cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A248271 Egyptian fraction representation of sqrt(45) (A010499) using a greedy function.

Original entry on oeis.org

6, 2, 5, 122, 138674, 32476589259, 7827697016386517458238, 674742854143668103289252692160450020023615629, 480580099090725670530151893237450499682750267119621001128141465878491826900413350973083878
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 45]]

A104161 G.f.: x*(1 - x + x^2)/((1-x)^2 * (1 - x - x^2)).

Original entry on oeis.org

0, 1, 2, 5, 10, 19, 34, 59, 100, 167, 276, 453, 740, 1205, 1958, 3177, 5150, 8343, 13510, 21871, 35400, 57291, 92712, 150025, 242760, 392809, 635594, 1028429, 1664050, 2692507, 4356586, 7049123
Offset: 0

Views

Author

Creighton Dement, Mar 10 2005

Keywords

Comments

A floretion-generated sequence.
Floretion Algebra Multiplication Program, FAMP Code: 1vesrokseq[ (- .25'i - .25i' - .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' - .25e)('i + i' + 'ji' + 'ki' + e) ] RokType: Y[sqa.Findk()] = Y[sqa.Findk()] + p.
Partial sums of Leonardo numbers A001595. - Jonathan Vos Post, Jan 01 2011

Crossrefs

Programs

  • GAP
    List([0..40], n-> 2*Fibonacci(n+2) -(n+2)); # G. C. Greubel, Jul 09 2019
  • Magma
    [2*Fibonacci(n+2) -(n+2): n in [0..40]]; // G. C. Greubel, Jul 09 2019
    
  • Mathematica
    a=0;b=1;Table[c=b+a+n; a=b; b=c, {n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2011 *)
    CoefficientList[Series[x*(1-x+x^2)/((1-x)^2*(1-x-x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{3,-2,-1,1},{0,1,2,5},40] (* Harvey P. Dale, Sep 06 2012 *)
  • PARI
    my(x='x+O('x^40)); concat(0, Vec(x*(1-x+x^2)/((1-x)^2*(1-x-x^2)))) \\ G. C. Greubel, Sep 26 2017
    
  • SageMath
    [2*fibonacci(n+2) -(n+2) for n in (0..40)] # G. C. Greubel, Jul 09 2019
    

Formula

Superseeker results (incomplete): a(2) - 2a(n+1) + a(n) = A006355(n+1) (Number of binary vectors of length n containing no singletons); a(n+1) - a(n) = A001595(n) (2-ranks of difference sets constructed from Segre hyperovals); a(n) + n + 1 = A001595(n+1).
A107909(a(n)) = A000975(n). - Reinhard Zumkeller, May 28 2005
From Ross La Haye, Aug 03 2005: (Start)
a(n) = 2*(Fibonacci(n+2) - 1) - n.
a(n) = Sum_{k=0..n} A101220(n-k, 0, k). (End)
From Gary W. Adamson, Apr 02 2006: (Start)
a(n) = a(n-1) + a(n-2) + n-1.
a(n) = row sums of A117501, starting (1, 2, 5, 10, ...). (End)
a(n) = Sum_{k=0..n} A109754(n-k,k). - Ross La Haye, Apr 12 2006
a(n) = (Sum_{k=0..n} (n-k)*Fibonacci(k-1) + Fibonacci(k)) - n. - Ross La Haye, May 31 2006
From R. J. Mathar, Apr 18 2008: (Start)
a(n) = -2 - n + (-A094214)^n*(1-A010499/5) + (1+A010499/5)/A094214^n.
a(n) = A006355(n+3) - n - 2. (End)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4); a(0)=0, a(1)=1, a(2)=2, a(3)=5. - Harvey P. Dale, Sep 06 2012

A176015 Decimal expansion of (5 + 3*sqrt(5))/10.

Original entry on oeis.org

1, 1, 7, 0, 8, 2, 0, 3, 9, 3, 2, 4, 9, 9, 3, 6, 9, 0, 8, 9, 2, 2, 7, 5, 2, 1, 0, 0, 6, 1, 9, 3, 8, 2, 8, 7, 0, 6, 3, 2, 1, 8, 5, 5, 0, 7, 8, 8, 3, 4, 5, 7, 7, 1, 7, 2, 8, 1, 2, 6, 9, 1, 7, 3, 6, 2, 3, 1, 5, 6, 2, 7, 7, 6, 9, 1, 3, 4, 1, 4, 6, 9, 8, 2, 4, 3, 2, 4, 3, 2, 2, 5, 1, 3, 6, 3, 4, 6, 8, 2, 4, 9, 0, 8, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 06 2010

Keywords

Comments

Continued fraction expansion of (5 + 3*sqrt(5))/10 is A010686.
The horizontal distance between the accumulation point and the outermost point of a golden spiral inscribed inside a golden rectangle with dimensions phi and 1 along the x and y axes, respectively (the vertical distance is A244847). - Amiram Eldar, May 18 2021

Examples

			(5 + 3*sqrt(5))/10 = 1.17082039324993690892...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.2 The Golden Mean, phi, p. 7.

Crossrefs

Cf. A000032, A000045, A001622, A002163 (decimal expansion of sqrt(5)), A010686 (repeat 1, 5), A090550, A134976.
Cf. A010499 (decimal expansion of 3*sqrt(5)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); n:=(5+3*Sqrt(5))/10; Reverse(Intseq(Floor(10^104*n))); // Arkadiusz Wesolowski, Jan 07 2018
    
  • Maple
    Digits := 1000:  (5+3*sqrt(5.0))/10; # Muniru A Asiru, Jan 22 2018
  • Mathematica
    RealDigits[(5 + 3 Sqrt[5])/10, 10, 1001][[1]] (* Georg Fischer, Apr 02 2020 *)
  • PARI
    (5 + 3*sqrt(5))/10 \\ Michel Marcus, Apr 20 2020

Formula

Equals (A134976 + 8)/10. - R. J. Mathar, Apr 12 2010
From Arkadiusz Wesolowski, Jan 07 2018: (Start)
Equals A001622^2 / sqrt(5).
Equals lim_{n -> infinity} A000045(n+2) / A001622^n. (End)
Equals 1/A090550 + 1. - Michel Marcus, Apr 20 2020
Minimal polynomial is 5x^2 - 5x - 1 (this number is an algebraic number but not an algebraic integer). - Alonso del Arte, Apr 20 2020
Equals lim_{k->oo} Fibonacci(k+2)/Lucas(k). - Amiram Eldar, Feb 06 2022

A379135 Decimal expansion of the midradius of a pentakis dodecahedron with unit shorter edge length.

Original entry on oeis.org

1, 4, 7, 5, 6, 8, 3, 6, 6, 1, 0, 4, 1, 6, 1, 4, 0, 9, 0, 7, 6, 8, 9, 6, 0, 0, 8, 3, 8, 4, 9, 4, 8, 5, 7, 2, 5, 5, 2, 6, 8, 2, 1, 2, 5, 6, 5, 6, 9, 5, 4, 8, 0, 9, 7, 7, 3, 4, 3, 9, 0, 9, 7, 8, 0, 1, 9, 2, 9, 6, 8, 9, 8, 0, 7, 6, 1, 1, 7, 8, 9, 1, 5, 2, 0, 2, 7, 0, 2, 6
Offset: 1

Views

Author

Paolo Xausa, Dec 17 2024

Keywords

Comments

The pentakis dodecahedron is the dual polyhedron of the truncated icosahedron.

Examples

			1.4756836610416140907689600838494857255268212565695...
		

Crossrefs

Cf. A379132 (surface area), A379133 (volume), A379134 (inradius), A379136 (dihedral angle).
Cf. A205769 (midradius + 1 of a truncated icosahedron with unit edge length).
Cf. A010499.

Programs

  • Mathematica
    First[RealDigits[(11 + Sqrt[45])/12, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["PentakisDodecahedron", "Midradius"], 10, 100]]
  • PARI
    (11 + 3*sqrt(5))/12 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals (11 + 3*sqrt(5))/12 = (11 + A010499)/12.

A377697 Decimal expansion of the midradius of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

2, 9, 2, 7, 0, 5, 0, 9, 8, 3, 1, 2, 4, 8, 4, 2, 2, 7, 2, 3, 0, 6, 8, 8, 0, 2, 5, 1, 5, 4, 8, 4, 5, 7, 1, 7, 6, 5, 8, 0, 4, 6, 3, 7, 6, 9, 7, 0, 8, 6, 4, 4, 2, 9, 3, 2, 0, 3, 1, 7, 2, 9, 3, 4, 0, 5, 7, 8, 9, 0, 6, 9, 4, 2, 2, 8, 3, 5, 3, 6, 7, 4, 5, 6, 0, 8, 1, 0, 8, 0
Offset: 1

Views

Author

Paolo Xausa, Nov 05 2024

Keywords

Examples

			2.9270509831248422723068802515484571765804637697...
		

Crossrefs

Cf. A377694 (surface area), A377695 (volume), A377696 (circumradius), A377698 (Dehn invariant, negated).
Cf. A239798 (analogous for a regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[(5 + Sqrt[45])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Midradius"], 10, 100]]

Formula

Equals (5 + 3*sqrt(5))/4 = (5 + A010499)/4.
Equals A205769 - 1/2.

A385804 Decimal expansion of the volume of a triaugmented dodecahedron with unit edge.

Original entry on oeis.org

8, 5, 6, 7, 6, 2, 7, 4, 5, 7, 8, 1, 2, 1, 0, 5, 6, 8, 0, 7, 6, 7, 2, 0, 0, 6, 2, 8, 8, 7, 1, 1, 4, 2, 9, 4, 1, 4, 5, 1, 1, 5, 9, 4, 2, 4, 2, 7, 1, 6, 1, 0, 7, 3, 3, 0, 0, 7, 9, 3, 2, 3, 3, 5, 1, 4, 4, 7, 2, 6, 7, 3, 5, 5, 7, 0, 8, 8, 4, 1, 8, 6, 4, 0, 2, 0, 2, 7, 0, 1
Offset: 1

Views

Author

Paolo Xausa, Jul 09 2025

Keywords

Comments

The triaugmented dodecahedron is Johnson solid J_61.

Examples

			8.56762745781210568076720062887114294145115942427...
		

Crossrefs

Cf. A385805 (surface area).

Programs

  • Mathematica
    First[RealDigits[5/8*(7 + Sqrt[45]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J61", "Volume"], 10, 100]]

Formula

Equals (5/8)*(7 + 3*sqrt(5)) = (5/8)*(7 + A010499).
Equals A102769 + 3*A179552.
Equals the largest root of 16*x^2 - 140*x + 25.
Equals A377697^2. - Hugo Pfoertner, Jul 13 2025

A010135 Continued fraction for sqrt(45).

Original entry on oeis.org

6, 1, 2, 2, 2, 1, 12, 1, 2, 2, 2, 1, 12, 1, 2, 2, 2, 1, 12, 1, 2, 2, 2, 1, 12, 1, 2, 2, 2, 1, 12, 1, 2, 2, 2, 1, 12, 1, 2, 2, 2, 1, 12, 1, 2, 2, 2, 1, 12, 1, 2, 2, 2, 1, 12, 1, 2, 2, 2, 1, 12, 1, 2, 2, 2, 1, 12, 1, 2, 2, 2, 1, 12, 1, 2
Offset: 0

Views

Author

Keywords

Examples

			6.708203932499369089227521006... = 6 + 1/(1 + 1/(2 + 1/(2 + 1/(2 + ...)))). - _Harry J. Smith_, Jun 06 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010499 (decimal expansion), A041076/A041077 (convergents).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[45],300] (* Vladimir Joseph Stephan Orlovsky, Mar 07 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 17000); x=contfrac(sqrt(45)); for (n=0, 20000, write("b010135.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 06 2009

Formula

G.f.: (6 + x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + 6*x^6)/(1 - x^6). - Stefano Spezia, Jul 27 2025

A041076 Numerators of continued fraction convergents to sqrt(45).

Original entry on oeis.org

6, 7, 20, 47, 114, 161, 2046, 2207, 6460, 15127, 36714, 51841, 658806, 710647, 2080100, 4870847, 11821794, 16692641, 212133486, 228826127, 669785740, 1568397607, 3806580954, 5374978561, 68306323686
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 322*a(n-6)-a(n-12). G.f.: -(x^11-6*x^10+7*x^9-20*x^8+47*x^7-114*x^6-161*x^5-114*x^4-47*x^3-20*x^2-7*x-6)/((x^2-3*x+1)*(x^2+3*x+1)*(x^4-3*x^3+8*x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)). [Colin Barker, Jul 18 2012]

A041077 Denominators of continued fraction convergents to sqrt(45).

Original entry on oeis.org

1, 1, 3, 7, 17, 24, 305, 329, 963, 2255, 5473, 7728, 98209, 105937, 310083, 726103, 1762289, 2488392, 31622993, 34111385, 99845763, 233802911, 567451585, 801254496, 10182505537, 10983760033, 32150025603, 75283811239, 182717648081, 258001459320, 3278735159921
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[45],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 22 2011*)
    Denominator[Convergents[Sqrt[45], 30]] (* Vincenzo Librandi, Oct 24 2013 *)
    LinearRecurrence[{0,0,0,0,0,322,0,0,0,0,0,-1},{1,1,3,7,17,24,305,329,963,2255,5473,7728},40] (* Harvey P. Dale, Jun 11 2022 *)

Formula

a(n) = 322*a(n-6)-a(n-12). G.f.: -(x^10-x^9+3*x^8-7*x^7+17*x^6-24*x^5-17*x^4-7*x^3-3*x^2-x-1)/((x^2-3*x+1)*(x^2+3*x+1)*(x^4-3*x^3+8*x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)). [Colin Barker, Jul 18 2012]

Extensions

More terms from Vincenzo Librandi, Oct 24 2013

A377798 Decimal expansion of the circumradius of a truncated icosidodecahedron (great rhombicosidodecahedron) with unit edge length.

Original entry on oeis.org

3, 8, 0, 2, 3, 9, 4, 4, 9, 9, 8, 5, 1, 2, 9, 3, 5, 8, 4, 7, 6, 6, 8, 3, 6, 7, 1, 4, 1, 1, 0, 3, 2, 3, 2, 0, 9, 3, 0, 3, 8, 9, 2, 8, 6, 5, 2, 5, 1, 2, 8, 5, 6, 2, 1, 1, 8, 9, 2, 8, 4, 3, 9, 8, 2, 3, 4, 3, 9, 6, 1, 4, 2, 2, 8, 9, 2, 1, 2, 6, 6, 5, 7, 3, 7, 7, 7, 8, 2, 4
Offset: 1

Views

Author

Paolo Xausa, Nov 08 2024

Keywords

Examples

			3.802394499851293584766836714110323209303892865251...
		

Crossrefs

Cf. A377796 (surface area), A377797 (volume), A377799 (midradius).

Programs

  • Mathematica
    First[RealDigits[Sqrt[31/4 + Sqrt[45]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedIcosidodecahedron", "Circumradius"], 10, 100]]

Formula

Equals sqrt(31/4 + 3*sqrt(5)) = sqrt(31/4 + A010499) = sqrt(31 + A344171)/2.
Showing 1-10 of 13 results. Next