A008277 Triangle of Stirling numbers of the second kind, S2(n,k), n >= 1, 1 <= k <= n.
1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 25, 10, 1, 1, 31, 90, 65, 15, 1, 1, 63, 301, 350, 140, 21, 1, 1, 127, 966, 1701, 1050, 266, 28, 1, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1, 1, 1023, 28501, 145750, 246730, 179487, 63987, 11880, 1155, 55, 1
Offset: 1
Examples
The triangle S2(n, k) begins: \ k 1 2 3 4 5 6 7 8 9 n \ 10 11 12 13 14 15 ... ---------------------------------------------------------------------------------- 1 | 1 2 | 1 1 3 | 1 3 1 4 | 1 7 6 1 5 | 1 15 25 10 1 6 | 1 31 90 65 15 1 7 | 1 63 301 350 140 21 1 8 | 1 127 966 1701 1050 266 28 1 9 | 1 255 3025 7770 6951 2646 462 36 1 10 | 1 511 9330 34105 42525 22827 5880 750 45 1 11 | 1 1023 28501 145750 246730 179487 63987 11880 1155 55 1 12 | 1 2047 86526 611501 1379400 1323652 627396 159027 22275 1705 66 1 13 | 1 4095 261625 2532530 7508501 9321312 5715424 1899612 359502 39325 2431 78 1 14 | 1 8191 788970 10391745 40075035 63436373 49329280 20912320 5135130 752752 66066 3367 91 1 15 | 1 16383 2375101 42355950 210766920 420693273 408741333 216627840 67128490 12662650 1479478 106470 4550 105 1 ... ---------------------------------------------------------------------------------- x^4 = 1 x_(1) + 7 x_(2) + 6 x_(3) + 1 x_(4), where x_(k) = P(x,k) = k!*C(x,k). - _Daniel Forgues_, Jan 16 2016
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 103ff.
- B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- G. Boole, Finite Differences, 5th ed. New York, NY: Chelsea, 1970.
- C. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, 2002, Theorem 8.11, pp. 298-299.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 310.
- J. H. Conway and R. K. Guy, The Book of Numbers, Springer, p. 92.
- F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- S.N. Elaydi, An Introduction to Difference Equations, 3rd ed. Springer, 2005.
- H. H. Goldstine, A History of Numerical Analysis, Springer-Verlag, 1977; Section 2.7.
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 244.
- Frank Avery Haight, Handbook of the Poisson distribution, John Wiley, 1967. See pages 6,7.
- A. D. Korshunov, Asymptotic behavior of Stirling numbers of the second kind. (Russian) Metody Diskret. Analiz. No. 39 (1983), 24-41.
- E. Kuz'min and A. I. Shirshov: On the number e, pp. 111-119, eq.(6), in: Kvant Selecta: Algebra and Analysis, I, ed. S. Tabachnikov, Am.Math.Soc., 1999, p. 116, eq. (11).
- J. Riordan, An Introduction to Combinatorial Analysis, p. 48.
- J. Stirling, The Differential Method, London, 1749; see p. 7.
Links
- T. D. Noe, First 100 rows, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
- Tewodros Amdeberhan, Valerio de Angelis, and Victor H. Moll, Complementary Bell numbers: arithmetical properties and Wilf's conjecture, Advances in Combinatorics (2013), pp. 23-56.
- Joerg Arndt, Matters Computational (The Fxtbook), pp. 358-360
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013-2014.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications, arXiv:1307.5624 [math.CO], 2013.
- Paul Barry, Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays, arXiv:1105.3044 [math.CO], 2011.
- H. Belbachir, M. Rahmani, and B. Sury, Sums Involving Moments of Reciprocals of Binomial Coefficients, J. Int. Seq. 14 (2011) #11.6.6.
- Hacene Belbachir and Mourad Rahmani, Alternating Sums of the Reciprocals of Binomial Coefficients, Journal of Integer Sequences, Vol. 15 (2012), #12.2.8.
- Edward A. Bender, Central and local limit theorems applied to asymptotic enumeration Journal of Combinatorial Theory, Series A, 15(1) (1973), 91-111. See Example 5.4.
- Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
- Beáta Bényi and Péter Hajnal, Poly-Bernoulli Numbers and Eulerian Numbers, arXiv:1804.01868 [math.CO], 2018.
- P. Blasiak, K. A. Penson, and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
- P. Blasiak, K. A. Penson, and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- W. E. Bleick and Peter C. C. Wang, Asymptotics of Stirling numbers of the second kind, Proc. Amer. Math. Soc. 42 (1974), 575-580.
- W. E. Bleick and Peter C. C. Wang, Erratum to: "Asymptotics of Stirling numbers of the second kind" (Proc. Amer. Math. Soc. {42} (1974), 575-580), Proc. Amer. Math. Soc. 48 (1975), 518.
- B. A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 42.
- Khristo N. Boyadzhiev, Close encounters with the Stirling numbers of the second kind, arXiv:1806.09468 [math.HO], 2018.
- S. Alex Bradt, Jennifer Elder, Pamela E. Harris, Gordon Rojas Kirby, Eva Reutercrona, Yuxuan (Susan) Wang, and Juliet Whidden, Unit interval parking functions and the r-Fubini numbers, arXiv:2401.06937 [math.CO], 2024. See page 8.
- Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, and Bruno Patrou, State complexity of catenation combined with a boolean operation: a unified approach, arXiv:1505.03474 [cs.FL], 2015.
- J. L. Cereceda, Generalized Akiyama-Tanigawa Algorithm for Hypersums of Powers of Integers, J. Int. Seq. 16 (2013) #13.3.2.
- Raphaël Cerf and Joseba Dalmau, The quasispecies distribution, arXiv:1609.05738 [q-bio.PE], 2016.
- Gi-Sang Cheon and Jin-Soo Kim, Stirling matrix via Pascal matrix, Lin. Alg. Appl. 329 (1-3) (2001) 49-59
- Sarthak Chimni and Ramin Takloo-Bighash, Counting subrings of Zn of non-zero co-rank, arXiv:1812.09564 [math.NT], 2018.
- C. Cooper and R. E. Kennedy, Patterns, automata and Stirling numbers of the second kind, Mathematics and Computer Education Journal, 26 (1992), 120-124.
- T. Copeland, Reciprocity and Umbral Witchcraft: An Eve with Stirling, Bernoulli, Archimedes, Euler, Laguerre, and Worpitzky, 2020.
- T. Copeland's Shadows of Simplicity, A Class of Differential Operators and the Stirling Numbers,2015; Generators, Inversion, and Matrix, Binomial, and Integral Transforms, 2015; The Inverse Mellin Transform, Bell Polynomials, a Generalized Dobinski Relation, and the Confluent Hypergeometric Functions, 2011; Mathemagical Forests, 2008; and Addendum to "Mathemagical Forests", 2010.
- R. M. Dickau, Stirling numbers of the second kind
- A. J. Dobson, A note on Stirling numbers of the second kind, Journal of Combinatorial Theory 5.2 (1968): 212-214.
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019)
- G. Duchamp, K. A. Penson, A. I. Solomon, A. Horzela and P. Blasiak, One-parameter groups and combinatorial physics, arXiv:quant-ph/0401126, 2004.
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- FindStat - Combinatorial Statistic Finder, The number of blocks in the set partition
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- M. L. Glasser, A Generalized Apery Series, Journal of Integer Sequences, Vol. 15 (2012), #12.4.3.
- Bill Gosper, Colored illustrations of triangle of Stirling numbers of second kind read mod 2, 3, 4, 5, 6, 7
- M. Griffiths, Remodified Bessel Functions via Coincidences and Near Coincidences, Journal of Integer Sequences, Vol. 14 (2011), Article 11.7.1.
- M. Griffiths, Close Encounters with Stirling Numbers of the Second Kind, The Mathematics Teacher, Vol. 106, No. 4, November 2012, pp. 313-317.
- M. Griffiths and I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5
- J. Gubeladze and J. Love, Vertex maps between simplices, cubes, and crosspolytopes, arXiv:1304.3775 [math.CO], 2013.
- L. C. Hsu, Note on an asymptotic expansion of the n-th difference of zero, Ann. Math. Statistics 19 (1948), 273-277.
- Yoshinari Inaba, Hyper-Sums of Powers of Integers and the Akiyama-Tanigawa Matrix, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.7.
- Wayne A. Johnson, Exponential Hilbert series of equivariant embeddings, arXiv:1804.04943 [math.RT], 2018.
- Matthieu Josuat-Verges, A q-analog of Schläfli and Gould identities on Stirling numbers, Preprint, 2016; also arXiv:1610.02965 [math.CO], 2016.
- Charles Knessl and Joseph B. Keller, Stirling number asymptotics from recursion equations using the ray method, Stud. Appl. Math. 84 (1991), no. 1, 43-56.
- Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
- D. E. Knuth, Convolution polynomials, The Mathematica J., 2 (1992), 67-78.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Elliott H. Lieb, Concavity properties and a generating function for Stirling numbers, Journal of Combinatorial Theory, Vol. 5, No. 2 (1968), pp. 203-206.
- Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012.
- Shi-Mei Ma, A family of two-variable derivative polynomials for tangent and secant, El J. Combinat. 20 (1) (2013) P11
- S.-M. Ma, Toufik Mansour, and Matthias Schork. Normal ordering problem and the extensions of the Stirling grammar, arXiv:1308.0169 [math.CO], 2013.
- M. M. Mangontarum and J. Katriel, On q-Boson Operators and q-Analogues of the r-Whitney and r-Dowling Numbers, J. Int. Seq. 18 (2015) 15.9.8.
- T. Manneville and V. Pilaud, Compatibility fans for graphical nested complexes, arXiv:1501.07152 [math.CO], 2015.
- Toufik Mansour, A. Munagi, and Mark Shattuck, Recurrence Relations and Two-Dimensional Set Partitions , J. Int. Seq. 14 (2011) # 11.4.1
- Toufik Mansour and Mark Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8.
- Toufik Mansour, Matthias Schork and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
- Richard J. Mathar, 2-regular Digraphs of the Lovelock Lagrangian, arXiv:1903.12477 [math.GM], 2019.
- Mathematics Stack Exchange, Symmetric (under the swapping) recursions for Stirling numbers of both kinds, Aug 10 2025.
- Nelma Moreira and Rogerio Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- A. O. Munagi, k-Complementing Subsets of Nonnegative Integers, International Journal of Mathematics and Mathematical Sciences, 2005:2 (2005), 215-224.
- Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
- Norihiro Nakashima and Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
- G. Nemes, On the Coefficients of the Asymptotic Expansion of n!, J. Int. Seq. 13 (2010), 10.6.6.
- A. F. Neto, Higher Order Derivatives of Trigonometric Functions, Stirling Numbers of the Second Kind, and Zeon Algebra, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.3.
- Arthur Nunge, Eulerian polynomials on segmented permutations, arXiv:1805.01797 [math.CO], 2018.
- OEIS Wiki, Sorting numbers
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 2.
- K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, arXiv:quant-ph/0312202, 2003.
- K. A. Penson, P. Blasiak, A. Horzela, G. H. E. Duchamp, and A. I. Solomon, Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. vol. 50, 083512 (2009)
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
- Fedor Petrov, Recursion for n-th row of Stirling numbers of the second kind independently of other rows, answer to question on MathOverflow (2025).
- C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7
- Feng Qi, An Explicit Formula for Bell Numbers in Terms of Stirling Numbers and Hypergeometric Functions, arXiv:1402.2361 [math.CO], 2014.
- S. Ramanujan, Notebook entry
- René Rietz, Optimization of Network Intrusion Detection Processes, 2018.
- G. Rzadkowski, Two formulas for Successive Derivatives and Their Applications, JIS 12 (2009) 09.8.2
- Benjamin Schreyer, Rigged Horse Numbers and their Modular Periodicity, arXiv:2409.03799 [math.CO], 2024. See p. 12.
- Raymond Scurr and Gloria Olive, Stirling numbers revisited, Discrete Math. 189 (1998), no. 1-3, 209--219. MR1637761 (99d:11019).
- Mark Shattuck, Combinatorial proofs of some Stirling number formulas, Preprint (ResearchGate), 2014.
- Mark Shattuck, Combinatorial proofs of some Stirling number formulas, Pure Mathematics and Applications, Volume 25, Issue 1 (Sep 2015).
- Mark Shattuck, Combinatorial Proofs of Some Stirling Number Convolution Formulas, J. Int. Seq., Vol. 25 (2022), Article 22.2.2.
- John K. Sikora, On Calculating the Coefficients of a Polynomial Generated Sequence Using the Worpitzky Number Triangles, arXiv:1806.00887 [math.NT], 2018.
- A. I. Solomon, P. Blasiak, G. Duchamp, A. Horzela, and K. A. Penson, Partition functions and graphs: A combinatorial approach, arXiv:quant-ph/0409082, 2004.
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.
- Jacob Sprittulla, The ordered Bell numbers as weighted sums of odd or even Stirling numbers of the second kind, arXiv:2109.12705 [math.CO], 2021.
- N. M. Temme, Asymptotic estimates of Stirling numbers, Stud. Appl. Math. 89 (1993), no. 3, 233-243.
- A. N. Timashev, On asymptotic expansions of Stirling numbers of the first and second kinds. (Russian) Diskret. Mat. 10 (1998), no. 3,148-159 translation in Discrete Math. Appl. 8 (1998), no. 5, 533-544.
- Michael Torpey, Semigroup congruences: computational techniques and theoretical applications, Ph.D. Thesis, University of St. Andrews (Scotland, 2019).
- A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911. [Annotated scans of pages 30-33 only]
- Dennis Walsh, Counting forests with Stirling and Bell numbers
- Eric Weisstein's World of Mathematics, Differential Operator and Stirling Number of the Second Kind
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, pp. 17ff, 105ff.
- M. C. Wolf, Symmetric functions for non-commutative elements, Duke Math. J., 2 (1936), 626-637.
- Index entries for "core" sequences
Crossrefs
Programs
-
Haskell
a008277 n k = a008277_tabl !! (n-1) !! (k-1) a008277_row n = a008277_tabl !! (n-1) a008277_tabl = map tail $ a048993_tabl -- Reinhard Zumkeller, Mar 26 2012
-
J
n ((] (1 % !)) * +/@((^~ * (] (1 ^ |.)) * (! {:)@]) i.@>:)) k NB. _Stephen Makdisi, Apr 06 2016
-
Magma
[[StirlingSecond(n,k): k in [1..n]]: n in [1..12]]; // G. C. Greubel, May 22 2019
-
Maple
seq(seq(combinat[stirling2](n, k), k=1..n), n=1..10); # Zerinvary Lajos, Jun 02 2007 stirling_2 := (n,k) -> (1/k!) * add((-1)^(k-i)*binomial(k,i)*i^n, i=0..k);
-
Mathematica
Table[StirlingS2[n, k], {n, 11}, {k, n}] // Flatten (* Robert G. Wilson v, May 23 2006 *) BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; B = BellMatrix[1&, rows]; Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *) a[n_, n_] := 1; a[n_, 1] := 1; a[n_, k_] := a[n, k] = a[n-1, k-1] + k a[n-1, k]; Flatten@ Table[a[n, k], {n, 1, 11}, {k, 1, n}] (* Oliver Seipel, Jun 12 2024 *) With[{m = 11}, Flatten@MapIndexed[Take[#, #2[[1]]] &, Transpose@ Table[Range[1, m]! Coefficient[(E^x-1)^k/k! + O[x]^(m+1), x, Range[1, m]], {k, 1, m}]]] (* Oliver Seipel, Jun 12 2024 *)
-
Maxima
create_list(stirling2(n+1,k+1),n,0,30,k,0,n); /* Emanuele Munarini, Jun 01 2012 */
-
PARI
for(n=1,22,for(k=1,n,print1(stirling(n,k,2),", "));print()); \\ Joerg Arndt, Apr 21 2013
-
PARI
Stirling2(n,k)=sum(i=0,k,(-1)^i*binomial(k,i)*i^n)*(-1)^k/k! \\ M. F. Hasler, Mar 06 2012
-
Sage
stirling_number2 # Danny Rorabaugh, Oct 11 2015
Formula
S2(n, k) = k*S2(n-1, k) + S2(n-1, k-1), n > 1. S2(1, k) = 0, k > 1. S2(1, 1) = 1.
E.g.f.: A(x, y) = e^(y*e^x-y). E.g.f. for m-th column: (e^x-1)^m/m!.
S2(n, k) = (1/k!) * Sum_{i=0..k} (-1)^(k-i)*binomial(k, i)*i^n.
Row sums: Bell number A000110(n) = Sum_{k=1..n} S2(n, k), n>0.
S(n, k) = Sum (i_1*i_2*...*i_(n-k)) summed over all (n-k)-combinations {i_1, i_2, ..., i_k} with repetitions of the numbers {1, 2, ..., k}. Also S(n, k) = Sum (1^(r_1)*2^(r_2)*...* k^(r_k)) summed over integers r_j >= 0, for j=1..k, with Sum{j=1..k} r_j = n-k. [Charalambides]. - Wolfdieter Lang, Aug 15 2019.
A019538(n, k) = k! * S2(n, k).
A028248(n, k) = (k-1)! * S2(n, k).
For asymptotics see Hsu (1948), among other sources.
Sum_{n>=0} S2(n, k)*x^n = x^k/((1-x)(1-2x)(1-3x)...(1-kx)).
Let P(n) = the number of integer partitions of n (A000041), p(i) = the number of parts of the i-th partition of n, d(i) = the number of distinct parts of the i-th partition of n, p(j, i) = the j-th part of the i-th partition of n, m(i, j) = multiplicity of the j-th part of the i-th partition of n, and Sum_{i=1..P(n), p(i)=m} = sum running from i=1 to i=P(n) but taking only partitions with p(i)=m parts into account. Then S2(n, m) = Sum_{i=1..P(n), p(i)=m} n!/(Product_{j=1..p(i)} p(i, j)!) * 1/(Product_{j=1..d(i)} m(i, j)!). For example, S2(6, 3) = 90 because n=6 has the following partitions with m=3 parts: (114), (123), (222). Their complexions are: (114): 6!/(1!*1!*4!) * 1/(2!*1!) = 15, (123): 6!/(1!*2!*3!) * 1/(1!*1!*1!) = 60, (222): 6!/(2!*2!*2!) * 1/(3!) = 15. The sum of the complexions is 15+60+15 = 90 = S2(6, 3). - Thomas Wieder, Jun 02 2005
Sum_{k=1..n} k*S2(n,k) = B(n+1)-B(n), where B(q) are the Bell numbers (A000110). - Emeric Deutsch, Nov 01 2006
Recurrence: S2(n+1,k) = Sum_{i=0..n} binomial(n,i)*S2(i,k-1). With the starting conditions S2(n,k) = 1 for n = 0 or k = 1 and S2(n,k) = 0 for k = 0 we have the closely related recurrence S2(n,k) = Sum_{i=k..n} binomial(n-1,i-1)*S2(i-1,k-1). - Thomas Wieder, Jan 27 2007
Representation of Stirling numbers of the second kind S2(n,k), n=1,2,..., k=1,2,...,n, as special values of hypergeometric function of type (n)F(n-1): S2(n,k)= (-1)^(k-1)*hypergeom([ -k+1,2,2,...,2],[1,1,...,1],1)/(k-1)!, i.e., having n parameters in the numerator: one equal to -k+1 and n-1 parameters all equal to 2; and having n-1 parameters in the denominator all equal to 1 and the value of the argument equal to 1. Example: S2(6,k)= seq(evalf((-1)^(k-1)*hypergeom([ -k+1,2,2,2,2,2],[1,1,1,1,1],1)/(k-1)!),k=1..6)=1,31,90,65,15,1. - Karol A. Penson, Mar 28 2007
From Tom Copeland, Oct 10 2007: (Start)
Bell_n(x) = Sum_{j=0..n} S2(n,j) * x^j = Sum_{j=0..n} E(n,j) * Lag(n,-x, j-n) = Sum_{j=0..n} (E(n,j)/n!) * (n!*Lag(n,-x, j-n)) = Sum_{j=0..n} E(n,j) * binomial(Bell.(x)+j, n) umbrally where Bell_n(x) are the Bell / Touchard / exponential polynomials; S2(n,j), the Stirling numbers of the second kind; E(n,j), the Eulerian numbers; and Lag(n,x,m), the associated Laguerre polynomials of order m.
For x = 0, the equation gives Sum_{j=0..n} E(n,j) * binomial(j,n) = 1 for n=0 and 0 for all other n. By substituting the umbral compositional inverse of the Bell polynomials, the lower factorial n!*binomial(y,n), for x in the equation, the Worpitzky identity is obtained; y^n = Sum_{j=0..n} E(n,j) * binomial(y+j,n).
Note that E(n,j)/n! = E(n,j)/(Sum_{k=0..n}E(n,k)). Also (n!*Lag(n, -1, j-n)) is A086885 with a simple combinatorial interpretation in terms of seating arrangements, giving a combinatorial interpretation to the equation for x=1; n!*Bell_n(1) = n!*Sum_{j=0..n} S2(n,j) = Sum_{j=0..n} E(n,j) * (n!*Lag(n, -1, j-n)).
(Appended Sep 16 2020) For connections to the Bernoulli numbers, extensions, proofs, and a clear presentation of the number arrays involved in the identities above, see my post Reciprocity and Umbral Witchcraft. (End)
n-th row = leftmost column of nonzero terms of A127701^(n-1). Also, (n+1)-th row of the triangle = A127701 * n-th row; deleting the zeros. Example: A127701 * [1, 3, 1, 0, 0, 0, ...] = [1, 7, 6, 1, 0, 0, 0, ...]. - Gary W. Adamson, Nov 21 2007
The row polynomials are given by D^n(e^(x*t)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A147315 and A094198. See also A185422. - Peter Bala, Nov 25 2011
Let f(x) = e^(e^x). Then for n >= 1, 1/f(x)*(d/dx)^n(f(x)) = 1/f(x)*(d/dx)^(n-1)(e^x*f(x)) = Sum_{k=1..n} S2(n,k)*e^(k*x). Similar formulas hold for A039755, A105794, A111577, A143494 and A154537. - Peter Bala, Mar 01 2012
S2(n,k) = A048993(n,k), 1 <= k <= n. - Reinhard Zumkeller, Mar 26 2012
O.g.f. for the n-th diagonal is D^n(x), where D is the operator x/(1-x)*d/dx. - Peter Bala, Jul 02 2012
n*i!*S2(n-1,i) = Sum_{j=(i+1)..n} (-1)^(j-i+1)*j!/(j-i)*S2(n,j). - Leonid Bedratyuk, Aug 19 2012
G.f.: (1/Q(0)-1)/(x*y), where Q(k) = 1 - (y+k)*x - (k+1)*y*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
From Tom Copeland, Apr 17 2014: (Start)
Multiply each n-th diagonal of the Pascal lower triangular matrix by x^n and designate the result as A007318(x) = P(x).
With Bell(n,x)=B(n,x) defined above, D = d/dx, and :xD:^n = x^n*D^n, a Dobinski formula gives umbrally f(y)^B(.,x) = e^(-x)*e^(f(y)*x). Then f(y)^B(.,:xD:)g(x) = [f(y)^(xD)]g(x) = e^[-(1-f(y)):xD:]g(x) = g[f(y)x].
In particular, for f(y) = (1+y),
A) (1+y)^B(.,x) = e^(-x)*e^((1+y)*x) = e^(x*y) = e^[log(1+y)B(.,x)],
B) (I+dP)^B(.,x) = e^(x*dP) = P(x) = e^[x*(e^M-I)]= e^[M*B(.,x)] with dP = A132440, M = A238385-I = log(I+dP), and I = identity matrix, and
C) (1+dP)^(xD) = e^(dP:xD:) = P(:xD:) = e^[(e^M-I):xD:] = e^[M*xD] with action e^(dP:xD:)g(x) = g[(I+dP)*x].
D) P(x)^m = P(m*x), which implies (Sum_{k=1..m} a_k)^j = B(j,m*x) where the sum is umbrally evaluated only after exponentiation with (a_k)^q = B(.,x)^q = B(q,x). E.g., (a1+a2+a3)^2=a1^2+a2^2+a3^2+2(a1*a2+a1*a3+a2*a3) = 3*B(2,x)+6*B(1,x)^2 = 9x^2+3x = B(2,3x).
E) P(x)^2 = P(2x) = e^[M*B(.,2x)] = A038207(x), the face vectors of the n-Dim hypercubes.
(End)
As a matrix equivalent of some inversions mentioned above, A008277*A008275 = I, the identity matrix, regarded as lower triangular matrices. - Tom Copeland, Apr 26 2014
O.g.f. for the n-th diagonal of the triangle (n = 0,1,2,...): Sum_{k>=0} k^(k+n)*(x*e^(-x))^k/k!. Cf. the generating functions of the diagonals of A039755. Also cf. A112492. - Peter Bala, Jun 22 2014
Floor(1/(-1 + Sum_{n>=k} 1/S2(n,k))) = A034856(k-1), for k>=2. The fractional portion goes to zero at large k. - Richard R. Forberg, Jan 17 2015
From Daniel Forgues, Jan 16 2016: (Start)
Let x_(n), called a factorial term (Boole, 1970) or a factorial polynomial (Elaydi, 2005: p. 60), denote the falling factorial Product_{k=0..n-1} (x-k). Then, for n >= 1, x_(n) = Sum_{k=1..n} A008275(n,k) * x^k, x^n = Sum_{k=1..n} T(n,k) * x_(k), where A008275(n,k) are Stirling numbers of the first kind.
For n >= 1, the row sums yield the exponential numbers (or Bell numbers): Sum_{k=1..n} T(n,k) = A000110(n), and Sum_{k=1..n} (-1)^(n+k) * T(n,k) = (-1)^n * Sum_{k=1..n} (-1)^k * T(n,k) = (-1)^n * A000587(n), where A000587 are the complementary Bell numbers. (End)
Sum_{k=1..n} k*S2(n,k) = A138378(n). - Alois P. Heinz, Jan 07 2022
O.g.f. for the m-th column: x^m/(Product_{j=1..m} 1-j*x). - Daniel Checa, Aug 25 2022
S2(n,k) ~ (k^n)/k!, for fixed k as n->oo. - Daniel Checa, Nov 08 2022
S2(2n+k, n) ~ (2^(2n+k-1/2) * n^(n+k-1/2)) / (sqrt(Pi*(1-c)) * exp(n) * c^n * (2-c)^(n+k)), where c = -LambertW(-2 * exp(-2)). - Miko Labalan, Dec 21 2024
From Mikhail Kurkov, Mar 05 2025: (Start)
For a general proof of the formulas below via generating functions, see Mathematics Stack Exchange link.
Recursion for the n-th row (independently of other rows): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} (j-2)!*binomial(-k,j)*T(n,k+j-1) for 1 <= k < n with T(n,n) = 1 (see Fedor Petrov link).
Recursion for the k-th column (independently of other columns): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} binomial(n,j)*T(n-j+1,k)*(-1)^j for 1 <= k < n with T(n,n) = 1. (End)
Comments