A035513 Wythoff array read by falling antidiagonals.
1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521
Offset: 1
A028313 Elements in the 5-Pascal triangle (by row).
1, 1, 1, 1, 5, 1, 1, 6, 6, 1, 1, 7, 12, 7, 1, 1, 8, 19, 19, 8, 1, 1, 9, 27, 38, 27, 9, 1, 1, 10, 36, 65, 65, 36, 10, 1, 1, 11, 46, 101, 130, 101, 46, 11, 1, 1, 12, 57, 147, 231, 231, 147, 57, 12, 1, 1, 13, 69, 204, 378, 462, 378, 204, 69, 13, 1, 1, 14, 82, 273, 582, 840, 840, 582, 273, 82, 14, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 5, 1; 1, 6, 6, 1; 1, 7, 12, 7, 1; 1, 8, 19, 19, 8, 1; 1, 9, 27, 38, 27, 9, 1; 1, 10, 36, 65, 65, 36, 10, 1; 1, 11, 46, 101, 130, 101, 46, 11, 1; 1, 12, 57, 147, 231, 231, 147, 57, 12, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
[n le 1 select 1 else Binomial(n,k) +3*Binomial(n-2,k-1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 05 2024
-
Mathematica
Table[If[n<2, 1, Binomial[n,k] +3*Binomial[n-2,k-1]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 05 2024 *)
-
SageMath
def A028313(n,k): return 1 if n<2 else binomial(n,k) + 3*binomial(n-2,k-1) flatten([[A028313(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 05 2024
Formula
From Ralf Stephan, Jan 31 2005: (Start)
T(n, k) = C(n, k) + 3*C(n-2, k-1), with T(0, k) = T(1, k) = 1.
G.f.: (1 + 3*x^2*y)/(1 - x*(1+y)). (End)
From G. C. Greubel, Jan 05 2024: (Start)
T(n, n-k) = T(n, k).
T(n, n-1) = n + 3*(1 - [n=1]) = A178915(n+3), n >= 1.
T(n, n-2) = A051936(n+2), n >= 2.
T(n, n-3) = A051937(n+1), n >= 3.
T(2*n, n) = A028322(n).
Sum_{k=0..n} T(n, k) = A005009(n-2) - (3/4)*[n=0] - (3/2)*[n=1].
Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n) - 3*[n=2].
Sum_{k=0..floor(n/2)} T(n-k, k) = A022112(n-2) + 3*([n=0] - [n=1]).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = 4*A010892(n) - 3*([n=0] + [n=1]). (End)
Extensions
More terms from Sam Alexander (pink2001x(AT)hotmail.com)
A022319 a(n) = a(n-1) + a(n-2) + 1 for n > 1, a(0)=1, a(1)=5.
1, 5, 7, 13, 21, 35, 57, 93, 151, 245, 397, 643, 1041, 1685, 2727, 4413, 7141, 11555, 18697, 30253, 48951, 79205, 128157, 207363, 335521, 542885, 878407, 1421293, 2299701, 3720995, 6020697, 9741693
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Diana Savin and Elif Tan, On Companion sequences associated with Leonardo quaternions: Applications over finite fields, arXiv:2403.01592 [math.CO], 2024. See p. 2.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Crossrefs
Cf. A192762 (partial sums).
Programs
-
Haskell
a022319 n = a022319_list !! (n-1) a022319_list = 1 : 5 : zipWith (+) (map (+ 1) a022319_list) (tail a022319_list) -- Reinhard Zumkeller, May 26 2013
-
Maple
with(combinat): seq(fibonacci(n-2)+fibonacci(n+4)-1, n=0..29); # Zerinvary Lajos, Feb 01 2008
-
Mathematica
LinearRecurrence[{2, 0, -1}, {1, 5, 7}, 40] (* Harvey P. Dale, Nov 19 2014 *)
-
PARI
x='x+O('x^50); Vec((1 +3*x -3*x^2)/((1-x)*(1 -x -x^2))) \\ G. C. Greubel, Aug 25 2017
Formula
a(n) = Fibonacci(n-2) + Fibonacci(n+4) - 1. - Zerinvary Lajos, Feb 01 2008
From R. J. Mathar, Apr 07 2011: (Start)
G.f.: (1 + 3*x - 3*x^2) / ((1-x)*(1 - x - x^2)).
a(n) = A022112(n) - 1. (End)
A028314 Elements in the 5-Pascal triangle A028313 that are not 1.
5, 6, 6, 7, 12, 7, 8, 19, 19, 8, 9, 27, 38, 27, 9, 10, 36, 65, 65, 36, 10, 11, 46, 101, 130, 101, 46, 11, 12, 57, 147, 231, 231, 147, 57, 12, 13, 69, 204, 378, 462, 378, 204, 69, 13, 14, 82, 273, 582, 840, 840, 582, 273, 82, 14, 15, 96, 355, 855, 1422, 1680, 1422, 855, 355, 96, 15
Offset: 0
Examples
Triangle begins as: 5; 6, 6; 7, 12, 7; 8, 19, 19, 8; 9, 27, 38, 27, 9; 10, 36, 65, 65, 36, 10; 11, 46, 101, 130, 101, 46, 11; 12, 57, 147, 231, 231, 147, 57, 12; 13, 69, 204, 378, 462, 378, 204, 69, 13;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A028314:= func< n,k | Binomial(n+2,k+1) + 3*Binomial(n,k) >; [A028314(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 06 2024
-
Mathematica
A028314[n_, k_]:= Binomial[n+2,k+1] + 3*Binomial[n,k]; Table[A028314[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 06 2024 *)
-
SageMath
def A028314(n,k): return binomial(n+2,k+1) + 3*binomial(n,k) flatten([[A028314(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 06 2024
Formula
From G. C. Greubel, Jan 06 2024: (Start)
T(n, k) = binomial(n+2, k+1) + 3*binomial(n, k).
T(n, n-k) = T(n, k).
T(n, 0) = T(n, n) = A000027(n+5).
T(n, 1) = T(n, n-1) = A051936(n+4).
Sum_{k=0..n} T(n, k) = A176448(n).
Sum_{k=0..n} (-1)^k * T(n, k) = 1 + (-1)^n + 3*[n=0].
Sum_{k=0..n} T(n-k, k) = A022112(n+1) - (3-(-1)^n)/2.
G.f.: (5 - 4*x - 4*x*y + 3*x^2*y)/((1 - x)*(1 - x*y)*(1 - x - x*y)). - Stefano Spezia, Dec 06 2024
Extensions
More terms from James Sellers
A258160 a(n) = 8*Lucas(n).
16, 8, 24, 32, 56, 88, 144, 232, 376, 608, 984, 1592, 2576, 4168, 6744, 10912, 17656, 28568, 46224, 74792, 121016, 195808, 316824, 512632, 829456, 1342088, 2171544, 3513632, 5685176, 9198808, 14883984, 24082792, 38966776, 63049568, 102016344, 165065912
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..300
- Tanya Khovanova, Recursive Sequences: a(n) = a(n-1)+a(n-2).
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
Magma
[8*Lucas(n): n in [0..40]];
-
Mathematica
Table[8 LucasL[n], {n, 0, 40}] CoefficientList[Series[8*(2 - x)/(1 - x - x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *)
-
PARI
a(n)=([0,1; 1,1]^n*[16;8])[1,1] \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[8*lucas_number2(n, 1, -1) for n in (0..40)]
Formula
G.f.: 8*(2 - x)/(1 - x - x^2).
a(n) = Fibonacci(n+6) - Fibonacci(n-6), where Fibonacci(-6..-1) = -8, 5, -3, 2, -1, 1 (see similar sequences listed in Crossrefs).
a(n) = Lucas(n+4) + Lucas(n) + Lucas(n-4), where Lucas(-4..-1) = 7, -4, 3, -1.
a(n) = a(n-1) + a(n-2) for n>1, a(0)=16, a(1)=8.
a(n) = 2*A156279(n).
a(n+1) = 4*A022112(n).
A280154 a(n) = 5*Lucas(n).
10, 5, 15, 20, 35, 55, 90, 145, 235, 380, 615, 995, 1610, 2605, 4215, 6820, 11035, 17855, 28890, 46745, 75635, 122380, 198015, 320395, 518410, 838805, 1357215, 2196020, 3553235, 5749255, 9302490, 15051745, 24354235, 39405980, 63760215, 103166195, 166926410, 270092605, 437019015
Offset: 0
Comments
Fibonacci sequence beginning 10, 5.
After 5, the sequence provides the 3rd column of the rectangular array in A213590.
After 5, all terms belong to A191921 because a(n) = Lucas(n+4) - 3*Lucas(n-1).
From G. C. Greubel, Dec 27 2016: (Start)
{a(n) mod 3} yields (1,2,0,2,2,1,0,1), repeated, and is given as A082115.
{a(n) mod 6} yields (4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1) and is given as A082117. (End)
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
Magma
[5*Lucas(n): n in [0..40]];
-
Maple
F := n -> combinat:-fibonacci(n): seq(F(n+5) + F(n-5), n=0..38); # Peter Luschny, Dec 29 2016
-
Mathematica
Table[5 LucasL[n], {n, 0, 40}]
-
PARI
vector(40, n, n--; fibonacci(n+5)+fibonacci(n-5))
-
Sage
def A280154(): x, y = 10, 5 while True: yield x x, y = y, x + y a = A280154(); print([next(a) for in range(39)]) # _Peter Luschny, Dec 29 2016
Formula
G.f.: 5*(2 - x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2) for n>1.
a(n) = Fibonacci(n+5) + Fibonacci(n-5), with Fibonacci(-k) = -(-1)^k*Fibonacci(k) for the negative indices.
A229339 GCD of all sums of n consecutive Lucas numbers.
1, 1, 2, 5, 1, 4, 1, 15, 2, 11, 1, 40, 1, 29, 2, 105, 1, 76, 1, 275, 2, 199, 1, 720, 1, 521, 2, 1885, 1, 1364, 1, 4935, 2, 3571, 1, 12920, 1, 9349, 2, 33825, 1, 24476, 1, 88555, 2, 64079, 1, 231840, 1, 167761, 2, 606965, 1, 439204, 1, 1589055, 2, 1149851, 1, 4160200, 1, 3010349, 2
Offset: 1
Comments
The sum of two consecutive Lucas number is the sum of four consecutive Fibonacci numbers, which is verified easily enough with the identity L(n) = F(n - 1) + F(n + 1). Therefore a(1) = a(2) = A210209(4).
Examples
a(3) = 2 because any sum of three consecutive Lucas numbers is an even number. a(4) = 5 because all sums of four consecutive Lucas numbers are divisible by 5. a(5) = 1 because some sums of five consecutive Lucas numbers are coprime.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Dan Guyer and aBa Mbirika, GCD of sums of k consecutive Fibonacci, Lucas, and generalized Fibonacci numbers, Journal of Integer Sequences, 24 No.9, Article 21.9.8 (2021), 25pp; arXiv preprint, arXiv:2104.12262 [math.NT], 2021.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,1,0,-1,0,-3,0,0,0,1).
Programs
-
Mathematica
a[n_] := a[n] = If[n <= 14, {1, 1, 2, 5, 1, 4, 1, 15, 2, 11, 1, 40, 1, 29}[[n]], 3*a[n - 4] + a[n - 6] - a[n - 8] - 3*a[n - 10] + a[n - 14]]; Array[a, 64] (* Giovanni Resta, Oct 04 2013 *) CoefficientList[Series[(x^12 - x^11 + 2 x^10 - 5 x^9 - 2 x^8 - x^7 - 6 x^6 + x^5 - 2 x^4 + 5 x^3 + 2 x^2 + x + 1) / (-x^14 + 3 x^10 + x^8 - x^6 - 3 x^4 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 09 2014 *) LinearRecurrence[{0,0,0,3,0,1,0,-1,0,-3,0,0,0,1},{1,1,2,5,1,4,1,15,2,11,1,40,1,29},70] (* Harvey P. Dale, Jul 21 2021 *) Table[GCD[LucasL[n + 1] - 2, LucasL[n] + 1], {n, 0, 50}] (* Horst H. Manninger, Dec 25 2021 *)
-
PARI
Vec(x*(x^12 -x^11 +2*x^10 -5*x^9 -2*x^8 -x^7 -6*x^6 +x^5 -2*x^4 +5*x^3 +2*x^2 +x +1) / (-x^14 +3*x^10 +x^8 -x^6 -3*x^4 +1) + O(x^100)) \\ Colin Barker, Nov 09 2014
Formula
a(n) = 3*a(n-4) + a(n-6) - a(n-8) - 3*a(n-10) + a(n-14) for n > 14. - Giovanni Resta, Oct 04 2013
G.f.: x*(x^12 -x^11 +2*x^10 -5*x^9 -2*x^8 -x^7 -6*x^6 +x^5 -2*x^4 +5*x^3 +2*x^2 +x +1) / (-x^14 +3*x^10 +x^8 -x^6 -3*x^4 +1). - Colin Barker, Nov 09 2014
From Aba Mbirika, Jan 04 2022: (Start)
a(n) = gcd(L(n+1)-1, L(n+2)-3).
a(n) = Lcm_{A106291(m) divides n} m.
Proofs of these formulas are given in Theorems 15 and 25 of the Guyer-Mbirika paper. (End)
A254884 a(n) = Fibonacci(2*n) + ((-1)^n-1)*Fibonacci(n).
0, -1, 3, 4, 21, 45, 144, 351, 987, 2516, 6765, 17533, 46368, 120927, 317811, 830820, 2178309, 5699693, 14930352, 39079807, 102334155, 267892404, 701408733, 1836254589, 4807526976, 12586118975, 32951280099, 86267178436, 225851433717, 591285701421, 1548008755920
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3, 2, -9, 2, 3, -1).
Programs
-
Maple
gf := x -> x/(x^2-3*x+1) + x/(x^2-x-1) + x/(x^2+x-1): seq(coeff(series(gf(x),x,n+1),x,n), n=0..30);
-
Mathematica
LinearRecurrence[{4,-1,-11,11,1,-4,1}, {0,-1,3,4,21,45,144}, 31] LinearRecurrence[{3, 2, -9, 2, 3, -1},{0, -1, 3, 4, 21, 45},31] (* Ray Chandler, Aug 03 2015 *)
-
Sage
A254884 = lambda n: fibonacci(2*n) + ((-1)^n-1)*fibonacci(n) [A254884(n) for n in range(31)]
Formula
Let phi = (1+sqrt(5))/2, p(n) = phi^n - (-phi)^(-n) and FL(n) = 1 + (p(n-1) + p(n+1) + p(2*n-1)) / sqrt(5).
a(n) = FL(-n) - FL(n). By this definition a(n) is a doubly infinite sequence.
a(n) = -a(-n) for all n in Z.
a(2*n) = A033888(n).
G.f.: x/(x^2-3*x+1) + x/(x^2-x-1) + x/(x^2+x-1).
a(n) = 4*a(n-1) - a(n-2) - 11*a(n-3) + 11*a(n-4) + a(n-5) - 4*a(n-6) + a(n-7).
A294116 Fibonacci sequence beginning 2, 21.
2, 21, 23, 44, 67, 111, 178, 289, 467, 756, 1223, 1979, 3202, 5181, 8383, 13564, 21947, 35511, 57458, 92969, 150427, 243396, 393823, 637219, 1031042, 1668261, 2699303, 4367564, 7066867, 11434431, 18501298, 29935729, 48437027, 78372756, 126809783, 205182539, 331992322, 537174861
Offset: 0
References
- Steven Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Publications (2008), page 24 (formula 8).
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Sequences of the type g(2,k;n): A118658 (k=0), A000032 (k=1), 2*A000045 (k=2,4), A020695 (k=3), A001060 (k=5), A022112 (k=6), A022113 (k=7), A294157 (k=8), A022114 (k=9), A022367 (k=10), A022115 (k=11), A022368 (k=12), A022116 (k=13), A022369 (k=14), A022117 (k=15), A022370 (k=16), A022118 (k=17), A022371 (k=18), A022119 (k=19), A022372 (k=20), this sequence (k=21), A022373 (k=22); A022374 (k=24); A022375 (k=26); A022376 (k=28), A190994 (k=29), A022377 (k=30); A022378 (k=32).
Programs
-
Magma
a0:=2; a1:=21; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]];
-
Mathematica
LinearRecurrence[{1, 1}, {2, 21}, 40]
-
PARI
Vec((2 + 19*x)/(1 - x - x^2) + O(x^40)) \\ Colin Barker, Oct 25 2017
-
Sage
a = BinaryRecurrenceSequence(1, 1, 2, 21) print([a(n) for n in range(38)]) # Peter Luschny, Oct 25 2017
Formula
G.f.: (2 + 19*x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2).
Let g(r,s;n) be the n-th generalized Fibonacci number with initial values r, s. We have:
a(n) = Lucas(n) + g(0,20;n), see A022354;
a(n) = Fibonacci(n) + g(2,20;n), see A022372;
a(n) = 2*g(1,21;n) - g(0,21;n);
a(n) = g(1,k;n) + g(1,21-k;n) for all k in Z.
a(h+k) = a(h)*Fibonacci(k-1) + a(h+1)*Fibonacci(k) for all h, k in Z (see S. Vajda in References section). For h=0 and k=n:
a(n) = 2*Fibonacci(n-1) + 21*Fibonacci(n).
Sum_{j=0..n} a(j) = a(n+2) - 21.
a(n) = (2^(-n)*((1-sqrt(5))^n*(-20+sqrt(5)) + (1+sqrt(5))^n*(20+sqrt(5)))) / sqrt(5). - Colin Barker, Oct 25 2017
A153263 a(n) = A014217(n+3) - A014217(n).
3, 5, 9, 13, 23, 35, 59, 93, 153, 245, 399, 643, 1043, 1685, 2729, 4413, 7143, 11555, 18699, 30253, 48953, 79205, 128159, 207363, 335523, 542885, 878409, 1421293, 2299703, 3720995, 6020699, 9741693, 15762393, 25504085, 41266479, 66770563
Offset: 0
Comments
Links
- Index entries for linear recurrences with constant coefficients, signature (0,2,1).
Crossrefs
Cf. A022112.
Programs
-
Mathematica
LinearRecurrence[{0,2,1},{3,5,9},40] (* Harvey P. Dale, Jun 23 2022 *)
Formula
a(2n+2) = a(2n+1) + a(2n) + 1. a(2n+3) = a(2n+2) + a(2n+1) - 1.
From R. J. Mathar, Feb 07 2009, Apr 18 2009: (Start)
a(n) = 2*a(n-2) + a(n-3) = (-1)^n + 2*A000032(n+1).
G.f.: (3+5x+3x^2)/ ((1+x)(1-x-x^2)). (End)
a(n) + a(n+1) = A022112(n+2). - R. J. Mathar, Feb 25 2013
a(n) = ((-2)^n + (1 - sqrt(5))^(1+n) + (1 + sqrt(5))^(1+n))/2^n. - Stefano Spezia, Dec 25 2021
Extensions
More terms from R. J. Mathar, Feb 07 2009
Edited by R. J. Mathar, Apr 18 2009
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Python
Python
Formula
Extensions