A005843 The nonnegative even numbers: a(n) = 2n.
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120
Offset: 0
Examples
G.f. = 2*x + 4*x^2 + 6*x^3 + 8*x^4 + 10*x^5 + 12*x^6 + 14*x^7 + 16*x^8 + ...
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 28.
- J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 529a pp. 71 and 257, Ellipses, 2004, Paris.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 256.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- David Callan, On Ascent, Repetition and Descent Sequences, arXiv:1911.02209 [math.CO], 2019.
- Charles Cratty, Samuel Erickson, Frehiwet Negass, and Lara Pudwell, Pattern Avoidance in Double Lists, preprint, 2015.
- Kevin Fagan, Drabble cartoon, Jun 15 1987: Intelligence Test
- Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv preprint arXiv:1203.3786 [math.CO], 2012, J. Int. Seq. 15 (2012) # 12.6.2
- Milan Janjic, Two Enumerative Functions
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Even Number
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle
- Eric Weisstein's World of Mathematics, Riemann Zeta Function Zeros
- Wikipedia, Alkane
- Index entries for "core" sequences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
a(n)=2*A001477(n). - Juri-Stepan Gerasimov, Dec 12 2009
Cf. A000027, A002061, A005408, A001358, A077553, A077554, A077555, A002024, A087112, A157888, A157889, A140811, A157872, A157909, A157910, A165900.
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), this sequence (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Oct 30 2011
Cf. A231200 (boustrophedon transform).
Programs
-
Haskell
a005843 = (* 2) a005843_list = [0, 2 ..] -- Reinhard Zumkeller, Feb 11 2012
-
Magma
[ 2*n : n in [0..100]];
-
Maple
A005843 := n->2*n; A005843:=2/(z-1)**2; # Simon Plouffe in his 1992 dissertation
-
Mathematica
Range[0,120,2] (* Harvey P. Dale, Aug 16 2011 *)
-
PARI
A005843(n) = 2*n
-
Python
def a(n): return 2*n # Martin Gergov, Oct 20 2022
-
R
seq(0,200,2)
Formula
G.f.: 2*x/(1-x)^2.
E.g.f.: 2*x*exp(x). - Geoffrey Critzer, Aug 25 2012
G.f. with interpolated zeros: 2x^2/((1-x)^2 * (1+x)^2); e.g.f. with interpolated zeros: x*sinh(x). - Geoffrey Critzer, Aug 25 2012
Inverse binomial transform of A036289, n*2^n. - Joshua Zucker, Jan 13 2006
a(0) = 0, a(1) = 2, a(n) = 2a(n-1) - a(n-2). - Jaume Oliver Lafont, May 07 2008
a(n) = Sum_{k=1..n} floor(6n/4^k + 1/2). - Vladimir Shevelev, Jun 04 2009
a(n) = A034856(n+1) - A000124(n) = A000217(n) + A005408(n) - A000124(n) = A005408(n) - 1. - Jaroslav Krizek, Sep 05 2009
Digit sequence 22 read in base n-1. - Jason Kimberley, Oct 30 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Dec 23 2011
a(n) = 2*n = Product_{k=1..2*n-1} 2*sin(Pi*k/(2*n)), n >= 0 (undefined product := 1). See an Oct 09 2013 formula contribution in A000027 with a reference. - Wolfdieter Lang, Oct 10 2013
From Ilya Gutkovskiy, Aug 19 2016: (Start)
From Bernard Schott, Dec 10 2020: (Start)
Sum_{n>=1} 1/a(n)^2 = Pi^2/24 = A222171.
Sum_{n>=1} (-1)^(n+1)/a(n)^2 = Pi^2/48 = A245058. (End)
Comments