A121033
Multiples of 13 containing a 13 in their decimal representation.
Original entry on oeis.org
13, 130, 1131, 1300, 1313, 1326, 1339, 1352, 1365, 1378, 1391, 2132, 2613, 3133, 3913, 4134, 5135, 5213, 6136, 6513, 7137, 7813, 8138, 9113, 9139, 10413, 11310, 11323, 11336, 11349, 11362, 11375, 11388, 11713, 13000, 13013, 13026, 13039
Offset: 1
Cf.
A121041,
A008595,
A011531,
A121022,
A121023,
A121024,
A121025,
A121026,
A121027,
A121028,
A121029,
A121030,
A121031,
A121032,
A121034,
A121035,
A121036,
A121037,
A121038,
A121039,
A121040.
-
Select[13*Range[2000], StringContainsQ[IntegerString[#], "13"] &] (* Paolo Xausa, Feb 25 2024 *)
-
is(n)=if(n%13, return(0)); while(n>12, if(n%100==13, return(1)); n\=10); 0 \\ Charles R Greathouse IV, Feb 12 2017
A008596
Multiples of 14.
Original entry on oeis.org
0, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 182, 196, 210, 224, 238, 252, 266, 280, 294, 308, 322, 336, 350, 364, 378, 392, 406, 420, 434, 448, 462, 476, 490, 504, 518, 532, 546, 560, 574, 588, 602, 616, 630, 644, 658, 672, 686, 700, 714, 728
Offset: 0
A141419
Triangle read by rows: T(n, k) = A000217(n) - A000217(n - k) with 1 <= k <= n.
Original entry on oeis.org
1, 2, 3, 3, 5, 6, 4, 7, 9, 10, 5, 9, 12, 14, 15, 6, 11, 15, 18, 20, 21, 7, 13, 18, 22, 25, 27, 28, 8, 15, 21, 26, 30, 33, 35, 36, 9, 17, 24, 30, 35, 39, 42, 44, 45, 10, 19, 27, 34, 40, 45, 49, 52, 54, 55
Offset: 1
As a triangle:
1,
2, 3,
3, 5, 6,
4, 7, 9, 10,
5, 9, 12, 14, 15,
6, 11, 15, 18, 20, 21,
7, 13, 18, 22, 25, 27, 28,
8, 15, 21, 26, 30, 33, 35, 36,
9, 17, 24, 30, 35, 39, 42, 44, 45,
10, 19, 27, 34, 40, 45, 49, 52, 54, 55;
As a rectangle:
1 2 3 4 5 6 7 8 9 10
3 5 7 9 11 13 15 17 19 21
6 9 12 15 18 21 24 27 30 33
10 14 18 22 26 30 34 38 42 46
15 20 25 30 35 40 45 50 55 60
21 27 33 39 45 51 57 63 69 75
28 35 42 49 56 63 70 77 84 91
36 44 52 60 68 76 84 92 100 108
45 54 63 72 81 90 99 108 117 126
55 65 75 85 95 105 115 125 135 145
Since the odd divisors of 15 are 1, 3, 5 and 15, number 15 appears four times in the triangle at t(3+(5-1)/2, 5) in column 5 since 5+1 <= 2*3, t(5+(3-1)/2, 3), t(1+(15-1)/2, 2*1) in column 2 since 15+1 > 2*1, and t(15+(1-1)/2, 1). - _Hartmut F. W. Hoft_, Apr 14 2016
- R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 24.
- Carlton Gamer, David W. Roeder, and John J. Watkins, Trapezoidal Numbers, Mathematics Magazine 58:2 (1985), pp. 108-110.
- L. E. Jeffery, Unit-primitive matrices
- M. A. Nyblom, On the representation of the integers as a difference of nonconsecutive triangular numbers, Fibonacci Quarterly 39:3 (2001), pp. 256-263.
A000027,
A000217,
A000326,
A005449,
A045943,
A059845,
A115067,
A140090,
A140091,
A140672 are rows, columns or diagonals - refer to comments.
-
a141419 n k = k * (2 * n - k + 1) `div` 2
a141419_row n = a141419_tabl !! (n-1)
a141419_tabl = map (scanl1 (+)) a004736_tabl
-- Reinhard Zumkeller, Aug 04 2014
-
a:=(n,k)->k*n-binomial(k,2): seq(seq(a(n,k),k=1..n),n=1..12); # Muniru A Asiru, Oct 14 2018
-
T[n_, m_] = m*(2*n - m + 1)/2; a = Table[Table[T[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[a]
A269044
a(n) = 13*n + 7.
Original entry on oeis.org
7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176, 189, 202, 215, 228, 241, 254, 267, 280, 293, 306, 319, 332, 345, 358, 371, 384, 397, 410, 423, 436, 449, 462, 475, 488, 501, 514, 527, 540, 553, 566, 579, 592, 605, 618, 631, 644, 657, 670, 683, 696, 709, 722, 735
Offset: 0
-
[13*n+7: n in [0..60]];
-
13 Range[0, 60] + 7 (* or *) Range[7, 800, 13] (* or *) Table[13 n + 7, {n, 0, 60}]
LinearRecurrence[{2, -1}, {7, 20}, 60] (* Vincenzo Librandi, Feb 19 2016 *)
-
makelist(13*n+7, n, 0, 60);
-
vector(60, n, n--; 13*n+7)
-
[13*n+7 for n in (0..60)]
A190991
a(n) = 13*n + 1.
Original entry on oeis.org
1, 14, 27, 40, 53, 66, 79, 92, 105, 118, 131, 144, 157, 170, 183, 196, 209, 222, 235, 248, 261, 274, 287, 300, 313, 326, 339, 352, 365, 378, 391, 404, 417, 430, 443, 456, 469, 482, 495, 508, 521, 534, 547, 560, 573, 586, 599, 612, 625, 638, 651, 664, 677
Offset: 0
-
[13*n + 1: n in [0..60]]; // Vincenzo Librandi, Jun 11 2011
-
Range[1, 1000, 13]
LinearRecurrence[{2,-1},{1,14},60] (* Harvey P. Dale, Apr 05 2014 *)
-
a(n)=13*n+1 \\ Charles R Greathouse IV, Jun 04 2020
-
[13*n+1 for n in (0..60)] # G. C. Greubel, Sep 16 2022
A094053
Triangle read by rows: T(n,k) = k*(n-k), 1 <= k <= n.
Original entry on oeis.org
0, 1, 0, 2, 2, 0, 3, 4, 3, 0, 4, 6, 6, 4, 0, 5, 8, 9, 8, 5, 0, 6, 10, 12, 12, 10, 6, 0, 7, 12, 15, 16, 15, 12, 7, 0, 8, 14, 18, 20, 20, 18, 14, 8, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 0, 12
Offset: 1
From _M. F. Hasler_, Feb 02 2013: (Start)
Triangle begins:
0;
1, 0;
2, 2, 0;
3, 4, 3, 0;
4, 6, 6, 4, 0;
5, 8, 9, 8, 5, 0;
(...)
If an additional 0 was added at the beginning, this would become:
0;
0, 1;
0, 2, 2;
0, 3, 4; 3;
0, 4, 6, 6, 4;
0, 5, 8, 9, 8, 5;
... (End)
- W. Harter, Principles of Symmetry, Dynamics, Spectroscopy, Wiley, 1993, Ch. 5, page 345-346.
- B. Klee, Quantum Angular Momentum Matrices, Wolfram Demonstrations Project, 2016.
- J. Schwinger, On Angular Momentum , Cambridge: Harvard University, Nuclear Development Associates, Inc., 1952.
T(n,k) for values of k:
A005843 (k=2),
A008585 (k=3),
A008586 (k=4),
A008587 (k=5),
A008588 (k=6),
A008589 (k=7),
A008590 (k=8),
A008591 (k=9),
A008592 (k=10),
A008593 (k=11),
A008594 (k=12),
A008595 (k=13),
A008596 (k=14),
A008597 (k=15),
A008598 (k=16),
A008599 (k=17),
A008600 (k=18),
A008601 (k=19),
A008602 (k=20).
-
/* As triangle */ [[k*(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jan 30 2016
-
Flatten[Table[(j - m) (j + m + 1), {j, 0, 10, 1/2}, {m, -j, j}]] (* Bradley Klee, Jan 29 2016 *)
-
{for(n=1, 13, for(k=1, n, print1(k*(n - k)," ");); print(););} \\ Indranil Ghosh, Mar 12 2017
A119457
Triangle read by rows: T(n, 1) = n, T(n, 2) = 2*(n-1) for n>1 and T(n, k) = T(n-1, k-1) + T(n-2, k-2) for 2 < k <= n.
Original entry on oeis.org
1, 2, 2, 3, 4, 3, 4, 6, 6, 5, 5, 8, 9, 10, 8, 6, 10, 12, 15, 16, 13, 7, 12, 15, 20, 24, 26, 21, 8, 14, 18, 25, 32, 39, 42, 34, 9, 16, 21, 30, 40, 52, 63, 68, 55, 10, 18, 24, 35, 48, 65, 84, 102, 110, 89, 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144, 12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233
Offset: 1
Triangle begins as:
1;
2, 2;
3, 4, 3;
4, 6, 6, 5;
5, 8, 9, 10, 8;
6, 10, 12, 15, 16, 13;
7, 12, 15, 20, 24, 26, 21;
8, 14, 18, 25, 32, 39, 42, 34;
9, 16, 21, 30, 40, 52, 63, 68, 55;
10, 18, 24, 35, 48, 65, 84, 102, 110, 89;
11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144;
12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233;
-
A119457:= func< n,k | (n-k+1)*Fibonacci(k+1) >;
[A119457(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 16 2025
-
(* First program *)
T[n_, 1] := n;
T[n_ /; n > 1, 2] := 2 n - 2;
T[n_, k_] /; 2 < k <= n := T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)
(* Second program *)
A119457[n_,k_]:= (n-k+1)*Fibonacci[k+1];
Table[A119457[n,k], {n,13}, {k,n}]//Flatten (* G. C. Greubel, Apr 16 2025 *)
-
def A119457(n,k): return (n-k+1)*fibonacci(k+1)
print(flatten([[A119457(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Apr 16 2025
A123868
a(n) = n^12 - 1.
Original entry on oeis.org
0, 4095, 531440, 16777215, 244140624, 2176782335, 13841287200, 68719476735, 282429536480, 999999999999, 3138428376720, 8916100448255, 23298085122480, 56693912375295, 129746337890624, 281474976710655, 582622237229760, 1156831381426175, 2213314919066160
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
List([1..20], n-> n^12 -1); # G. C. Greubel, Aug 08 2019
-
[n^12 -1:n in [1..20]]; // Vincenzo Librandi, Dec 27 2010
-
seq(n^(12) -1, n=1..20); # G. C. Greubel, Aug 08 2019
-
Range[20]^12 -1 (* G. C. Greubel, Aug 08 2019 *)
-
vector(20, n, n^12 -1) \\ G. C. Greubel, Aug 08 2019
-
[n^12 -1 for n in (1..20)] # G. C. Greubel, Aug 08 2019
A153080
a(n) = 13*n + 2.
Original entry on oeis.org
2, 15, 28, 41, 54, 67, 80, 93, 106, 119, 132, 145, 158, 171, 184, 197, 210, 223, 236, 249, 262, 275, 288, 301, 314, 327, 340, 353, 366, 379, 392, 405, 418, 431, 444, 457, 470, 483, 496, 509, 522, 535, 548, 561, 574, 587, 600, 613, 626, 639, 652, 665, 678, 691
Offset: 0
-
I:=[2, 15]; [n le 2 select I[n] else 2*Self(n-1)-1*Self(n-2): n in [1..60]]; // Vincenzo Librandi, Feb 25 2012
-
A153080:=n->13*n+2: seq(A153080(n), n=0..100); # Wesley Ivan Hurt, Oct 05 2017
-
Range[2, 1000, 13] (* Vladimir Joseph Stephan Orlovsky, May 29 2011 *)
LinearRecurrence[{2,-1},{2,15},30] (* Vincenzo Librandi, Feb 25 2012 *)
A154609
a(n) = 13*n + 5.
Original entry on oeis.org
5, 18, 31, 44, 57, 70, 83, 96, 109, 122, 135, 148, 161, 174, 187, 200, 213, 226, 239, 252, 265, 278, 291, 304, 317, 330, 343, 356, 369, 382, 395, 408, 421, 434, 447, 460, 473, 486, 499, 512, 525, 538, 551, 564, 577, 590, 603, 616, 629, 642, 655, 668, 681, 694
Offset: 0
-
I:=[5, 18]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 26 2012
-
Range[5, 1000, 13] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
CoefficientList[Series[(8 x + 5)/(1 - x)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Feb 26 2012 *)
-
a(n)=13*n+5 \\ Charles R Greathouse IV, Dec 28 2011
-
[13*n+5 for n in range(61)] # G. C. Greubel, May 31 2024
Showing 1-10 of 33 results.
Comments