Original entry on oeis.org
0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0
a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
-
a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
seq(a(n), n=0..15); # Alois P. Heinz, Aug 02 2024
-
s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
Table[u[n], {n, 0, 20}]
-
a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024
A085527
a(n) = (2n+1)^n.
Original entry on oeis.org
1, 3, 25, 343, 6561, 161051, 4826809, 170859375, 6975757441, 322687697779, 16679880978201, 952809757913927, 59604644775390625, 4052555153018976267, 297558232675799463481, 23465261991844685929951, 1977985201462558877934081, 177482997121587371826171875
Offset: 0
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231. Springer, New York, 2005.
- G. C. Greubel, Table of n, a(n) for n = 0..350
- Karola Mészáros, Labeling the Regions of the Type C_n Shi Arrangement, The Electronic Journal of Combinatorics, vol. 20, no. 2, (2013).
- Zhi-Wei Sun, Fedor Petrov, A surprising identity, MathOverflow, Jan 17 2019.
-
List([0..20],n->(2*n+1)^n); # Muniru A Asiru, Dec 05 2018
-
[(2*n+1)^n: n in [0..20]]; // Wesley Ivan Hurt, Mar 01 2015
-
A085527:=n->(2*n+1)^n: seq(A085527(n), n=0..20); # Wesley Ivan Hurt, Mar 01 2015
-
Table[(2 n + 1)^n, {n, 0, 20}] (* Wesley Ivan Hurt, Mar 01 2015 *)
-
a(n)=(2*n+1)^n;
-
def A085527(n): return ((n<<1)|1)**n # Chai Wah Wu, Nov 10 2024
A085534
a(n) = (2n)^(2n).
Original entry on oeis.org
1, 4, 256, 46656, 16777216, 10000000000, 8916100448256, 11112006825558016, 18446744073709551616, 39346408075296537575424, 104857600000000000000000000, 341427877364219557396646723584, 1333735776850284124449081472843776, 6156119580207157310796674288400203776
Offset: 0
A246070
Number A(n,k) of endofunctions f on [2n] satisfying f^k(i) = i for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 4, 1, 2, 256, 1, 3, 16, 46656, 1, 2, 50, 216, 16777216, 1, 3, 36, 1626, 4096, 10000000000, 1, 2, 56, 1440, 83736, 100000, 8916100448256, 1, 3, 16, 2688, 84624, 6026120, 2985984, 11112006825558016, 1, 2, 70, 720, 215760, 7675200, 571350096, 105413504, 18446744073709551616
Offset: 0
Square array A(n,k) begins:
0 : 1, 1, 1, 1, 1, 1, ...
1 : 4, 2, 3, 2, 3, 2, ...
2 : 256, 16, 50, 36, 56, 16, ...
3 : 46656, 216, 1626, 1440, 2688, 720, ...
4 : 16777216, 4096, 83736, 84624, 215760, 94816, ...
5 : 10000000000, 100000, 6026120, 7675200, 24899120, 11218000, ...
Cf.
A246072 (the same for permutations).
-
with(numtheory): with(combinat): M:=multinomial:
b:= proc(n, k, p) local l, g; l, g:= sort([divisors(p)[]]),
proc(k, m, i, t) option remember; local d, j; d:= l[i];
`if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
(d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
`if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
`if`(t=0, [][], m/t))))
end; g(k, n-k, nops(l), 0)
end:
A:= (n, k)-> `if`(k=0, (2*n)^(2*n), b(2*n, n, k)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
multinomial[n_, k_List] := n!/Times @@ (k!); M = multinomial;
b[n_, k0_, p_] := Module[{l, g}, l = Divisors[p];
g[k_, m_, i_, t_] := g[k, m, i, t] = Module[{d, j}, d = l[[i]];
If[i == 1, If[m == 0, 1, n^m], Sum[M[k, Join[{k - (d - t)*j},
Table[d - t, {j}]]]/j!*If[j == 0, 1, (d - 1)!^j]*M[m, Join[{m - t*j},
Array[t&, j]]]*g[k - (d - t)*j, m - t*j, Sequence @@
If[d - t == 1, {i - 1, 0}, {i, t + 1}]], {j, 0, Min[k/(d - t),
If[t == 0, {}, m/t]]}]]];
g[k0, n - k0, Length[l], 0]];
A[n_, k_] := If[k == 0, If[n == 0, 1, (2n)^(2n)], b[2*n, n, k]];
Table[A[n, d - n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz, updated Jan 01 2021 *)
A066642
a(n) = floor(n^(n/2)).
Original entry on oeis.org
1, 1, 2, 5, 16, 55, 216, 907, 4096, 19683, 100000, 534145, 2985984, 17403307, 105413504, 661735513, 4294967296, 28761784747, 198359290368, 1406563064942, 10240000000000, 76436817165460, 584318301411328, 4569515072723572, 36520347436056576, 298023223876953125
Offset: 0
a(5) = 55 as {5^(1/2)}^5 = 55.9016994374947424102293417182819...
Bisection gives
A062971 (even part).
-
[Floor(n^(n/2)): n in [1..25]]; // G. C. Greubel, Dec 30 2017
-
a:= n-> floor(n^(n/2)):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 08 2025
-
Table[ Floor[Sqrt[n]^n], {n, 1, 25} ]
-
a(n) = sqrtint(n^n); \\ Michel Marcus, Nov 01 2022
-
from math import isqrt
def A066642(n): return isqrt(n**n) # Chai Wah Wu, Jun 08 2025
A003167
Number of n-dimensional cuboids with integral edge lengths for which volume = surface area.
Original entry on oeis.org
2, 10, 108, 2892, 270332
Offset: 2
From _Joseph Myers_, Feb 24 2004: (Start)
For n=2 the cuboids are 3 X 6 and 4 X 4.
For n=3 the cuboids are 3 X 7 X 42, 3 X 8 X 24, 3 X 9 X 18, 3 X 10 X 15, 3 X 12 X 12, 4 X 5 X 20, 4 X 6 X 12, 4 X 8 X 8, 5 X 5 X 10, 6 X 6 X 6. (End)
For n=4 see the Marcus link.
A091482
a(n) = (3*n)^n.
Original entry on oeis.org
1, 3, 36, 729, 20736, 759375, 34012224, 1801088541, 110075314176, 7625597484987, 590490000000000, 50542106513726817, 4738381338321616896, 482880748567480579719, 53148384174432398229504, 6283298708943145751953125, 794071845499378503449051136
Offset: 0
A349962
a(n) = Sum_{k=0..n} (2*k)^k.
Original entry on oeis.org
1, 3, 19, 235, 4331, 104331, 3090315, 108503819, 4403471115, 202762761483, 10442762761483, 594761064172811, 37115108500229387, 2518267981703965963, 184577387811646500107, 14533484387811646500107, 1223459304002440821206283, 109651494909968373175414027
Offset: 0
-
a[n_] := Sum[If[k == 0, 1, (2*k)^k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Dec 07 2021 *)
-
a(n) = sum(k=0, n, (2*k)^k);
A091483
a(n) = (4*n)^n.
Original entry on oeis.org
1, 4, 64, 1728, 65536, 3200000, 191102976, 13492928512, 1099511627776, 101559956668416, 10485760000000000, 1196683881290399744, 149587343098087735296, 20325604337285010030592, 2982856619293778479415296, 470184984576000000000000000
Offset: 0
A092175
Define d(n,k) to be the number of '1' digits required to write out all the integers from 1 through k in base n. E.g., d(10,9) = 1 (just '1'), d(10,10) = 2 ('1' and '10'), d(10,11) = 4 ('1', '10' and '11'). Then a(n) is the first k >= 1 such that d(n,k) > k.
Original entry on oeis.org
2, 3, 13, 29, 182, 427, 3931, 8185, 102781, 199991, 3179143, 5971957, 114818731, 210826995, 4754446861, 8589934577, 222195898594, 396718580719, 11575488191148, 20479999999981, 665306762187614, 1168636602822635, 41826814261329723, 73040694872113129
Offset: 1
Ken Bateman (kbateman(AT)erols.com) and Graeme McRae, Apr 01 2004
John Fletcher gives the following treatment of the case of odd B at the 'solutions' link: a(10)=199991 because you can label 199990 tapes using 199990 sets of base-10 sticky digit labels, but the 199991st tape can't be labeled with 199991 sets of sticky digit labels.
- Michael Brand was the originator of the problem.
Edited by
Robert G. Wilson v, based on comments from Don Coppersmith and John Fletcher, May 11 2004
a(13) corrected and a(23) onwards added by
Gregory Marton, Jul 29 2023
Showing 1-10 of 21 results.
Comments