Original entry on oeis.org
0, 8, 80, 664, 5344, 42792, 342384, 2739128, 21913088, 175304776, 1402438288, 11219506392, 89756051232, 718048409960, 5744387279792, 45955098238456, 367640785907776, 2941126287262344, 23529010298098896, 188232082384791320
Offset: 0
-
[8*(8^(n+1)-7*n-8)/49 : n in [0..20]]; // Vincenzo Librandi, Jul 04 2011
-
lst={};s=0;Do[s+=(s+=(s+=(s+=n)));AppendTo[lst,s],{n,0,5!}];lst
-
concat(0, Vec(-8*x/((x-1)^2*(8*x-1)) + O(x^100))) \\ Colin Barker, Oct 27 2014
Original entry on oeis.org
0, 8, 80, 728, 6560, 59048, 531440, 4782968, 43046720, 387420488, 3486784400, 31381059608, 282429536480, 2541865828328, 22876792454960, 205891132094648, 1853020188851840, 16677181699666568, 150094635296999120
Offset: 0
A228275
A(n,k) = Sum_{i=1..k} n^i; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 6, 3, 0, 0, 4, 14, 12, 4, 0, 0, 5, 30, 39, 20, 5, 0, 0, 6, 62, 120, 84, 30, 6, 0, 0, 7, 126, 363, 340, 155, 42, 7, 0, 0, 8, 254, 1092, 1364, 780, 258, 56, 8, 0, 0, 9, 510, 3279, 5460, 3905, 1554, 399, 72, 9, 0
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 6, 14, 30, 62, 126, 254, ...
0, 3, 12, 39, 120, 363, 1092, 3279, ...
0, 4, 20, 84, 340, 1364, 5460, 21844, ...
0, 5, 30, 155, 780, 3905, 19530, 97655, ...
0, 6, 42, 258, 1554, 9330, 55986, 335922, ...
0, 7, 56, 399, 2800, 19607, 137256, 960799, ...
Columns k=0-10 give:
A000004,
A001477,
A002378,
A027444,
A027445,
A152031,
A228290,
A228291,
A228292,
A228293,
A228294.
Rows n=0-11 give:
A000004,
A001477,
A000918(k+1),
A029858(k+1),
A080674,
A104891,
A105281,
A104896,
A052379(k-1),
A052386,
A105279,
A105280.
-
A:= (n, k)-> `if`(n=1, k, (n/(n-1))*(n^k-1)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
a[0, 0] = 0; a[1, k_] := k; a[n_, k_] := n*(n^k-1)/(n-1); Table[a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 16 2013 *)
A052386
Number of integers from 1 to 10^n-1 that lack 0 as a digit.
Original entry on oeis.org
0, 9, 90, 819, 7380, 66429, 597870, 5380839, 48427560, 435848049, 3922632450, 35303692059, 317733228540, 2859599056869, 25736391511830, 231627523606479, 2084647712458320, 18761829412124889, 168856464709124010, 1519708182382116099, 13677373641439044900
Offset: 0
For n=2, the numbers from 1 to 99 which *have* 0 as a digit are the 9 numbers 10, 20, 30, ..., 90. So a(1) = 99 - 9 = 90.
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Peter D. Loly and Ian D. Cameron, Frierson's 1907 Parameterization of Compound Magic Squares Extended to Orders 3^L, L = 1, 2, 3, ..., with Information Entropy, arXiv:2008.11020 [math.HO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (10,-9).
-
[9*(9^n-1)/8: n in [0..20]]; // Vincenzo Librandi, Jul 04 2011
-
Table[9(9^n - 1)/8, {n, 0, 20}]
LinearRecurrence[{10,-9},{0,9},30] (* Harvey P. Dale, Mar 22 2019 *)
-
a(n)=9^(n+1)\8 \\ Charles R Greathouse IV, Aug 25 2014
More terms and revised description from
James Sellers, Mar 13 2000
A105279
a(0)=0; a(n) = 10*a(n-1) + 10.
Original entry on oeis.org
0, 10, 110, 1110, 11110, 111110, 1111110, 11111110, 111111110, 1111111110, 11111111110, 111111111110, 1111111111110, 11111111111110, 111111111111110, 1111111111111110, 11111111111111110, 111111111111111110, 1111111111111111110, 11111111111111111110, 111111111111111111110
Offset: 0
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Robert Price, Diagrams of first 20 stages of the Cellular Automata.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton.
- S. Wolfram, A New Kind of Science.
- Wolfram Research, Wolfram Atlas of Simple Programs.
- Index entries for sequences related to cellular automata.
- Index to 2D 5-Neighbor Cellular Automata.
- Index to Elementary Cellular Automata.
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
-
a105279 n = a105279_list !! n
a105279_list = iterate ((* 10) . (+ 1)) 0
-- Reinhard Zumkeller, Feb 05 2012
-
[-10/9+(10/9)*10^n: n in [0..20]]; // Vincenzo Librandi, Jul 04 2011
-
NestList[10*(# + 1) &, 0, 25] (* Paolo Xausa, Jul 17 2024 *)
A104891
a(0) = 0; a(n) = 5*a(n-1) + 5.
Original entry on oeis.org
0, 5, 30, 155, 780, 3905, 19530, 97655, 488280, 2441405, 12207030, 61035155, 305175780, 1525878905, 7629394530, 38146972655, 190734863280, 953674316405, 4768371582030, 23841857910155, 119209289550780, 596046447753905, 2980232238769530, 14901161193847655
Offset: 0
a(3) = 5*a(2) + 5 = 5*30 + 5 = 155.
-
[5*(5^n -1)/4: n in [0..30]]; // G. C. Greubel, Jun 15 2021
-
a:=n->add(5^j,j=1..n): seq(a(n),n=0..30); # Zerinvary Lajos, Jun 27 2007
-
RecurrenceTable[{a[n]==5*a[n-1]+5, a[0]==0}, a, {n, 0, 30}] (* Vaclav Kotesovec, Jul 25 2014 *)
NestList[5#+5&,0,30] (* Harvey P. Dale, Oct 04 2019 *)
-
concat(0, Vec(5*x/((x-1)*(5*x-1)) + O(x^30))) \\ Colin Barker, Jul 25 2014
-
[5*(5^n -1)/4 for n in (0..30)] # G. C. Greubel, Jun 15 2021
A104896
a(0) = 0; a(n) = 7*a(n-1) + 7.
Original entry on oeis.org
0, 7, 56, 399, 2800, 19607, 137256, 960799, 6725600, 47079207, 329554456, 2306881199, 16148168400, 113037178807, 791260251656, 5538821761599, 38771752331200, 271402266318407, 1899815864228856, 13298711049601999, 93090977347214000, 651636841430498007
Offset: 0
-
[(7/6)*(7^n -1): n in [0..30]]; // G. C. Greubel, Jun 09 2021
-
a:=n->sum (7^j,j=1..n): seq(a(n), n=0..30); # Zerinvary Lajos, Oct 03 2007
-
RecurrenceTable[{a[n]==7*a[n-1]+7,a[0]==0},a,{n,0,30}] (* Vaclav Kotesovec, Jul 25 2014 *)
-
concat(0, Vec(7*x/((x-1)*(7*x-1)) + O(x^30))) \\ Colin Barker, Jul 25 2014
-
[(7/6)*(7^n -1) for n in (0..30)] # G. C. Greubel, Jun 09 2021
A105281
a(0)=0; a(n) = 6*a(n-1) + 6.
Original entry on oeis.org
0, 6, 42, 258, 1554, 9330, 55986, 335922, 2015538, 12093234, 72559410, 435356466, 2612138802, 15672832818, 94036996914, 564221981490, 3385331888946, 20311991333682, 121871948002098, 731231688012594, 4387390128075570, 26324340768453426, 157946044610720562
Offset: 0
-
a:=n->add(6^j,j=1..n): seq(a(n),n=0..30); # Zerinvary Lajos, Oct 03 2007
-
NestList[6#+6&,0,30] (* Harvey P. Dale, Jul 24 2012 *)
-
a(n)=if(n<0,0, (6^n-1)*6/5)
A105280
a(0)=0; a(n) = 11*a(n-1) + 11.
Original entry on oeis.org
0, 11, 132, 1463, 16104, 177155, 1948716, 21435887, 235794768, 2593742459, 28531167060, 313842837671, 3452271214392, 37974983358323, 417724816941564, 4594972986357215, 50544702849929376, 555991731349223147, 6115909044841454628, 67274999493256000919, 740024994425816010120
Offset: 0
-
a:=n-> add(11^j,j=1..n): seq(a(n),n=0..12); # Zerinvary Lajos, Oct 03 2007
-
NestList[11#+11&,0,20] (* or *) LinearRecurrence[{12,-11},{0,11},20] (* Harvey P. Dale, Dec 02 2023 *)
A247841
a(n) = Sum_{k=2..n} 8^k.
Original entry on oeis.org
0, 64, 576, 4672, 37440, 299584, 2396736, 19173952, 153391680, 1227133504, 9817068096, 78536544832, 628292358720, 5026338869824, 40210710958656, 321685687669312, 2573485501354560, 20587884010836544, 164703072086692416, 1317624576693539392
Offset: 1
Cf. similar sequences listed in
A247817.
-
[0] cat [&+[8^k: k in [2..n]]: n in [2..30]];
-
[(8^(n+1)-64)/7: n in [1..30]];
-
RecurrenceTable[{a[1] == 0, a[n] == a[n-1] + 8^n}, a, {n, 30}] (* or *) CoefficientList[Series[64 x / ((1 - x) (1 - 8 x)), {x, 0, 30}], x]
LinearRecurrence[{9,-8},{0,64},30] (* Harvey P. Dale, May 01 2018 *)
Showing 1-10 of 10 results.
Comments