cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A152683 Decimal expansion of log_6 (2).

Original entry on oeis.org

3, 8, 6, 8, 5, 2, 8, 0, 7, 2, 3, 4, 5, 4, 1, 5, 8, 6, 8, 7, 0, 2, 4, 6, 1, 3, 8, 4, 6, 7, 8, 2, 0, 8, 7, 6, 4, 6, 5, 1, 4, 1, 8, 5, 9, 4, 5, 7, 1, 0, 3, 4, 2, 8, 3, 8, 9, 4, 9, 4, 9, 2, 8, 8, 2, 6, 6, 4, 2, 0, 1, 8, 5, 4, 0, 7, 2, 2, 8, 0, 3, 8, 3, 1, 6, 5, 2
Offset: 0

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Comments

The upper bound for the ratio of the number of 3x+1 steps to all steps in the Collatz iteration. - T. D. Noe, Apr 30 2010

Examples

			.38685280723454158687024613846782087646514185945710342838949...
		

Crossrefs

Cf. decimal expansion of log_6(m): this sequence, A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), A154009 (m=9), A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), A154776 (m=16), A154856 (m=17), A154911 (m=18), A155044 (m=19), A155490 (m=20), A155554 (m=21), A155697 (m=22), A155823 (m=23), A155959 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(2)/Log(6); // G. C. Greubel, Sep 13 2018
  • Mathematica
    RealDigits[Log[6,2],10,120][[1]] (* Harvey P. Dale, Sep 12 2012 *)
  • PARI
    default(realprecision, 100); log(2)/log(6) \\ G. C. Greubel, Sep 13 2018
    

Formula

Equals log(2)/log(6) (A002162/A016629), that is, log(2)/(log(2)+log(3)). - Michel Marcus, Aug 18 2018

A154009 Decimal expansion of log_6 (9).

Original entry on oeis.org

1, 2, 2, 6, 2, 9, 4, 3, 8, 5, 5, 3, 0, 9, 1, 6, 8, 2, 6, 2, 5, 9, 5, 0, 7, 7, 2, 3, 0, 6, 4, 3, 5, 8, 2, 4, 7, 0, 6, 9, 7, 1, 6, 2, 8, 1, 0, 8, 5, 7, 9, 3, 1, 4, 3, 2, 2, 1, 0, 1, 0, 1, 4, 2, 3, 4, 6, 7, 1, 5, 9, 6, 2, 9, 1, 8, 5, 5, 4, 3, 9, 2, 3, 3, 6, 6, 9
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.2262943855309168262595077230643582470697162810857931432210...
		

Crossrefs

Cf. decimal expansion of log_6(m): A152683 (m=2), A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), this sequence, A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), A154776 (m=16), A154856 (m=17), A154911 (m=18), A155044 (m=19), A155490 (m=20), A155554 (m=21), A155697 (m=22), A155823 (m=23), A155959 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(9)/Log(6); // G. C. Greubel, Sep 14 2018
  • Mathematica
    RealDigits[Log[6, 9], 10, 100][[1]] (* Vincenzo Librandi, Aug 31 2013 *)
  • PARI
    default(realprecision, 100); log(9)/log(6) \\ G. C. Greubel, Sep 14 2018
    

Formula

Equals A016632 / A016629 =2/(1+A102525). - R. J. Mathar, Jul 29 2024

A279060 Number of divisors of n of the form 6*k + 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 4, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2016

Keywords

Comments

Möbius transform is the period-6 sequence {1, 0, 0, 0, 0, 0, ...}.

Examples

			a(14) = 2 because 14 has 4 divisors {1,2,7,14} among which 2 divisors {1,7} are of the form 6*k + 1.
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[Sum[x^k/(1 - x^(6 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 120; CoefficientList[Series[Sum[x^(6 k + 1)/(1 - x^(6 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[Count[Divisors[n],?(Mod[#,6]==1&)],{n,0,120}] (* _Harvey P. Dale, Apr 27 2018 *)
  • PARI
    A279060(n) = if(!n,n,sumdiv(n, d, (1==(d%6)))); \\ Antti Karttunen, Jul 09 2017
    
  • Python
    from sympy import divisors
    def A279060(n): return sum(d%6 == 1 for d in divisors(n)) # David Radcliffe, Jun 19 2025

Formula

G.f.: Sum_{k>=1} x^k/(1 - x^(6*k)).
G.f.: Sum_{k>=0} x^(6*k+1)/(1 - x^(6*k+1)).
From Antti Karttunen, Oct 03 2018: (Start)
a(n) = A320001(n) + [1 == n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = 1 mod 6, and 0 otherwise.
a(n) = A035218(n) - A319995(n). (End)
a(n) = (A035218(n) + A035178(n)) / 2. - David Radcliffe, Jun 19 2025
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,6) - (1 - gamma)/6 = 0.686263..., gamma(1,6) = -(psi(1/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A319995 Number of divisors of n of the form 6*k + 5.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 1, 1, 2, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 1, 0, 0, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Cf. A001620, A016629, A222458 (psi(5/6)).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A319995(n) = if(!n,n,sumdiv(n, d, (5==(d%6))));

Formula

a(n) = A035218(n) - A279060(n).
G.f.: Sum_{k>=1} x^(5*k)/(1 - x^(6*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,6) - (1 - gamma)/6 = -0.220635..., gamma(5,6) = -(psi(5/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A320001 Number of proper divisors of n of the form 6*k + 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320001(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A279060(n) - [+1 = n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = 1 mod 6, and 0 otherwise.
a(n) = A320015(n) - A320005(n).
a(n) = A007814(A319991(n)).
G.f.: Sum_{k>=1} x^(12*k-10) / (1 - x^(6*k-5)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,6) - (2 - gamma)/6 = 0.519597..., gamma(1,6) = -(psi(1/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A320005 Number of proper divisors of n of the form 6*k + 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320005(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A319995(n) - [+5 = n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = -1 mod 6, and 0 otherwise.
a(n) = A320015(n) - A320001(n).
a(n) = A007814(A319992(n)).
G.f.: Sum_{k>=1} x^(12*k-2) / (1 - x^(6*k-1)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,6) - (2 - gamma)/6 = -0.387302..., gamma(5,6) = -(psi(5/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A173160 Decimal expansion of the constant x satisfying x^x = 6.

Original entry on oeis.org

2, 2, 3, 1, 8, 2, 8, 6, 2, 4, 4, 0, 9, 0, 0, 9, 3, 6, 7, 3, 9, 2, 0, 2, 1, 5, 0, 6, 6, 0, 9, 8, 6, 9, 7, 6, 3, 5, 1, 6, 0, 4, 5, 7, 4, 3, 7, 7, 9, 8, 4, 8, 8, 8, 6, 0, 2, 1, 9, 7, 6, 1, 0, 0, 6, 4, 5, 2, 6, 5, 9, 7, 3, 1, 3, 3, 3, 8, 0, 1, 2, 2, 1, 1, 7, 8, 4, 0, 6, 7, 6, 9, 3, 4, 0, 4, 1, 0, 8, 8, 8, 8, 7, 0, 1
Offset: 1

Views

Author

Keywords

Examples

			2.2318286..^2.2318286..=6. 2.2318286..*log(2.2318286..) = A016629.
		

Crossrefs

Programs

  • Mathematica
    x=6;RealDigits[Log[x]/ProductLog[Log[x]],10,6! ][[1]]

Formula

Digits of log(6)/W(log(6)).

Extensions

Keyword:cons added by R. J. Mathar, Mar 14 2010

A320003 Number of proper divisors of n of the form 6*k + 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 2, 0, 0, 3
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Comments

Number of divisors of n that are odd multiples of 3 and less than n.

Examples

			For n = 18, of its five proper divisors [1, 2, 3, 6, 9] only 3 and 9 are odd multiples of three, thus a(18) = 2.
For n = 108, the odd part is 27 for which 27/3 has 3 divisors. As 108 is even, we don't subtract 1 from that 3 to get a(108) = 3. - _David A. Corneth_, Oct 03 2018
		

Crossrefs

Cf. A001620, A016629, A020759 (psi(1/2)).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 3 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320003(n) = if(!n,n,sumdiv(n, d, (d
    				
  • PARI
    a(n) = if(n%3==0, my(v=valuation(n, 2)); n>>=v; numdiv(n/3)-(!v), 0) \\ David A. Corneth, Oct 03 2018

Formula

a(n) = Sum_{d|n, dA000035(d))*A079978(d).
a(n) = A007814(A319990(n)).
a(4*n) = a(2*n). - David A. Corneth, Oct 03 2018
G.f.: Sum_{k>=1} x^(12*k-6) / (1 - x^(6*k-3)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,6) - (2 - gamma)/6 = -0.208505..., gamma(3,6) = -(psi(1/2) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A379324 Decimal expansion of log(6)^(log(5)^(log(4)^(log(3)^log(2)))).

Original entry on oeis.org

3, 1, 4, 1, 5, 7, 7, 3, 8, 7, 1, 6, 9, 1, 9, 0, 5, 3, 3, 6, 5, 7, 4, 4, 4, 9, 8, 1, 3, 4, 8, 6, 7, 6, 8, 1, 0, 5, 4, 5, 3, 1, 0, 5, 6, 1, 9, 3, 9, 4, 8, 9, 2, 5, 4, 5, 0, 3, 8, 2, 5, 2, 8, 5, 7, 9, 7, 3, 9, 5, 6, 7, 8, 9, 3, 7, 6, 1, 8, 9, 1, 6, 4, 2, 1, 9, 5, 2, 9, 3
Offset: 1

Views

Author

Paolo Xausa, Dec 20 2024

Keywords

Comments

This is an approximation to Pi accurate to 5 digits.

Examples

			3.1415773871691905336574449813486768105453105619...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Log[6]^Log[5]^Log[4]^Log[3]^Log[2], 10, 100]]

Formula

A016734 Continued fraction for log(6).

Original entry on oeis.org

1, 1, 3, 1, 4, 18, 2, 330, 3, 1, 2, 1, 1, 4, 1, 4, 2, 6, 2, 2, 1, 3, 4, 5, 1, 6, 3, 1, 5, 1, 37, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 5, 4, 2, 2, 1, 37, 4, 31, 1, 1, 49, 1, 7, 1, 6, 2, 7, 2, 2, 4, 2, 6, 1, 1, 8, 1, 1, 2, 9, 1, 5, 1, 12, 1, 10, 2, 1, 87, 3, 6, 1, 4
Offset: 0

Views

Author

Keywords

Examples

			1.791759469228055000812477358... = 1 + 1/(1 + 1/(3 + 1/(1 + 1/(4 + ...)))). - _Harry J. Smith_, May 16 2009
		

Crossrefs

Cf. A016629 (decimal expansion).

Programs

  • Magma
    ContinuedFraction(Log(6)); // G. C. Greubel, Sep 15 2018
  • Mathematica
    ContinuedFraction[Log[6],120] (* Harvey P. Dale, Dec 20 2014 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(log(6)); for (n=1, 20000, write("b016734.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 16 2009
    

Extensions

Offset changed by Andrew Howroyd, Jul 10 2024
Showing 1-10 of 13 results. Next