cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A064063 Generalized Catalan numbers C(3; n).

Original entry on oeis.org

1, 1, 4, 25, 190, 1606, 14506, 137089, 1338790, 13403950, 136846144, 1419257434, 14911016596, 158363649640, 1697452010230, 18338919413425, 199496184219910, 2183299541440150, 24021874198331080, 265559590979820910, 2948253066186839140, 32857382497018933060
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Comments

a(n+1) = Y_{n}(n+1) = Z_{n}, n >= 0, in the Derrida et al. 1992 reference (see A064094) for alpha=3, beta =1 (or alpha=1, beta=3).
Hankel transform is A060722. - Paul Barry, Jan 30 2009

References

  • S. Ramanujan, Modular Equations and Approximations to pi, pp. 23-39 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea 2000. See page 39, equation (50).

Crossrefs

Cf. A064062 (C(2; n)).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 6/(5+Sqrt(1-12*x)) )); // G. C. Greubel, May 02 2019
  • Mathematica
    CoefficientList[Series[6/(5+Sqrt[1-12 x]),{x,0,50}],x]  (* Harvey P. Dale, Mar 11 2011 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-2*x^2)/(1+x)^2+O(x^(n+1))),n)) \\ Ralf Stephan, Jun 12 2004
    
  • PARI
    {a(n)= if(n<1, n==0, polcoeff( serreverse( (x-2*x^2)/ (1+x)^2 +x*O(x^n)), n))} /* Michael Somos, Apr 11 2007 */
    
  • Sage
    def a(n):
        if n==0: return 1
        return hypergeometric([1-n, n], [-n], 3).simplify()
    [a(n) for n in range(24)] # Peter Luschny, Nov 30 2014
    

Formula

G.f.: (1+3*x*c(3*x)/2)/(1+x/2) = 1/(1-x*c(3*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(3^m)/n.
a(n) = (-1/2)^n * (1 - 3*Sum_{k=0..n-1} C(k)*(-6)^k), n >= 1, a(0) = 1, with C(n) = A000108(n) (Catalan).
a(n) = Sum_{k=0..n} A059365(n, k)*3^(n-k). - Philippe Deléham, Jan 19 2004
Given the semi-axes a,b of an ellipse, then Ramanujan gave the highly accurate formula for the perimeter p = Pi((a+b) + (3(a-b)^2)/(10(a+b) + sqrt(a^2 + 14ab + b^2))). If we let h = ((a-b)/(a+b))^2, then (p/(Pi(a+b))-1)/4 = (3/4)* h/(10 + sqrt(4 - 3*h)) = 1*(h/16) + 1*(h/16)^2 + 4*(h/16)^3 + 25*(h/16)^4 + ... . - Michael Somos, Apr 11 2007
G.f.: 1/(1-x/(1-3*x/(1-3*x/(1-3*x/(1-.... = 1/(1-x-3*x^2/(1-6*x-9*x^2/(1-6*x-9*x^2/(1-.... (continued fractions). - Paul Barry, Jan 30 2009
G.f.: 6/(5+sqrt(1-12*x)). - Harvey P. Dale, Mar 11 2011
From Gary W. Adamson, Jul 12 2011: (Start)
a(n) = upper left term in M^n, M = the infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
3, 3, 3, 0, 0, 0, ...
3, 3, 3, 3, 0, 0, ...
3, 3, 3, 3, 3, 0, ...
3, 3, 3, 3, 3, 3, ...
... (End)
D-finite with recurrence: 2*n*a(n) + (-23*n+36)*a(n-1) + 6*(-2*n+3)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012 (Formula verified and used for computations. - Fung Lam, Mar 05 2014)
a(n) ~ 3^(n+1) * 4^n / (25*n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Mar 05 2014
a(n) = hypergeometric([1-n, n], [-n], 3) for n>0. - Peter Luschny, Nov 30 2014

A060757 a(n) = 4^(n^2).

Original entry on oeis.org

1, 4, 256, 262144, 4294967296, 1125899906842624, 4722366482869645213696, 316912650057057350374175801344, 340282366920938463463374607431768211456, 5846006549323611672814739330865132078623730171904, 1606938044258990275541962092341162602522202993782792835301376
Offset: 0

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 23 2001

Keywords

Comments

Number of n X n matrices over GF(4).
a(n) = k^(n^2) with k = 2, 3, 4,... counts n X n matrices over GF(k). - Vincenzo Origlio (vincenzo.origlio(AT)itc.cnr.it), Nov 14 2002

Crossrefs

Cf. A060761.
Cf. A060722.
Cf. A118185.

Programs

Formula

a(n) = A118185(2n,n). - Alois P. Heinz, Jun 29 2021

Extensions

More terms from Philippe Deléham, Nov 19 2007

A155203 G.f.: A(x) = exp( Sum_{n>=1} 3^(n^2) * x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 3, 45, 6687, 10782369, 169490304819, 25016281429306077, 34185693516532070487615, 429210580094546346191627404353, 49269611092414945570325157106493868771
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2009

Keywords

Comments

More generally, for m integer, exp( Sum_{n>=1} m^(n^2) * x^n/n ) is a power series in x with integer coefficients.

Examples

			G.f.: A(x) = 1 + 3*x + 45*x^2 + 6687*x^3 + 10782369*x^4 + 169490304819*x^5 +...
log(A(x)) = 3*x + 3^4*x^2/2 + 3^9*x^3/3 + 3^16*x^4/4 + 3^25*x^5/5 +...
		

Crossrefs

Cf. A060722, A155204, A155205, A155206, A155812 (triangle), variants: A155200, A155207.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,3^(m^2)*x^m/m)+x*O(x^n)),n)}

Formula

Equals column 0 of triangle A155812.
G.f. satisfies: A'(x)/A(x) = 3 + 27*x*A'(9*x)/A(9*x). - Paul D. Hanna, Nov 15 2022
a(n) ~ 3^(n^2)/n. - Vaclav Kotesovec, Oct 31 2024

A056989 Number of nonsingular n X n (-1,0,1)-matrices (over the reals).

Original entry on oeis.org

1, 2, 48, 11808, 27947520, 609653621760, 119288919620689920
Offset: 0

Views

Author

Keywords

Comments

It would be nice to have an estimate for the asymptotic rate of growth.

Examples

			a(1) = 2: [1], [ -1].
a(2) = 48: There are 8 choices for the first column, u (say) and then the 2nd column can be anything except 0, u, -u, so 6 choices, giving a total of 8*6 = 48.
		

Crossrefs

Programs

  • Mathematica
    (* A brute force solution up to n = 4 *) a[n_] := a[n] = (m = Array[x, {n, n}]; cnt = 0; iter = {#, -1, 1}& /@ Flatten[m]; Do[ If[ Det[m] != 0, cnt++], Evaluate[ Sequence @@ iter]]; cnt); Table[ Print[a[n]]; a[n], {n, 1, 4}] (* Jean-François Alcover, Oct 11 2012 *)

Formula

a(n) = A060722(n) - A057981(n). - Alois P. Heinz, Dec 02 2019

Extensions

a(4) from Winston C. Yang (winston(AT)cs.wisc.edu), Aug 27 2000
Entry revised by N. J. A. Sloane, Jan 02 2007
a(5) from Giovanni Resta, Feb 20 2009
a(0)=1 prepended by Alois P. Heinz, Dec 02 2019
a(0)-a(5) confirmed and a(6) added by Minfeng Wang, May 01 2024

A057981 Number of singular n X n (-1,0,1)-matrices.

Original entry on oeis.org

0, 1, 33, 7875, 15099201, 237634987683, 30805715676309201
Offset: 0

Views

Author

Eric W. Weisstein, Oct 23 2000

Keywords

Crossrefs

Complement of A056989.

Formula

a(n) = A060722(n) - A056989(n). - Alois P. Heinz, Dec 02 2019

Extensions

a(5) from Giovanni Resta, Feb 20 2009
a(0)=0 prepended by Alois P. Heinz, Dec 02 2019
a(0)-a(5) confirmed and a(6) added by Minfeng Wang, May 01 2024

A271570 Number of distinct eigenvalues of n X n matrices with elements {-1, 0, +1}.

Original entry on oeis.org

3, 21, 375, 24823
Offset: 1

Views

Author

Steven E. Thornton, Jul 13 2016

Keywords

References

  • Steven E. Thornton & Robert M. Corless, The Bohemian Eigenvalue Project, Poster Presented at The International Symposium on Symbolic and Algebraic Computation (ISSAC 2016). Wilfrid Laurier University, July 19-22, 2016.

Crossrefs

Number of characteristic polynomials: A272658.
Cf. A060722.

Programs

  • Mathematica
    (* Program not suitable to compute more than 3 terms *)
    a[n_] := Module[{r, iter}, iter = Table[{r[k], {-1, 0, 1}}, {k, 1, n^2}]; Eigenvalues /@ (Table[Table[(r[# + j]& /@ Range[n]), {j, 0, n^2 - n, n}], Sequence @@ iter // Evaluate] // Flatten[#, n^2 - 1]&) // Flatten // Union // Length];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 3}] (* Jean-François Alcover, Jun 17 2018 *)

Formula

a(n) <= 3^(n^2). - Robert P. P. McKone, Sep 16 2023

A135397 a(n) = 2^n * 3^(n^2).

Original entry on oeis.org

1, 6, 324, 157464, 688747536, 27113235502176, 9606056659007943744, 30630314141519043787530624, 879023057994883196072409366855936, 227034361980435338213503810877004745115136
Offset: 0

Views

Author

Philippe Deléham, Dec 11 2007

Keywords

Comments

Hankel transform of A110520.

Programs

Formula

a(n) = 2^n * 3^(n^2) = A000079(n) * A060722(n).

A271588 Number of matrices with multiple eigenvalues from the set of n X n matrices with elements {-1, 0, +1}.

Original entry on oeis.org

0, 19, 4629, 7171257, 89765448427
Offset: 1

Views

Author

Steven E. Thornton, Jul 13 2016

Keywords

References

  • Steven E. Thornton and Robert M. Corless, The Bohemian Eigenvalue Project, Poster Presented at The International Symposium on Symbolic and Algebraic Computation (ISSAC 2016). Wilfrid Laurier University, July 19-22, 2016.

Crossrefs

Number of characteristic polynomials A272658.
Cf. A060722.

Programs

  • Mathematica
    a[n_Integer?NonNegative] := a[n] = Module[{m, ei}, ei[matrix_] := Length[Select[Tally[Eigenvalues[matrix]], Last[#] > 1 &]] > 0; m = Tuples[Tuples[{-1, 0, 1}, n], n]; Count[m, mat_ /; ei[mat]]]; Table[a[i], {i, 1, 3}] (* Robert P. P. McKone, Sep 16 2023 *)

Formula

a(n) <= A060722(n) where A060722(n) = 3^(n^2); see Corless and Thornton poster link. Robert P. P. McKone, Sep 16 2023

A120840 5^(n^2)-3^(n^2).

Original entry on oeis.org

0, 2, 544, 1933442, 152544843904, 298022376588343682, 14551915078272216509641504, 17763568393763205317547489159863042, 542101086242748783319906107922486197863801344
Offset: 0

Views

Author

Mohammad K. Azarian, Aug 18 2006

Keywords

Crossrefs

Programs

Formula

a(n) = A060758(n)-A060722(n)=A095860(5,n)-A095860(3,n). - R. J. Mathar, Apr 24 2007

Extensions

Corrected by Ray Chandler, Sep 06 2006

A133461 4^n*3^(n^2).

Original entry on oeis.org

1, 12, 1296, 1259712, 11019960576, 867623536069632, 614787626176508399616, 3920680210114437604803919872, 225029902846690098194536797915119616, 116241593333982893165313951169026429498949632
Offset: 0

Views

Author

Philippe Deléham, Nov 28 2007

Keywords

Formula

Hankel transform of A039610.
a(n)=4^n*3^(n^2)=A000302(n)*A060722(n).
Showing 1-10 of 13 results. Next