A006450
Prime-indexed primes: primes with prime subscripts.
Original entry on oeis.org
3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991, 1031, 1063, 1087, 1153, 1171, 1201, 1217, 1297, 1409, 1433, 1447, 1471
Offset: 1
a(5) = 31 because a(5) = p(p(5)) = p(11) = 31.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. S. Kimberley, Table of n, a(n) for n = 1..100000
- R. G. Batchko, A prime fractal and global quasi-self-similar structure in the distribution of prime-indexed primes, arXiv preprint arXiv:1405.2900 [math.GM], 2014.
- Jonathan Bayless, Dominic Klyve, and Tomás Oliveira e Silva, New Bounds and Computations on Prime-Indexed Primes, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 13, Paper A43, 2013.
- K. A. Broughan and A. R. Barnett, On the subsequence of primes having prime subscripts, JIS 12 (2009) 09.2.3.
- Paul Cooijmans, Numbers.
- Paul Cooijmans, Short Test For Genius.
- R. E. Dressler and S. T. Parker, Primes with a prime subscript, J. ACM 22 (1975) 380-381.
- N. Fernandez, An order of primeness, F(p)
- N. Fernandez, An order of primeness [cached copy, included with permission of the author]
- N. Fernandez, More terms of this and other sequences related to A049076.
- A. B. Frizell, The permutations of the natural numbers can not be well ordered, Bull. Amer. Math. Soc. 22 (1915), no. 2, 71-73.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Michael P. May, Properties of Higher-Order Prime Number Sequences, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and arXiv version, arXiv:2108.04662 [math.NT], 2021.
- Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv preprint arXiv:1212.2732 [math.CO], 2012.
- J. Shallit, Letter to N. J. A. Sloane, Oct. 1975
- Eric Weisstein's World of Mathematics, Prime formulas, see Cipolla formula.
Cf.
A000040,
A007821,
A038580,
A049090,
A049202,
A049203,
A057847,
A057849,
A057850,
A057851,
A058332,
A093047.
Let A = primes
A000040, B = nonprimes
A018252. The 2-level compounds are AA =
A006450, AB =
A007821, BA =
A078782, BB =
A102615. The 3-level compounds AAA, AAB, ..., BBB are
A038580,
A049078,
A270792,
A102617,
A270794,
A270795,
A270796,
A102616.
-
a006450 = a000040 . a000040
a006450_list = map a000040 a000040_list
-- Reinhard Zumkeller, Jan 12 2013
-
[ NthPrime(NthPrime(n)): n in [1..51] ]; // Jason Kimberley, Apr 02 2010
-
seq(ithprime(ithprime(i)),i=1..50); # Uli Baum (Uli_Baum(AT)gmx.de), Sep 05 2007
# For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622. - N. J. A. Sloane, Mar 30 2016
-
Table[ Prime[ Prime[ n ] ], {n, 100} ]
-
i=0;forprime(p=2,1e4,if(isprime(i++),print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011
-
a=vector(10^3,n,prime(prime(n))) \\ Stanislav Sykora, Dec 09 2015
-
from sympy import prime
def a(n): return prime(prime(n))
print([a(n) for n in range(1, 52)]) # Michael S. Branicky, Aug 11 2021
-
# much faster version for initial segment of sequence
from sympy import nextprime, isprime
def aupton(terms):
alst, p, pi = [], 2, 1
while len(alst) < terms:
if isprime(pi): alst.append(p)
p, pi = nextprime(p), pi+1
return alst
print(aupton(10000)) # Michael S. Branicky, Aug 11 2021
A006451
Numbers k such that k*(k+1)/2 + 1 is a square.
Original entry on oeis.org
0, 2, 5, 15, 32, 90, 189, 527, 1104, 3074, 6437, 17919, 37520, 104442, 218685, 608735, 1274592, 3547970, 7428869, 20679087, 43298624, 120526554, 252362877, 702480239, 1470878640, 4094354882, 8572908965, 23863649055, 49966575152
Offset: 0
- A. J. Gottlieb, How four dogs meet in a field, etc., Technology Review, Problem J/A2, Jul/August 1973 pp. 73-74; solution Jan 1974 (see link).
- Jeffrey Shallit, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- A. J. Gottlieb, How four dogs meet in a field, etc. (scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- J. Shallit, Letter to N. J. A. Sloane, Oct. 1975
- Hermann Stamm-Wilbrandt, 4 interlaced bisections
- Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-1,1).
-
a006451 n = a006451_list !! n
a006451_list = 0 : 2 : 5 : 15 : map (+ 2)
(zipWith (-) (map (* 6) (drop 2 a006451_list)) a006451_list)
-- Reinhard Zumkeller, Jan 10 2012
-
N:= 100: # to get a(0) to a(N)
A[0]:= 0: A[1]:= 2: A[2]:= 5: A[3]:= 15:
for n from 4 to N do A[n]:= 6*A[n-2] - A[n-4] + 2 od:
seq(A[n],n=0..N); # Robert Israel, Aug 26 2014
-
LinearRecurrence[{1,6,-6,-1,1},{0,2,5,15,32},30] (* Harvey P. Dale, Jul 17 2013 *)
Select[Range[10^6], IntegerQ@ Sqrt[# (# + 1)/2 + 1] &] (* Michael De Vlieger, Apr 25 2017 *)
-
for(n=1,10000,t=n*(n+1)/2+1;if(issquare(t), print1(n,", "))) \\ Joerg Arndt, Oct 10 2009
More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
Edited by
N. J. A. Sloane, Oct 24 2009, following discussions by several correspondents in the Sequence Fans Mailing List, Oct 10 2009
A006452
a(n) = 6*a(n-2) - a(n-4).
Original entry on oeis.org
1, 1, 2, 4, 11, 23, 64, 134, 373, 781, 2174, 4552, 12671, 26531, 73852, 154634, 430441, 901273, 2508794, 5253004, 14622323, 30616751, 85225144, 178447502, 496728541, 1040068261, 2895146102, 6061962064, 16874148071, 35331704123
Offset: 0
n = 3: 11^2 - 2*(2*4)^2 = -7 (see the Pell comment above);
(4*4)^2 - 2*11^2 = +14. - _Wolfdieter Lang_, Feb 26 2015
- A. J. Gottlieb, How four dogs meet in a field, etc., Technology Review, Jul/Aug 1973 pp. 73-74.
- Jeffrey Shallit, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. J. Gottlieb, How four dogs meet in a field, etc. (scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- J. Shallit, Letter to N. J. A. Sloane, Oct. 1975
- Ahmet Tekcan and Alper Erdem, General Terms of All Almost Balancing Numbers of First and Second Type, arXiv:2211.08907 [math.NT], 2022.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
-
I:=[1,1,2,4]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 09 2013
-
A006452:=-(z-1)*(z**2+3*z+1)/(z**2+2*z-1)/(z**2-2*z-1); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for one of the leading 1's
-
s=0;lst={1}; Do[s+=n;If[Sqrt[s+1]==Floor[Sqrt[s+1]],AppendTo[lst, Sqrt[s+1]]], {n,0,8!}]; lst (* Vladimir Joseph Stephan Orlovsky, Apr 02 2009 *)
a[0]=a[1]= 1; a[2]=2; a[3]=4; a[n_]:= 6*a[n-2] -a[n-4]; Array[a, 30, 0] (* Robert G. Wilson v, Jun 11 2010 *)
CoefficientList[Series[(1+x-4x^2-2x^3)/((1-2x-x^2)(1+2x-x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,6,0]^n*[1;1;2;4])[1,1] \\ Charles R Greathouse IV, May 10 2016
-
def A001333(n): return lucas_number2(n, 2, -1)/2
def A006452(n): return (A001333(n+1) + (-1)^n *A001333(n-2))/4
[A006452(n) for n in range(41)] # G. C. Greubel, Jan 22 2023
A006454
Solution to a Diophantine equation: each term is a triangular number and each term + 1 is a square.
Original entry on oeis.org
0, 3, 15, 120, 528, 4095, 17955, 139128, 609960, 4726275, 20720703, 160554240, 703893960, 5454117903, 23911673955, 185279454480, 812293020528, 6294047334435, 27594051024015, 213812329916328, 937385441796000, 7263325169820735, 31843510970040003, 246739243443988680
Offset: 0
From _Raphie Frank_, Sep 28 2012: (Start)
35*(528 - 15) + 0 = 17955 = a(6),
35*(4095 - 120) + 3 = 139128 = a(7),
35*(17955 - 528) + 15 = 609960 = a(8),
35*(139128 - 4095) + 120 = 4726275 = a(9). (End)
From _Raphie Frank_, Feb 02 2013: (Start)
a(7) = 139128 and a(9) = 4726275.
a(9) = (2*(sqrt(8*a(7) + 1) - 1)/2 + 3*sqrt(a(7) + 1) + 1)^2 - 1 = (2*(sqrt(8*139128 + 1) - 1)/2 + 3*sqrt(139128 + 1) + 1)^2 - 1 = 4726275.
a(9) = 1/2*((3*(sqrt(8*a(7) + 1) - 1)/2 + 4*sqrt(a(7) + 1) + 1)^2 + (3*(sqrt(8*a(7) + 1) - 1)/2 + 4*sqrt(a(7) + 1) + 1)) = 1/2*((3*(sqrt(8*139128 + 1) - 1)/2 + 4*sqrt(139128 + 1) + 1)^2 + (3*(sqrt(8*139128 + 1) - 1)/2 + 4*sqrt(139128 + 1) + 1)) = 4726275. (End)
From _Vladimir Pletser_, Apr 30 2017: (Start)
For n=2, b(n)=5, a(n)=15
For n=5, b(n)=90, a(n)= 4095
For n = 3, A006451(n) = 15. Therefore, A000217(A006451(n)) = A000217(15) = 120. (End)
- Edward J. Barbeau, Pell's Equation, New York: Springer-Verlag, 2003, p. 17, Exercise 1.2.
- Allan J. Gottlieb, How four dogs meet in a field, and other problems, Technology Review, Jul/August 1973, pp. 73-74.
- Vladimir Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
- Jeffrey Shallit, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vladimir Pletser, Table of n, a(n) for n = 0..1000 (first 60 terms from Vincenzo Librandi)
- M.A. Bennett and A. Ghadermarzi, Data on Mordell's curve.
- Michael A. Bennett and Amir Ghadermarzi, Mordell's equation : a classical approach, arXiv:1311.7077 [math.NT], 2013.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Jeffrey Shallit, Letter to N. J. A. Sloane, Oct. 1975.
- K. B. Subramaniam, Almost Square Triangular Numbers, The Fibonacci Quarterly, Vol. 37, No. 3 (1999), pp. 194-197.
- Eric Weisstein's World of Mathematics, Mordell Curve.
- Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
-
I:=[0,3,15,120,528,4095]; [n le 6 select I[n] else 35*(Self(n-2) - Self(n-4)) + Self(n-6): n in [1..30]]; // Vincenzo Librandi, Dec 21 2015
-
A006454:=-3*z*(1+4*z+z**2)/(z-1)/(z**2-6*z+1)/(z**2+6*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print ('0,0','1,3','2,15'); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=b*(b+1)/2; print(n,a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do: # Vladimir Pletser, Apr 30 2017
-
Clear[a]; a[0] = a[1] = 1; a[2] = 2; a[3] = 4; a[n_] := 6a[n - 2] - a[n - 4]; Array[a, 40]^2 - 1 (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)
LinearRecurrence[{1,34,-34,-1,1},{0,3,15,120,528},30] (* Harvey P. Dale, Feb 18 2023 *)
-
concat(0, Vec(3*x*(1 + 4*x + x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^30))) \\ Colin Barker, Apr 30 2017
More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
A045995
Rows of Fibonacci-Pascal triangle.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 5, 55, 55, 5, 1, 1, 8, 610, 6765, 610, 8, 1, 1, 13, 10946, 9227465, 9227465, 10946, 13, 1, 1, 21, 317811, 225851433717, 190392490709135, 225851433717, 317811, 21, 1, 1, 34, 14930352
Offset: 0
1,
1, 1,
1, 1, 1,
1, 2, 2, 1,
1, 3, 8, 3, 1,
1, 5, 55, 55, 5, 1,
1, 8, 610, 6765, 610, 8, 1,
1, 13, 10946, 9227465, 9227465, 10946, 13, 1,
1, 21, 317811, 225851433717, 190392490709135, 225851433717, 317811, 21, 1,
...
-
a045995 n k = a045995_tabl !! n !! k
a045995_row n = a045995_tabl !! n
a045995_tabl = map (map (a000045 . fromInteger)) a007318_tabl
-- Reinhard Zumkeller, Dec 29 2011
-
A045995 := proc(n,k)
combinat[fibonacci](binomial(n,k)) ;
end proc: # R. J. Mathar, Dec 03 2014
-
Flatten[Table[Fibonacci[Binomial[n,k]],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Dec 31 2013 *)
A006453
Expansion of 1/sqrt(1 - 12x + x^2).
Original entry on oeis.org
1, 6, 107, 3186, 132849, 7122870, 466788195, 36153055890, 3230902408545, 327238250094630, 37043457415695675, 4634751809368192050, 635113491345511326225, 94599619441277679278550
Offset: 0
Showing 1-6 of 6 results.
Comments