, 0, 20}] (* G. C. Greubel, May 12 2018 *)
  • PARI
    { f=6; for (n=0, 100, f*=n + 4; write("b062194.txt", n, " ", f*binomial(n + 6, 6)/24) ) } \\ Harry J. Smith, Aug 02 2009
    
  • Sage
    [binomial(n,6)*factorial (n-2)/factorial (4) for n in range(6, 22)] # Zerinvary Lajos, Jul 07 2009
    

Formula

E.g.f.: (1 + 24*x + 90*x^2 + 80*x^3 + 15*x^4)/(1-x)^11.
a(n) = A062139(n+4, 4).
a(n) = (n+4)!*binomial(n+6, 6)/4!.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..n} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n-4) = (-1)^n*f(n,4,-7), (n >= 4). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 336*(gamma - Ei(1)) - 96*e + 3524/5, where gamma = A001620, Ei(1) = A091725, and e = A001113.
Sum_{n>=0} (-1)^n/a(n) = 3264*(gamma - Ei(-1)) - 1920/e - 9464/5, where Ei(-1) = -A099285. (End)

A216119 Number of stretching pairs in all permutations in S_n.

Original entry on oeis.org

0, 0, 0, 2, 30, 360, 4200, 50400, 635040, 8467200, 119750400, 1796256000, 28540512000, 479480601600, 8499883392000, 158664489984000, 3112264995840000, 64023737057280000, 1378644471300096000, 31019500604252160000, 728045925946859520000, 17796678189812121600000
Offset: 1

Views

Author

Emeric Deutsch, Feb 26 2013

Keywords

Comments

A stretching pair of a permutation p in S_n is a pair (i,j) (1 <= i < j <= n) satisfying p(i) < i < j < p(j). For example, for the permutation 31254 in S_5 the pair (2,4) is stretching because p(2) = 1 < 2 < 4 < p(4) = 5.

Examples

			a(4) = 2 because 2143 has 1 stretching (namely (2,3)), 3142 has 1 stretching pair (namely (2,3)), and the other 22 permutations in S_4 have no stretching pairs.
		

References

  • E. Lundberg and B. Nagle, A permutation statistic arising in dynamics of internal maps. (submitted)

Crossrefs

Programs

  • GAP
    Concatenation([0],List([2..22],n->Factorial(n)*(n-2)*(n-3)/24)); # Muniru A Asiru, Nov 29 2018
  • Magma
    [Factorial(n)*(n-2)*(n-3) div 24: n in [1..30]]; // Vincenzo Librandi, Nov 29 2018
    
  • Maple
    0, seq((1/24)*factorial(n)*(n-2)*(n-3), n = 2 .. 22);
  • Mathematica
    Join[{0}, Table[n! (n - 2) (n - 3) / 24, {n, 2, 30}]] (* Vincenzo Librandi, Nov 29 2018 *)

Formula

a(n) = n!*(n-2)*(n-3)/24.
a(n) = 2*A005461(n-3).
a(n) = Sum_{k>=1} A216118(k).
a(n) = Sum_{k>=1} k*A216120(n,k).
From Amiram Eldar, May 06 2022: (Start)
Sum_{n>=4} 1/a(n) = 8*(gamma - Ei(1)) + 8*e - 32/3, where gamma = A001620, Ei(1) = A091725, and e = A001113.
Sum_{n>=4} (-1)^n/a(n) = 16*(gamma - Ei(-1)) - 8/e - 28/3, where Ei(-1) = -A099285. (End)
D-finite with recurrence a(n) +(-n-10)*a(n-1) +4*(2*n+3)*a(n-2) +12*(-n+2)*a(n-3)=0. - R. J. Mathar, Jul 26 2022

A062195 Sixth (unsigned) column sequence of triangle A062139 (generalized a=2 Laguerre).

Original entry on oeis.org

1, 48, 1512, 40320, 997920, 23950080, 570810240, 13699445760, 333923990400, 8310997094400, 211930425907200, 5548723878297600, 149353151057510400, 4135933413900288000, 117874102296158208000
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n+5)*Binomial(n+7, 7)/Factorial(5): n in [0..20]]; // G. C. Greubel, May 12 2018
  • Mathematica
    Table[(n+5)!*Binomial[n+7, 7]/5!, {n, 0, 20}] (* G. C. Greubel, May 12 2018 *)
  • PARI
    { f=24; for (n=0, 100, f*=n + 5; write("b062195.txt", n, " ", f*binomial(n + 7, 7)/120) ) } \\ Harry J. Smith, Aug 02 2009
    

Formula

E.g.f.: N(2;5, x)/(1-x)^13 with N(2;5, x) := Sum_{k=0..5} A062196(5, k)*x^k = 1+35*x+210*x^2+350*x^3+175*x^4+21*x^5.
a(n) = A062139(n+5, 5).
a(n) = (n+5)!*binomial(n+7, 7)/5!.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n-5) = (-1)^(n-1)*f(n,5,-8), (n>=5). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 1295*(Ei(1) - gamma) + 2170*e - 22813/3, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=0} (-1)^n/a(n) = 36575*(gamma - Ei(-1)) - 21700/e - 63455/3, where Ei(-1) = -A099285. (End)
Showing 1-10 of 11 results. Next