cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A015540 a(n) = 5*a(n-1) + 6*a(n-2), a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 5, 31, 185, 1111, 6665, 39991, 239945, 1439671, 8638025, 51828151, 310968905, 1865813431, 11194880585, 67169283511, 403015701065, 2418094206391, 14508565238345, 87051391430071, 522308348580425, 3133850091482551, 18803100548895305, 112818603293371831
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct vertices of the complete graph K_7. Example: a(2)=5 because the walks of length 2 between the vertices A and B of the complete graph ABCDEFG are ACB, ADB, AEB, AFB and AGB. - Emeric Deutsch, Apr 01 2004
Pisano period lengths: 1, 1, 2, 2, 2, 2, 14, 2, 2, 2, 10, 2, 12, 14, 2, 2, 16, 2, 18, 2, ... - R. J. Mathar, Aug 10 2012
Sum_{i=0..m} (-1)^(m+i)*6^i, for m >= 0, gives all terms after 0. - Bruno Berselli, Aug 28 2013
The ratio a(n+1)/a(n) converges to 6 as n approaches infinity. Also A053524, A080424, A051958. - Felix P. Muga II, Mar 09 2014

Examples

			G.f. = x + 5*x^2 + 31*x^3 + 185*x^4 + 1111*x^5 + 6665*x^6 + 39991*x^7 + ...
		

Crossrefs

Partial sums are in A033116. Cf. A014987.

Programs

  • Magma
    [Floor(6^n/7-(-1)^n/7): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
    
  • Maple
    seq(round(6^n/7),n=0..25); # Mircea Merca, Dec 28 2010
  • Mathematica
    k=0; lst={k}; Do[k = 6^n-k; AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    CoefficientList[Series[x / ((1 - 6 x) (1 + x)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
    LinearRecurrence[{5,6},{0,1},30] (* Harvey P. Dale, May 12 2015 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x/((1-6*x)*(1+x)))) \\ G. C. Greubel, Jan 24 2018
    
  • PARI
    a(n) = round(6^n/7); \\ Altug Alkan, Sep 05 2018
  • Sage
    [lucas_number1(n,5,-6) for n in range(21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 5*a(n-1) + 6*a(n-2).
From Paul Barry, Apr 20 2003: (Start)
a(n) = (6^n - (-1)^n)/7.
G.f.: x/((1-6*x)*(1+x)).
E.g.f.: (exp(6*x) - exp(-x))/7. (End)
a(n) = 6^(n-1) - a(n-1). - Emeric Deutsch, Apr 01 2004
a(n+1) = Sum_{k=0..n} binomial(n-k, k)*5^(n-2*k)*6^k. - Paul Barry, Jul 29 2004
a(n) = round(6^n/7). - Mircea Merca, Dec 28 2010
a(n) = (-1)^(n-1)*Sum_{k=0..n-1} A135278(n-1,k)*(-7)^k = (6^n - (-1)^n)/7 = (-1)^(n-1)*Sum_{k=0..n-1} (-6)^k. Equals (-1)^(n-1)*Phi(n,-6), where Phi is the cyclotomic polynomial when n is an odd prime. (For n > 0.) - Tom Copeland, Apr 14 2014

A079773 a(n) = 2*a(n-1)+15*a(n-2) with n>0, a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 2, 19, 68, 421, 1862, 10039, 48008, 246601, 1213322, 6125659, 30451148, 152787181, 762341582, 3816490879, 19068105488, 95383574161, 476788730642, 2384331073699, 11920493107028, 59605952319541, 298019301244502
Offset: 0

Views

Author

Paul Barry, Feb 20 2003

Keywords

References

  • F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.

Crossrefs

Programs

Formula

G.f.: x/((1+3*x)*(1-5*x)).
a(n) = (5^n-(-3)^n)/8.
a(n) = sum(k=1..n, binomial(n, 2*k-1)*4^(2*(k-1))).
E.g.f.: exp(x)*sinh(4*x)/4. - Paul Barry, Jul 09 2003
a(n+1) = Sum_{k = 0..n} A238801(n,k)*4^k. - Philippe Deléham, Mar 07 2014

A238801 Triangle T(n,k), read by rows, given by T(n,k) = C(n+1, k+1)*(1-(k mod 2)).

Original entry on oeis.org

1, 2, 0, 3, 0, 1, 4, 0, 4, 0, 5, 0, 10, 0, 1, 6, 0, 20, 0, 6, 0, 7, 0, 35, 0, 21, 0, 1, 8, 0, 56, 0, 56, 0, 8, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 10, 0, 120, 0, 252, 0, 120, 0, 10, 0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1, 12, 0, 220, 0, 792, 0, 792, 0, 220, 0, 12, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 05 2014

Keywords

Comments

Row sums are powers of 2.

Examples

			Triangle begins:
1;
2, 0;
3, 0, 1;
4, 0, 4, 0;
5, 0, 10, 0, 1;
6, 0, 20, 0, 6, 0;
7, 0, 35, 0, 21, 0, 1;
8, 0, 56, 0, 56, 0, 8, 0;
9, 0, 84, 0, 126, 0, 36, 0, 1;
10, 0, 120, 0, 252, 0, 120, 0, 10, 0; etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n + 1, k + 1]*(1 - Mod[k , 2]), {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    T(n,k) = binomial(n+1, k+1)*(1-(k % 2));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Nov 23 2017

Formula

G.f.: 1/((1+(y-1)*x)*(1-(y+1)*x)).
T(n,k) = 2*T(n-1,k) + T(n-2,k-2) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
Sum_{k=0..n} T(n,k)*x^k = A000027(n+1), A000079(n), A015518(n+1), A003683(n+1), A079773(n+1), A051958(n+1), A080920(n+1), A053455(n), A160958(n+1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively.

A080424 a(n) = 3*a(n-1) + 18*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 3, 27, 135, 891, 5103, 31347, 185895, 1121931, 6711903, 40330467, 241805655, 1451365371, 8706597903, 52244370387, 313451873415, 1880754287211, 11284396583103, 67706766919107, 406239439253175, 2437440122303451, 14624630273467503, 87747813021864627, 526486783988008935
Offset: 0

Views

Author

Paul Barry, Feb 24 2003

Keywords

Comments

The ratio a(n+1)/a(n) converges to 6 as n approaches infinity. - Felix P. Muga II, Mar 10 2014

Crossrefs

Programs

Formula

G.f.: x/((1+3*x)*(1-6*x)).
a(n) = (6^n - (-3)^n)/9.
a(n+1) = 6*a(n) + (-3)^n. - Paul Curtz, Jun 07 2011
a(n) = 3^(n-1)*A001045(n). - R. J. Mathar, Mar 08 2021

A100851 Triangle read by rows: T(n,k) = 2^n * 3^k, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 2, 6, 4, 12, 36, 8, 24, 72, 216, 16, 48, 144, 432, 1296, 32, 96, 288, 864, 2592, 7776, 64, 192, 576, 1728, 5184, 15552, 46656, 128, 384, 1152, 3456, 10368, 31104, 93312, 279936, 256, 768, 2304, 6912, 20736, 62208, 186624, 559872, 1679616, 512, 1536, 4608, 13824, 41472, 124416, 373248, 1119744, 3359232, 10077696
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2004

Keywords

Examples

			From _Stefano Spezia_, Apr 28 2024: (Start)
Triangle begins:
   1;
   2,  6;
   4, 12,  36;
   8, 24,  72, 216;
  16, 48, 144, 432, 1296;
  32, 96, 288, 864, 2592, 7776;
  ...
(End)
		

Crossrefs

Programs

Formula

T(n,0) = A000079(n).
T(n,1) = A007283(n) for n>0.
T(n,2) = A005010(n) for n>1.
T(n,n) = A000400(n) = A100852(n,n).
Sum_{k=0..n} T(n, k) = A016129(n).
T(2*n, n) = A001021(n). - Reinhard Zumkeller, Mar 04 2006
G.f.: 1/((1 - 2*x)*(1 - 6*x*y)). - Stefano Spezia, Apr 28 2024
From G. C. Greubel, Nov 11 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A053524(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/2)*((1-(-1)^n)*A248337((n+1)/2) + (1 + (-1)^n)*A016149(n/2)).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1/2)*(-1)^floor(n/2)*( (1+(-1)^n) *A051958((n+2)/2) + 2*(1-(-1)^n)*A051958((n+1)/2)). (End)
Sum_{n>=0, k=0..n} 1/T(n,k) = 12/5. - Amiram Eldar, May 12 2025

A053455 a(n) = ((8^n) - (-6)^n)/14.

Original entry on oeis.org

0, 1, 2, 52, 200, 2896, 15392, 169792, 1078400, 10306816, 72376832, 639480832, 4753049600, 40201179136, 308548739072, 2546754076672, 19903847628800, 162051890937856, 1279488468058112, 10337467701133312, 82090381869056000, 660379213392510976, 5261096756499709952, 42220395755839946752
Offset: 0

Views

Author

Barry E. Williams, Jan 13 2000

Keywords

Comments

Previous name was: A linear recursive sequence.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) + 48*a(n-2), n>=2; a(0)=0, a(1)=1.
a(n) = ((8^n)-(-6)^n)/14 = (2^(n-1))*((4^n) - (-3)^n)/7 = 2^(n-1)*A053404(n).
G.f.: x/((1+6*x)*(1-8*x)). - Harvey P. Dale, Nov 28 2011
a(n) = A080921(n). - Philippe Deléham, Mar 05 2014
a(n+1) = Sum_{k=0..n} A238801(n,k)*7^k. - Philippe Deléham, Mar 07 2014

Extensions

More terms from James Sellers, Feb 02 2000
New name (from formula), Joerg Arndt, Mar 05 2014

A080920 a(n) = 2a(n-1) + 35a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 2, 39, 148, 1661, 8502, 75139, 447848, 3525561, 22725802, 168846239, 1133095548, 8175809461, 56009963102, 398173257339, 2756695223248, 19449454453361, 135383241720402, 951497389308439, 6641408238830948
Offset: 0

Views

Author

Paul Barry, Feb 24 2003

Keywords

Crossrefs

Programs

Formula

a(n) = 7^n/12 - (-5)^n/12.
a(n) = Sum{k=1..n, binomial(n, 2k-1)*6^(2(k-1))}.
G.f.: 1/((1+5x)(1-7x)).
a(n+1) = Sum_{k = 0..n} A238801(n,k)*6^k. - Philippe Deléham, Mar 07 2014

A080921 a(n) = 2*a(n-1) + 48*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 2, 52, 200, 2896, 15392, 169792, 1078400, 10306816, 72376832, 639480832, 4753049600, 40201179136, 308548739072, 2546754076672, 19903847628800, 162051890937856, 1279488468058112, 10337467701133312, 82090381869056000
Offset: 0

Views

Author

Paul Barry, Feb 24 2003

Keywords

Comments

Essentially the same as A053455: a(n) = A053455(n-1), n>=1.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x / ((1 + 6 x) (1 - 8 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 05 2013 *)
    LinearRecurrence[{2,48},{0,1},30] (* Harvey P. Dale, Jan 20 2016 *)

Formula

a(n) = (8^n - (-6)^n)/14.
a(n) = Sum{k=1..n, binomial(n, 2k-1) * 7^(2(k-1)) }
G.f.: x/((1+6*x)*(1-8*x)).
a(n) = A053455(n-1), n>=1. [R. J. Mathar, Sep 18 2008]

A083578 a(n) = (6^n + (-4)^n)/2.

Original entry on oeis.org

1, 1, 26, 76, 776, 3376, 25376, 131776, 872576, 4907776, 30757376, 179301376, 1096779776, 6496792576, 39316299776, 234555621376, 1412702437376, 8454739787776, 50814338072576, 304542431051776, 1828628975845376
Offset: 0

Views

Author

Paul Barry, Apr 30 2003

Keywords

Crossrefs

Cf. A083579. First differences of A051958.

Programs

  • Mathematica
    LinearRecurrence[{2,24},{1,1},30] (* Harvey P. Dale, Nov 29 2017 *)

Formula

a(n) = (6^n + (-4)^n)/2.
G.f.: (1-x)/((1+4x)(1-6x)).
E.g.f.: (exp(6x) + exp(-4x))/2.

A383651 Expansion of 1/((1-x) * (1+4*x) * (1-6*x)).

Original entry on oeis.org

1, 3, 31, 135, 1015, 5271, 34903, 196311, 1230295, 7172055, 43871191, 259871703, 1572651991, 9382224855, 56508097495, 338189591511, 2032573522903, 12181697242071, 73145159033815, 438651051877335, 2632785920566231, 15793197086188503, 94773256265966551
Offset: 0

Views

Author

Seiichi Manyama, May 04 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (6^(n+2)-2+(-4)^(n+2))/50;

Formula

a(n) = Sum_{k=0..n} 5^k * (-4)^(n-k) * binomial(n+2,k+2) * Stirling2(k+2,2).
a(n) = Sum_{k=0..n} (-5)^k * 6^(n-k) * binomial(n+2,k+2) * Stirling2(k+2,2).
a(n) = (6^(n+2) - 2 + (-4)^(n+2))/50 = (A083578(n+2) - 1)/25.
a(n) = 3*a(n-1) + 22*a(n-2) - 24*a(n-3).
E.g.f.: exp(-4*x)*(8 - exp(5*x) + 18*exp(10*x))/25. - Stefano Spezia, May 04 2025
Showing 1-10 of 10 results.