A016777 a(n) = 3*n + 1.
1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187
Offset: 0
Examples
G.f. = 1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 16*x^5 + 19*x^6 + 22*x^7 + ... - _Michael Somos_, May 27 2019
References
- W. Decker, C. Lossen, Computing in Algebraic Geometry, Springer, 2006, p. 22.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.1 Terminology, p. 264.
- Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- Hacène Belbachir, Toufik Djellal, and Jean-Gabriel Luque, On the self-convolution of generalized Fibonacci numbers, arXiv:1703.00323 [math.CO], 2017.
- Benjamin Bedert, On a problem of Erdős and Sárközy about sequences with no term dividing the sum of two larger terms, arXiv preprint, arXiv:2301.07065 [math.NT], 2023.
- Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- Paul Erdős and András Sárközy, On the divisibility properties of sequences of integers, Proc. London Math. Soc. (3), 21 (1970), pp. 97-101.
- Leonhard Euler, Observatio de summis divisorum p. 9.
- Leonhard Euler, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004-2009, see p. 9.
- L. B. W. Jolley, Summation of Series, Dover, 1961, pp. 16, 38.
- Tanya Khovanova, Recursive Sequences
- Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original German edition of "Theory and Application of Infinite Series")
- J. C. Lagarias, A. M. Odlyzko, and J. B. Shearer, On the density of sequences of integers the sum of no two of which is a square. I. Arithmetic progressions, Journal of Combinatorial Theory. Series A, 33 (1982), pp. 167-185.
- T. Mansour, Permutations avoiding a set of patterns from S_3 and a pattern from S_4, arXiv:math/9909019 [math.CO], 1999.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
- Terrel Trotter, Normal Magic Triangles of Order n, Journal of Recreational Mathematics Vol. 5, No. 1, 1972, pp. 28-32.
- Eric Weisstein's World of Mathematics, Book Graph
- Eric Weisstein's World of Mathematics, Clique
- Eric Weisstein's World of Mathematics, Cocktail Party Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Ladder Rung Graph
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Maximum Clique
- Wikipedia, Tridiagonal matrix.
- Chengcheng Yang, A Problem of Erdös Concerning Lattice Cubes, arXiv:2011.15010 [math.CO], 2020. See Table p. 27.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
First differences of A000326.
Row sums of A131033.
Complement of A007494. - Reinhard Zumkeller, Oct 10 2008
Programs
-
Haskell
a016777 = (+ 1) . (* 3) a016777_list = [1, 4 ..] -- Reinhard Zumkeller, Feb 28 2013, Feb 10 2012
-
Magma
[3*n+1 : n in [1..70]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
-
Mathematica
Range[1, 199, 3] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *) (* Start from Eric W. Weisstein, Sep 21 2017 *) 3 Range[0, 70] + 1 Table[3 n + 1, {n, 0, 70}] LinearRecurrence[{2, -1}, {1, 4}, 70] CoefficientList[Series[(1 + 2 x)/(-1 + x)^2, {x, 0, 70}], x] (* End *)
-
Maxima
A016777(n):=3*n+1$ makelist(A016777(n),n,0,30); /* Martin Ettl, Oct 31 2012 */
-
PARI
a(n)=3*n+1 \\ Charles R Greathouse IV, Jul 28 2015
-
SageMath
[3*n+1 for n in range(1,71)] # G. C. Greubel, Mar 15 2024
Formula
G.f.: (1+2*x)/(1-x)^2.
a(n) = A016789(n) - 1.
a(n) = 3 + a(n-1).
Sum_{n>=1} (-1)^n/a(n) = (1/3)*(Pi/sqrt(3) + log(2)). [Jolley, p. 16, (79)] - Benoit Cloitre, Apr 05 2002
(1 + 4*x + 7*x^2 + 10*x^3 + ...) = (1 + 2*x + 3*x^2 + ...)/(1 - 2*x + 4*x^2 - 8*x^3 + ...). - Gary W. Adamson, Jul 03 2003
E.g.f.: exp(x)*(1+3*x). - Paul Barry, Jul 23 2003
a(n) = 2*a(n-1) - a(n-2); a(0)=1, a(1)=4. - Philippe Deléham, Nov 03 2008
a(n) = 6*n - a(n-1) - 1 (with a(0) = 1). - Vincenzo Librandi, Nov 20 2010
Sum_{n>=0} 1/a(n)^2 = A214550. - R. J. Mathar, Jul 21 2012
Sum_{i=0..n} (a(i)-i) = A000290(n+1). - Ivan N. Ianakiev, Sep 24 2014
From Wolfdieter Lang, Mar 09 2018: (Start)
a(n) = denominator(Sum_{k=0..n-1} 1/(a(k)*a(k+1))), with the numerator n = A001477(n), where the sum is set to 0 for n = 0. [Jolley, p. 38, (208)]
G.f. for {n/(1 + 3*n)}_{n >= 0} is (1/3)*(1-hypergeom([1, 1], [4/3], -x/(1-x)))/(1-x). (End)
a(n) = -A016789(-1-n) for all n in Z. - Michael Somos, May 27 2019
Extensions
Better description from T. D. Noe, Aug 15 2002
Partially edited by Joerg Arndt, Mar 11 2010
Comments