cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A062971 a(n) = (2*n)^n.

Original entry on oeis.org

1, 2, 16, 216, 4096, 100000, 2985984, 105413504, 4294967296, 198359290368, 10240000000000, 584318301411328, 36520347436056576, 2481152873203736576, 182059119829942534144, 14348907000000000000000, 1208925819614629174706176, 108428035605965932354207744
Offset: 0

Views

Author

Jason Earls, Jul 23 2001

Keywords

Comments

Shift n^n left n bits.
Also the number of input-closed output-Boolean Moore machines on n states. - David Spivak, Feb 14 2020

Examples

			n=3: 3^3 shifted three bits to the left is 216 because 3^3 in binary is: [1, 1, 0, 1, 1] and 216 in binary is: [1, 1, 0, 1, 1, 0, 0, 0].
		

Crossrefs

Column k=1 of A246070.
Cf. A019762 (2*e).

Programs

  • Maple
    a:= n-> (2*n)^n: seq(a(n), n=0..15); # Zerinvary Lajos, Jan 01 2009
  • Mathematica
    Join[{1}, Table[(2*n)^n, {n,1,50}]] (* G. C. Greubel, Nov 10 2017 *)
  • PARI
    for(n=0, 20, print1(shift(n^n,n), ", "))

Formula

E.g.f.: -(2*x*e^(-W(-2*x)))/(W(-2*x)*(W(-2*x)+1)), W(x) is Lambert's function. - Vladimir Kruchinin, May 09 2013
E.g.f.: 1/(1 + LambertW(-2*x)). - Vaclav Kotesovec, Dec 21 2014
Limit_{n->oo} a(n+1)/(n*a(n)) = 2*e. - Stefano Spezia, Mar 13 2023

Extensions

New description from Vladeta Jovovic, Mar 08 2003

A052746 a(0) = 0; a(n) = (2*n)^(n-1), n > 0.

Original entry on oeis.org

0, 1, 4, 36, 512, 10000, 248832, 7529536, 268435456, 11019960576, 512000000000, 26559922791424, 1521681143169024, 95428956661682176, 6502111422497947648, 478296900000000000000, 37778931862957161709568, 3189059870763703892770816, 286511799958070431838109696
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Expansion of inverse of x*exp(2x).
Number of well-colored directed trees on n nodes. Well-colored means, each green vertex has at least a red child, each red vertex has no red child.
Number of labeled rooted directed trees on n nodes.

Crossrefs

Cf. A019762 (2*e), A038057, A097627.

Programs

  • Maple
    spec := [S,{B=Set(S),S=Prod(Z,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    terms = 19;
    A[x_] = -1/2 LambertW[-2 x];
    CoefficientList[A[x] + O[x]^terms, x] Range[0, terms-1]! (* Jean-François Alcover, Jan 15 2019 *)
    Join[{0},Table[(2n)^(n-1),{n,20}]] (* Harvey P. Dale, Dec 14 2020 *)
  • PARI
    a(n)=if(n,(2*n)^(n-1),0) \\ Charles R Greathouse IV, Nov 20 2011
  • Sage
    [lucas_number1(n, 2*n, 0) for n in range(0, 17)] # Zerinvary Lajos, Mar 09 2009
    

Formula

E.g.f.: -1/2*W(-2*x), where W is Lambert's W function.
From Robert Israel, Jun 16 2016: (Start)
E.g.f. g(x) satisfies g(x) = x*exp(2*g(x)) and (1-2*g(x)) g'(x) = g(x).
a(n) = (2*n/(n-1)) * Sum_{j=1..n-1} binomial(n-1,j)*a(j)*a(n-j) for n >= 2. (End)
a(n) = [x^n] x/(1 - 2*n*x). - Ilya Gutkovskiy, Oct 12 2017
Limit_{n->oo} a(n+1)/(n*a(n)) = 2*e. - Stefano Spezia, Mar 12 2023

Extensions

New description from Vladeta Jovovic, Mar 08 2003

A019463 Add 1, multiply by 1, add 2, multiply by 2, etc., start with 1.

Original entry on oeis.org

1, 2, 2, 4, 8, 11, 33, 37, 148, 153, 765, 771, 4626, 4633, 32431, 32439, 259512, 259521, 2335689, 2335699, 23356990, 23357001, 256927011, 256927023, 3083124276, 3083124289, 40080615757, 40080615771, 561128620794, 561128620809, 8416929312135, 8416929312151, 134670868994416
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A019461 (same, but start with 0), A019460 (start with 2), A019462, (start with 3), A082448. (start with 4).
Cf. A082458, A019464, A019465, A019466 (similar, but first multiply, then add).
Cf. A019762.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, (t->
          `if`(n::odd, t+(n+1)/2, t*n/2))(a(n-1)))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Jan 16 2024
  • Mathematica
    For[i=1;lst={1},i<15,i++,AppendTo[lst,i+Last[lst]];AppendTo[lst,i Last[lst]]];lst (* Harvey P. Dale, Feb 25 2012 *)
    FoldList[If[OddQ[#2], #1 + (#2 + 1)/2, #1 * (#2/2)]&, 1, Range[32]] (* AnneMarie Torresen, Nov 26 2023 *)
  • PARI
    A019463(n, a=1)={for(i=2, n+1, if(bittest(i, 0), a*=i\2, a+=i\2)); a} \\ M. F. Hasler, Feb 25 2018

Formula

Limit_{n->oo} a(2n)/n! = 1 + 2e = 1 + A019762. - Jon E. Schoenfield, Jan 16 2024

Extensions

Edited by M. F. Hasler, Feb 25 2018

A038057 a(n) = 2^n*n^(n-1).

Original entry on oeis.org

2, 8, 72, 1024, 20000, 497664, 15059072, 536870912, 22039921152, 1024000000000, 53119845582848, 3043362286338048, 190857913323364352, 13004222844995895296, 956593800000000000000, 75557863725914323419136
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Labeled rooted trees with n 2-colored nodes.

Crossrefs

Equals 2 * A052746(n).

Programs

  • Mathematica
    nn=16;f[x_]:=Sum[a[n]x^n/n!,{n,0,nn}];s=SolveAlways[0==Series[f[x]-2x Exp[f[x]],{x,0,nn}],x];Table[a[n],{n,1,nn}]/.s
    (* or *)
    nn=16;Drop[Range[0,nn]!CoefficientList[Series[-LambertW[-2x],{x,0,nn}],x],1]
    (* or *)
    Table[2^n*n^(n-1),{n,1,16}]  (* Geoffrey Critzer, Mar 17 2013 *)

Formula

E.g.f.: B(2*x) where B(x) is e.g.f. of A000169.
Limit_{n->oo} a(n+1)/(n*a(n)) = 2*e. - Stefano Spezia, Mar 12 2023

Extensions

New description from Vladeta Jovovic, Mar 08 2003

A081750 Simple continued fraction of 2*e.

Original entry on oeis.org

5, 2, 3, 2, 3, 1, 2, 1, 3, 4, 3, 1, 4, 1, 3, 6, 3, 1, 6, 1, 3, 8, 3, 1, 8, 1, 3, 10, 3, 1, 10, 1, 3, 12, 3, 1, 12, 1, 3, 14, 3, 1, 14, 1, 3, 16, 3, 1, 16, 1, 3, 18, 3, 1, 18, 1, 3, 20, 3, 1, 20, 1, 3, 22, 3, 1, 22, 1, 3, 24, 3, 1, 24, 1, 3, 26, 3, 1, 26, 1, 3, 28, 3, 1, 28, 1, 3, 30, 3, 1, 30, 1, 3, 32
Offset: 1

Views

Author

Benoit Cloitre, Apr 08 2003

Keywords

Comments

Decimal expansion is A019762. - Michael Somos, May 07 2012

Examples

			2*e = 5 + 1 / (2 + 1 / (3 + 1 / (2 + 1 / (3 + 1 / (1 + ...))))). - _Michael Somos_, May 07 2012
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[ 2E, 94] (* Robert G. Wilson v, May 07 2012 *)
  • PARI
    A081750(n) = if(1==n,5,if(n<6,2+(n%2), my(k=n\6, r=n%6); if(0==r || 2==r, 1, if(1==r, 2*k, if(n%2, 3, 2*(k+1)))))); \\ Antti Karttunen, Feb 20 2023

Formula

First 5 terms are 5, 2, 3, 2, 3.
For k >= 1, a(6k)=1; a(6k+1)=2k; a(6k+2)=1; a(6k+3)=3; a(6k+4)=2k+2; a(6k+5)=3.

A230404 a(n) = the largest k such that (k+1)! divides 2n; the number of trailing zeros in the factorial base representation of even numbers.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2013

Keywords

Crossrefs

Used to compute A230405 and A219650. See A007623 for factorial base representation.
Analogous sequence for binary system: A001511.
Cf. A019762.

Programs

Formula

a(n) = A230403(2n) = A055881(2n) - 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*e - 4 = A019762 - 4 = 1.436563... . - Amiram Eldar, Jan 05 2024

A081749 Continued fraction for e/5.

Original entry on oeis.org

0, 1, 1, 5, 4, 2, 2, 2, 2, 2, 1, 1, 9, 1, 1, 3, 3, 2, 3, 3, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 3, 9, 1, 3, 3, 3, 4, 3, 3, 4, 1, 2, 2, 1, 4, 1, 2, 2, 1, 5, 9, 1, 5, 3, 3, 6, 3, 3, 6, 1, 2, 2, 1, 6, 1, 2, 2, 1, 7, 9, 1, 7, 3, 3, 8, 3, 3, 8, 1, 2, 2, 1, 8, 1, 2, 2, 1, 9, 9, 1, 9, 3, 3, 10, 3, 3, 10, 1, 2, 2, 1, 10, 1, 2
Offset: 1

Views

Author

Benoit Cloitre, Apr 08 2003

Keywords

Crossrefs

Cf. A019762 (decimal expansion).
Cf. A003417 (e), A006083 (e/2), A006084 (e/3), A006085 (e/4).

Programs

  • Mathematica
    ContinuedFraction[E/5, 100] (* Paolo Xausa, Sep 21 2024 *)
  • PARI
    contfrac(exp(1)/5) \\ Michel Marcus, Dec 03 2013

Formula

First 18 terms: 0, 1, 1, 5, 4, 2, 2, 2, 2, 2, 1, 1, 9, 1, 1, 3, 3, 2.
For k >= 1, a(19k)=a(19k+1)=a(19k+16)=a(19k+17)=3; a(19k+2)=a(19k+7)=2k; a(19k+3)=a(19k+6)=a(19k+8)=a(19k+11)=a(19k+14)=1; a(19k+4)=a(19k+5)=a(19k+9)= a(19k+10)=2; a(19k+12)=a(19k+15)=2k+1; a(19k+18)=2k+2.

A361291 a(n) = ((2*n + 1)^n - 1)/(2*n).

Original entry on oeis.org

1, 6, 57, 820, 16105, 402234, 12204241, 435984840, 17927094321, 833994048910, 43309534450633, 2483526865641276, 155867505885345241, 10627079738421409410, 782175399728156197665, 61812037545704964935440, 5220088150634922700769761, 469168161404536131943150998
Offset: 1

Views

Author

Stefano Spezia, Mar 12 2023

Keywords

Comments

This sequence is of the form (k^n - 1)/(k - 1) with k = 2*n + 1. See crossrefs in A218722 for other sequences of the same form.

Crossrefs

Programs

  • Mathematica
    Table[((2n+1)^n-1)/(2n),{n,20}]
  • Python
    def A361291(n): return (((n<<1)+1)**n-1)//(n<<1) # Chai Wah Wu, Mar 14 2023

Formula

a(n) = Sum_{i=0..n-1} A005408(n)^i.
a(n) = n! * [x^n] exp(x)*(exp(2*n*x) - 1)/(2*n).
a(n) = n! * [x^n] exp((n+1)*x)*sinh(n*x)/n.
Limit_{n->oo} a(n+1)/(n*a(n)) = 2*e.
Limit_{n->oo} (a(n+1)/a(n) - a(n)/a(n-1)) = 2*e.

A365307 Decimal expansion of 1/(2*e-5).

Original entry on oeis.org

2, 2, 9, 0, 6, 1, 6, 6, 9, 2, 7, 8, 5, 3, 6, 2, 4, 2, 2, 1, 0, 7, 5, 3, 3, 4, 1, 4, 5, 6, 1, 8, 4, 5, 0, 2, 5, 7, 8, 2, 0, 6, 8, 7, 3, 8, 6, 9, 0, 7, 3, 4, 6, 6, 5, 0, 5, 7, 1, 3, 1, 4, 9, 5, 0, 9, 9, 4, 1, 8, 8, 0, 3, 0, 4, 8, 7, 0, 1, 0, 8, 2, 5, 0, 1, 1, 9, 3, 9, 9
Offset: 1

Views

Author

Rok Cestnik, Aug 31 2023

Keywords

Comments

The continued fraction expansion is A081750 with initial term 5 omitted.

Examples

			2.2906166927853624221...
		

Crossrefs

Programs

  • Mathematica
    A365307 = RealDigits[N[1/(2*E-5),#+1]][[1]][[1;;-2]]&;
  • PARI
    1/(2*exp(1)-5).

Formula

Equals 2 + 1/(3 + 2/(4 + 3/(5 + 4/(6 + 5/( ... /(n+1 + n/(n+2 + ... ))))))).
From Peter Bala, Oct 23 2023: (Start)
Define s(n) = Sum_{k = 3..n} 1/k!. Then 1/(2*e - 5) = 3 - (1/2)*Sum_{n >= 3 } 1/( (n+1)!*s(n)*s(n+1) ) is a rapidly converging series of rationals. Cf. A073333 and A194807.
Equivalently, 1/(2*e - 5) = 3 - (1/2)*(3!/(1*5) + 4!/(5*26) + 5!/(26*157) + 6!/(157*1100) + ...), where [1, 5, 26, 157, 1100, ... ] is A185108. (End)

A248859 Decimal expansion of log(sqrt(2*Pi))/e, a constant appearing in the asymptotic expansion of (n!)^(1/n).

Original entry on oeis.org

3, 3, 8, 0, 5, 8, 5, 9, 4, 0, 6, 6, 2, 3, 9, 9, 0, 2, 3, 7, 0, 2, 7, 9, 4, 5, 0, 9, 6, 1, 5, 1, 8, 8, 7, 4, 2, 6, 8, 5, 1, 3, 7, 5, 8, 3, 4, 0, 2, 0, 7, 8, 2, 5, 1, 6, 8, 6, 1, 8, 1, 2, 4, 9, 6, 9, 8, 6, 5, 8, 9, 3, 0, 4, 6, 0, 2, 4, 6, 3, 4, 0, 3, 9, 9, 2, 7, 5, 5, 2, 7, 6, 6, 3, 9, 2, 0, 5, 8, 6, 5, 8, 1, 6, 2
Offset: 0

Views

Author

Jean-François Alcover, Mar 03 2015

Keywords

Examples

			0.3380585940662399023702794509615188742685137583402...
		

Crossrefs

Cf. A001113, A019762, A061444, A075700 (log(sqrt(2*Pi))).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Log(2*Pi(R))/(2*Exp(1)); // G. C. Greubel, Oct 07 2018
  • Mathematica
    RealDigits[Log[Sqrt[2*Pi]]/E, 10, 105] // First
  • PARI
    log(2*Pi)/2/exp(1) \\ Charles R Greathouse IV, Apr 20 2016
    

Formula

Equals lim_{n -> infinity} (n!)^(1/n) - n/e - log(n)/(2*e).
Equals A075700/A001113 = A061444/A019762. - Amiram Eldar, Apr 12 2022
Showing 1-10 of 14 results. Next