A051037
5-smooth numbers, i.e., numbers whose prime divisors are all <= 5.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384, 400, 405
Offset: 1
From _Gus Wiseman_, May 21 2021: (Start)
The sequence of terms together with their prime indices begins:
1: {} 25: {3,3}
2: {1} 27: {2,2,2}
3: {2} 30: {1,2,3}
4: {1,1} 32: {1,1,1,1,1}
5: {3} 36: {1,1,2,2}
6: {1,2} 40: {1,1,1,3}
8: {1,1,1} 45: {2,2,3}
9: {2,2} 48: {1,1,1,1,2}
10: {1,3} 50: {1,3,3}
12: {1,1,2} 54: {1,2,2,2}
15: {2,3} 60: {1,1,2,3}
16: {1,1,1,1} 64: {1,1,1,1,1,1}
18: {1,2,2} 72: {1,1,1,2,2}
20: {1,1,3} 75: {2,3,3}
24: {1,1,1,2} 80: {1,1,1,1,3}
(End)
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Benoit Cloitre, Plot of abs(f(n)-s(n)) vs its mean values (blue) and vs loglog(n) (red).
- M. J. Dominus, Infinite Lists in Perl.
- Deborah Howard and Malcolm Longair, Harmonic Proportion and Palladio's "Quattro Libri", Journal of the Society of Architectural Historians (1982) 41 (2): 116-143.
- Vaclav Kotesovec, Plot of a(n) / (exp((6*log(2)*log(3)*log(5)*n)^(1/3))/sqrt(30)) for n = 1..1200000
- Rosetta Code, A collection of computer codes to compute 5-smooth numbers.
- Raphael Schumacher, The Formula for the Distribution of the 3-Smooth Numbers, 5-Smooth, 7-Smooth and all other Smooth Numbers, arXiv:1608.06928 [math.NT], 2016.
- Sci.math, Ugly numbers.
- Carl Veller, Martin A. Nowak and Charles C. Davis, Extended flowering intervals of bamboos evolved by discrete multiplication, Ecology Letters, 18 (2015), 653-659.
- Eric Weisstein's World of Mathematics, Smooth Number.
- Wikipedia, Regular number.
- Wikipedia, Talk:Regular number. Includes a discussion of the name.
- Wikipedia, Størmer's theorem.
The partitions with these Heinz numbers are counted by
A001399.
Requiring the sum of prime indices to be even gives
A344297.
-
import Data.Set (singleton, deleteFindMin, insert)
a051037 n = a051037_list !! (n-1)
a051037_list = f $ singleton 1 where
f s = y : f (insert (5 * y) $ insert (3 * y) $ insert (2 * y) s')
where (y, s') = deleteFindMin s
-- Reinhard Zumkeller, May 16 2015
-
[n: n in [1..500] | PrimeDivisors(n) subset [2,3,5]]; // Bruno Berselli, Sep 24 2012
-
A051037 := proc(n)
option remember;
local a;
if n = 1 then
1;
else
for a from procname(n-1)+1 do
numtheory[factorset](a) minus {2, 3,5 } ;
if % = {} then
return a;
end if;
end do:
end if;
end proc:
seq(A051037(n),n=1..100) ; # R. J. Mathar, Nov 05 2017
-
mx = 405; Sort@ Flatten@ Table[ 2^a*3^b*5^c, {a, 0, Log[2, mx]}, {b, 0, Log[3, mx/2^a]}, {c, 0, Log[5, mx/(2^a*3^b)]}] (* Or *)
Select[ Range@ 405, Last@ Map[First, FactorInteger@ #] < 7 &] (* Robert G. Wilson v *)
With[{nn=10},Select[Union[Times@@@Flatten[Table[Tuples[{2,3,5},n],{n,0,nn}],1]],#<=2^nn&]] (* Harvey P. Dale, Feb 28 2022 *)
-
test(n)= {m=n; forprime(p=2,5, while(m%p==0,m=m/p)); return(m==1)}
for(n=1,500,if(test(n),print1(n",")))
-
a(n)=local(m); if(n<1,0,n=a(n-1); until(if(m=n, forprime(p=2,5, while(m%p==0,m/=p)); m==1),n++); n)
-
list(lim)=my(v=List(),s,t); for(i=0,logint(lim\=1,5), t=5^i; for(j=0,logint(lim\t,3), s=t*3^j; while(s<=lim, listput(v,s); s<<=1))); Set(v) \\ Charles R Greathouse IV, Sep 21 2011; updated Sep 19 2016
-
smooth(P:vec,lim)={ my(v=List([1]),nxt=vector(#P,i,1),indx,t);
while(1, t=vecmin(vector(#P,i,v[nxt[i]]*P[i]),&indx);
if(t>lim,break); if(t>v[#v],listput(v,t)); nxt[indx]++);
Vec(v)
};
smooth([2,3,5], 1e4) \\ Charles R Greathouse IV, Dec 03 2013
-
is_A051037(n)=n<7||vecmax(factor(n,6)[, 1])<7 \\ M. F. Hasler, Jan 16 2015
-
def isok(n):
while n & 1 == 0: n >>= 1
while n % 3 == 0: n //= 3
while n % 5 == 0: n //= 5
return n == 1 # Darío Clavijo, Dec 30 2022
-
from sympy import integer_log
def A051037(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c = n+x
for i in range(integer_log(x,5)[0]+1):
for j in range(integer_log(y:=x//5**i,3)[0]+1):
c -= (y//3**j).bit_length()
return c
return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024
-
# faster for initial segment of sequence
import heapq
from itertools import islice
def A051037gen(): # generator of terms
v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5]
while True:
v = heapq.heappop(h)
if v != oldv:
yield v
oldv = v
for p in psmooth_primes:
heapq.heappush(h, v*p)
print(list(islice(A051037gen(), 65))) # Michael S. Branicky, Sep 17 2024
A004250
Number of partitions of n into 3 or more parts.
Original entry on oeis.org
0, 0, 1, 2, 4, 7, 11, 17, 25, 36, 50, 70, 94, 127, 168, 222, 288, 375, 480, 616, 781, 990, 1243, 1562, 1945, 2422, 2996, 3703, 4550, 5588, 6826, 8332, 10126, 12292, 14865, 17958, 21618, 25995, 31165, 37317, 44562
Offset: 1
a(6)=7 because there are three partitions of n=6 with i=3 parts: [4, 1, 1], [3, 2, 1], [2, 2, 2] and two partitions with i=4 parts: [3, 1, 1, 1], [2, 2, 1, 1] and one partition with i=5 parts: [2, 1, 1, 1, 1] and one partition with i=6 parts: [1, 1, 1, 1, 1, 1].
From _Gus Wiseman_, Jan 18 2021: (Start)
The a(3) = 1 through a(7) = 11 graphical partitions of 2n into n parts:
(222) (2222) (22222) (222222) (2222222)
(3221) (32221) (322221) (3222221)
(33211) (332211) (3322211)
(42211) (333111) (3332111)
(422211) (4222211)
(432111) (4322111)
(522111) (4331111)
(4421111)
(5222111)
(5321111)
(6221111)
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).
- T. M. Barnes and C. D. Savage, A recurrence for counting graphical partitions, Electronic J. Combinatorics, 2 (1995).
- N. Metropolis and P. R. Stein, The enumeration of graphical partitions, Europ. J. Combin., 1 (1980), 139-1532.
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978). [Annotated scanned copy]
- Eric Weisstein's World of Mathematics. Spider Graph
- Wikipedia, Starlike tree
- Index entries for sequences related to graphical partitions
A008284 counts partitions by sum and length.
A027187 counts partitions of even length.
A309356 ranks simple covering graphs.
The following count vertex-degree partitions and give their Heinz numbers:
-
with(combinat);
for i from 1 to 15 do pik(i,3) od;
pik:= proc(n::integer, k::integer)
# Thomas Wieder, Jan 30 2007
local i, Liste, Result;
if k > n or n < 0 or k < 1 then
return fail
end if;
Result := 0;
for i from k to n do
Liste:= PartitionList(n,i);
#print(Liste);
Result := Result + nops(Liste);
end do;
return Result;
end proc;
PartitionList := proc (n, k)
# Authors: Herbert S. Wilf and Joanna Nordlicht. Source: Lecture Notes
# "East Side West Side,..." University of Pennsylvania, USA, 2002.
# Available at: http://www.cis.upenn.edu/~wilf/lecnotes.html
# Calculates the partition of n into k parts.
# E.g. PartitionList(5,2) --> [[4, 1], [3, 2]].
local East, West;
if n < 1 or k < 1 or n < k then
RETURN([])
elif n = 1 then
RETURN([[1]])
else if n < 2 or k < 2 or n < k then
West := []
else
West := map(proc (x) options operator, arrow;
[op(x), 1] end proc,PartitionList(n-1,k-1)) end if;
if k <= n-k then
East := map(proc (y) options operator, arrow;
map(proc (x) options operator, arrow; x+1 end proc,y) end proc,PartitionList(n-k,k))
else East := [] end if;
RETURN([op(West), op(East)])
end if;
end proc;
# Thomas Wieder, Feb 01 2007
ZL :=[S, {S = Set(Cycle(Z),3 <= card)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=1..41); # Zerinvary Lajos, Mar 25 2008
B:=[S,{S = Set(Sequence(Z,1 <= card),card >=3)},unlabelled]: seq(combstruct[count](B, size=n), n=1..41); # Zerinvary Lajos, Mar 21 2009
-
Length /@ Table[Select[Partitions[n], Length[#] > 2 &], {n, 20}] (* Eric W. Weisstein, May 16 2007 *)
Table[Count[Length /@ Partitions[n], ?(# > 2 &)], {n, 20}] (* _Eric W. Weisstein, May 16 2017 *)
Table[PartitionsP[n] - Floor[n/2] - 1, {n, 20}] (* Eric W. Weisstein, May 16 2017 *)
Length /@ Table[IntegerPartitions[n, {3, n}], {n, 20}] (* Eric W. Weisstein, May 16 2017 *)
-
a(n) = numbpart(n) - (n+2)\2; /* Joerg Arndt, Apr 03 2013 */
A058399
Triangle of partial row sums of partition triangle A008284.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 7, 6, 4, 2, 1, 11, 10, 7, 4, 2, 1, 15, 14, 11, 7, 4, 2, 1, 22, 21, 17, 12, 7, 4, 2, 1, 30, 29, 25, 18, 12, 7, 4, 2, 1, 42, 41, 36, 28, 19, 12, 7, 4, 2, 1, 56, 55, 50, 40, 29, 19, 12, 7, 4, 2, 1, 77, 76, 70, 58, 43, 30, 19, 12, 7, 4, 2, 1, 101, 100, 94, 80, 62
Offset: 1
From _Omar E. Pol_, Mar 10 2012: (Start)
Triangle begins:
1;
2, 1;
3, 2, 1;
5, 4, 2, 1;
7, 6, 4, 2, 1;
11, 10, 7, 4, 2, 1;
15, 14, 11, 7, 4, 2, 1;
22, 21, 17, 12, 7, 4, 2, 1;
30, 29, 25, 18, 12, 7, 4, 2, 1;
42, 41, 36, 28, 19, 12, 7, 4, 2, 1;
56, 55, 50, 40, 29, 19, 12, 7, 4, 2, 1;
77, 76, 70, 58, 43, 30, 19, 12, 7, 4, 2, 1;
(End)
-
b:= proc(n, k) option remember;
`if`(n=0, 1, `if`(k<1, 0, add(b(n-j*k, k-1), j=0..n/k)))
end:
T:= (n, m)-> b(n,n) -b(n,m-1):
seq (seq (T(n, m), m=1..n), n=1..15); # Alois P. Heinz, Apr 20 2012
-
t[n_, m_] := Sum[ IntegerPartitions[n, {k}] // Length, {k, m, n}]; Table[t[n, m], {n, 1, 13}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
A347542
Number of partitions of n into 6 or more parts.
Original entry on oeis.org
1, 2, 4, 7, 12, 19, 30, 44, 65, 92, 130, 178, 244, 326, 435, 571, 747, 964, 1242, 1581, 2009, 2530, 3178, 3962, 4930, 6094, 7518, 9225, 11296, 13768, 16751, 20295, 24546, 29583, 35591, 42685, 51112, 61028, 72757, 86523, 102740, 121720, 144007, 170018, 200461, 235910, 277270
Offset: 6
-
nmax = 52; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 6, nmax}], {x, 0, nmax}], x] // Drop[#, 6] &
A347543
Number of partitions of n into 7 or more parts.
Original entry on oeis.org
1, 2, 4, 7, 12, 19, 30, 45, 66, 95, 134, 186, 255, 345, 461, 611, 801, 1043, 1346, 1727, 2199, 2787, 3508, 4398, 5482, 6809, 8414, 10365, 12711, 15545, 18935, 23006, 27854, 33646, 40513, 48680, 58326, 69748, 83192, 99048, 117650, 139513, 165083, 195034, 229968, 270760
Offset: 7
-
nmax = 52; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 7, nmax}], {x, 0, nmax}], x] // Drop[#, 7] &
A347544
Number of partitions of n into 8 or more parts.
Original entry on oeis.org
1, 2, 4, 7, 12, 19, 30, 45, 67, 96, 137, 190, 263, 356, 480, 637, 842, 1098, 1427, 1835, 2351, 2986, 3780, 4749, 5949, 7405, 9190, 11344, 13966, 17111, 20913, 25454, 30908, 37393, 45141, 54315, 65222, 78090, 93317, 111220, 132323, 157050, 186088, 220015, 259716
Offset: 8
-
nmax = 52; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 8, nmax}], {x, 0, nmax}], x] // Drop[#, 8] &
A347545
Number of partitions of n into 9 or more parts.
Original entry on oeis.org
1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 138, 193, 267, 364, 491, 656, 868, 1139, 1483, 1917, 2461, 3142, 3985, 5030, 6315, 7893, 9817, 12165, 15007, 18451, 22597, 27589, 33565, 40724, 49249, 59410, 71460, 85753, 102632, 122574, 146032, 173638, 206003, 243951, 288296, 340124
Offset: 9
-
nmax = 54; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 9, nmax}], {x, 0, nmax}], x] // Drop[#, 9] &
A347547
Number of partitions of n into 10 or more parts.
Original entry on oeis.org
1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 194, 270, 368, 499, 667, 887, 1165, 1524, 1973, 2544, 3253, 4143, 5239, 6602, 8268, 10320, 12813, 15859, 19537, 24000, 29359, 35820, 43541, 52795, 63803, 76929, 92476, 110926, 132694, 158414, 188649, 224231, 265916, 314793
Offset: 10
-
nmax = 54; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 10, nmax}], {x, 0, nmax}], x] // Drop[#, 10] &
A127745
Counts Bell numbers (except for Catalans) associated with the partition number [n].
Original entry on oeis.org
0, 0, 0, 1, 8, 50, 294, 1717, 10194, 62284, 394346, 2597266, 17827166, 127575414, 951411752, 7386583917, 59623674472, 499648882838, 4340548090590, 39033489125836, 362871600781796, 3482858492844510, 34471940635650958, 351444263328831458
Offset: 1
There are 15 Bell objects when n = 4, 14 are also Catalans so a(4) = 1.
There are 52 Bell objects when n = 5, 42 are also Catalans; we know that 5 = 4+1 = 1+4 which accounts for two of the non-Catalan Bells so, a(5) = 52 - 42 - 2 = 8.
Showing 1-9 of 9 results.
Comments