A152683 Decimal expansion of log_6 (2).
3, 8, 6, 8, 5, 2, 8, 0, 7, 2, 3, 4, 5, 4, 1, 5, 8, 6, 8, 7, 0, 2, 4, 6, 1, 3, 8, 4, 6, 7, 8, 2, 0, 8, 7, 6, 4, 6, 5, 1, 4, 1, 8, 5, 9, 4, 5, 7, 1, 0, 3, 4, 2, 8, 3, 8, 9, 4, 9, 4, 9, 2, 8, 8, 2, 6, 6, 4, 2, 0, 1, 8, 5, 4, 0, 7, 2, 2, 8, 0, 3, 8, 3, 1, 6, 5, 2
Offset: 0
Examples
.38685280723454158687024613846782087646514185945710342838949...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Emmanuel Jeandel, Michael Rao, An aperiodic set of 11 Wang tiles, arXiv:1506.06492 [cs.DM], 2015. See p. 10.
- Index entries for transcendental numbers
Crossrefs
Cf. decimal expansion of log_6(m): this sequence, A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), A154009 (m=9), A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), A154776 (m=16), A154856 (m=17), A154911 (m=18), A155044 (m=19), A155490 (m=20), A155554 (m=21), A155697 (m=22), A155823 (m=23), A155959 (m=24).
Programs
-
Magma
SetDefaultRealField(RealField(100)); Log(2)/Log(6); // G. C. Greubel, Sep 13 2018
-
Mathematica
RealDigits[Log[6,2],10,120][[1]] (* Harvey P. Dale, Sep 12 2012 *)
-
PARI
default(realprecision, 100); log(2)/log(6) \\ G. C. Greubel, Sep 13 2018
Formula
Equals log(2)/log(6) (A002162/A016629), that is, log(2)/(log(2)+log(3)). - Michel Marcus, Aug 18 2018
Comments