cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A132281 Noncomposites in A067200. Noncomposites (0, 1) and primes p such that A084380(p) = p^3 + 2 is prime.

Original entry on oeis.org

0, 1, 3, 5, 29, 71, 83, 113, 173, 263, 311, 419, 431, 491, 503, 509, 683, 701, 761, 773, 839, 911, 953, 1031, 1091, 1103, 1151, 1193, 1259, 1283, 1373, 1451, 1523, 1583, 1601, 1733, 1823, 1889, 1931, 2099, 2153, 2213, 2273, 2339, 2351, 2441, 2531, 2543
Offset: 1

Views

Author

Jonathan Vos Post, Aug 16 2007

Keywords

Comments

The corresponding near-cube primes are A132282. Analog of near-square primes. After a(1) = 0, all values must be odd. Numbers of the form n^2+2 for n=1, 2, ... are 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, ... (A059100). These are prime for indices n = 1, 3, 9, 15, 21, 33, 39, 45, 57, 81, 99, ... (A067201), corresponding to the near-square primes 3, 11, 83, 227, 443, 1091, 1523, 2027, ... (A056899). Helfgott proves with minor conditions that: "Let f be a cubic polynomial. Then there are infinitely many primes p such that f(p) is squarefree." Note that 47^3 + 2 = 103825 = 5^2 * 4153 and similarly 97^3 + 2 is divisible by 5^2, but otherwise an infinite number of p^3+2 are squarefree.

Examples

			a(1) = 0 because 0^3 + 2 = 2 is prime and 0 is noncomposite.
a(2) = 1 because 1^3 + 2 = 5 is prime and 1 is noncomposite.
a(3) = 3 because 3^3 + 2 = 29 is prime and 3 is prime.
a(4) = 5 because 5^3 + 2 = 127 is prime and 5 is prime.
a(5) = 29 because 29^3 + 2 = 24391 is prime.
45 is not in the sequence because, although 45^3 + 2 = 91127 is prime, 45 is not prime.
63 is not in the sequence because, although 63^3 + 2 = 250049 is prime, 63 is not prime.
65 is not in the sequence because, although 65^3 + 2 = 274627 is prime, 65 is not prime.
a(6) = 71 because 71^3 + 2 = 357913 is prime.
a(7) = 83 because 83^3 + 2 = 571789 is prime.
a(8) = 113 because 113^3 + 2 = 1442899 is prime.
123 is not in the sequence because, although 123^3 + 2 = 1860869 is prime, 123 is not prime.
		

Crossrefs

Formula

{p in A000040 such that A067200(p) = A084380(p) = p^3 + 2 is in A000040}.
Union of {0,1} and A048637. - R. J. Mathar, Oct 18 2007

Extensions

More terms from R. J. Mathar, Oct 18 2007

A300480 Rectangular array read by antidiagonals: a(m,n) = 2 * Integral_{t>=0} T_n((t+m)/2)*exp(-t)*dt, m>=0, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.

Original entry on oeis.org

2, 2, 1, 2, 2, 0, 2, 3, 3, 3, 2, 4, 8, 10, 18, 2, 5, 15, 29, 47, 95, 2, 6, 24, 66, 130, 256, 592, 2, 7, 35, 127, 327, 697, 1610, 4277, 2, 8, 48, 218, 722, 1838, 4376, 11628, 35010, 2, 9, 63, 345, 1423, 4459, 11770, 31607, 95167, 320589, 2, 10, 80, 514, 2562, 9820, 30248, 85634, 258690
Offset: 0

Views

Author

Max Alekseyev, Mar 06 2018

Keywords

Comments

a(m,n) is a polynomial in m of degree n.
For any integers m>=0, n>=0, 2 * Integral_{t=-m..m} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-m/2..m/2} T_n(z)*exp(-2*z)*dz = A300481(m,n)*exp(m) - a(m,n)*exp(-m).

Examples

			Array starts with:
m=0: 2,  1,   0,    3,    18,     95,     592, ...
m=1: 2,  2,   3,   10,    47,    256,    1610, ...
m=2: 2,  3,   8,   29,   130,    697,    4376, ...
m=3: 2,  4,  15,   66,   327,   1838,   11770, ...
m=4: 2,  5,  24,  127,   722,   4459,   30248, ...
...
		

Crossrefs

Values for m<=0 are given in A300481.
Rows: A300482 (m=0), A300483 (m=1), A300484 (m=2), A300485 (m=-1), A102761 (m=-2).
Columns: A007395 (n=0), A000027 (n=1), A005563 (n=2), A084380 (n=3).
Cf. A000179 (almost row m=-2), A127672, A156995.

Programs

  • PARI
    { A300480(m,n) = if(n==0,return(2)); subst( serlaplace( 2*polchebyshev(n,1,(x+m)/2)), x, 1); }

Formula

a(m,n) = Sum_{i=0..n} A127672(n,i) * i! * Sum_{j=0..i} m^j/j!.
a(m,n) = Sum_{i=0..n} A127672(n,i) * A080955(m,i) = Sum_{i=0..n} A127672(n,i) * A089258(i,m).

A185065 a(n) = n*(n^3 + 2).

Original entry on oeis.org

0, 3, 20, 87, 264, 635, 1308, 2415, 4112, 6579, 10020, 14663, 20760, 28587, 38444, 50655, 65568, 83555, 105012, 130359, 160040, 194523, 234300, 279887, 331824, 390675, 457028, 531495, 614712, 707339, 810060, 923583, 1048640
Offset: 0

Views

Author

Vincenzo Librandi, Mar 31 2011

Keywords

Comments

Numbers a(n) such that a(n)^3 = x^3*(x-2). The values of x are in A084380.
A058895(n)^3 + A068601(n)^3 + A033562(n)^3 = a(n)^3, for n > 0. - Vincenzo Librandi, Mar 13 2012

Examples

			20^3 = 10^3*(10-2); 87^3 = 29^3*(29-2).
		

Crossrefs

Programs

Formula

G.f.: x*(3 + 5*x + 17*x^2 - x^3)/(1-x)^5. - Bruno Berselli, Mar 31 2011

A132282 Near-cube primes: primes of the form p^3 + 2, where p is noncomposite.

Original entry on oeis.org

2, 3, 29, 127, 24391, 357913, 571789, 1442899, 5177719, 18191449, 30080233, 73560061, 80062993, 118370773, 127263529, 131872231, 318611989, 344472103, 440711083, 461889919, 590589721, 756058033, 865523179, 1095912793
Offset: 1

Views

Author

Jonathan Vos Post, Aug 16 2007

Keywords

Comments

The corresponding near-cube prime indices q are A132281. Analog of near-square primes. After a(1) = 2, all values must be odd. Numbers of the form n^2+2 for n=1, 2, ... are 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, ... (A059100). These are prime for indices n = 1, 3, 9, 15, 21, 33, 39, 45, 57, 81, 99, ... (A067201), corresponding to the near-square primes 3, 11, 83, 227, 443, 1091, 1523, 2027, ... (A056899). Helfgott proves with minor conditions that: "Let f be a cubic polynomial. Then there are infinitely many primes p such that f(p) is squarefree." Note that 47^3 + 2 = 103825 = 5^2 * 4153 and similarly 97^3 + 2 is divisible by 5^2, but otherwise an infinite number of p^3+2 are squarefree.

Examples

			a(1) = 0^3 + 2 = 2 is prime and 0 is noncomposite.
a(2) = 1^3 + 2 = 3 is prime and 1 is noncomposite.
a(3) = 3^3 + 2 = 29 is prime and 3 is prime.
a(4) = 5^3 + 2 = 127 is prime and 5 is prime.
a(5) = 29^3 + 2 = 24391 is prime and 29 is prime.
45^3 + 2 = 91127 is prime, but not in this sequence because 45 is not prime.
63^3 + 2 = 250049 is prime, but not in this sequence because 63 is not prime.
a(6) = 71^3 + 2 = 357913 is prime.
a(7) = 83^3 + 2 = 571789 is prime.
a(8) = 113^3 + 2 = 1442899 is prime.
		

Crossrefs

Programs

  • Mathematica
    Join[{2, 5}, Select[Prime[Range[200]]^3 + 2, PrimeQ[ # ] &]] (* Stefan Steinerberger, Aug 17 2007 *)
  • PARI
    v=[2,3]; forprime(p=3, 1e4, if(isprime(t=p^3+2), v=concat(v, t))); t \\ Charles R Greathouse IV, Feb 14 2011

Formula

a(n) = A132281(n)^3 + 2. {p in A000040 such that for some q = 0, 1, or q in A000040, we have p = A067200(q) = A084380(q) = q^3 + 2 is in A000040}.
a(n) = A048636(n-2) for n >= 3. - Georg Fischer, Nov 03 2018

Extensions

More terms from Stefan Steinerberger, Aug 17 2007
a(2) corrected by Charles R Greathouse IV, Feb 14 2011

A034324 a(n) = (n-1)*(n-2)*(n-3) + n.

Original entry on oeis.org

1, 2, 3, 10, 29, 66, 127, 218, 345, 514, 731, 1002, 1333, 1730, 2199, 2746, 3377, 4098, 4915, 5834, 6861, 8002, 9263, 10650, 12169, 13826, 15627, 17578, 19685, 21954, 24391, 27002, 29793, 32770, 35939, 39306, 42877, 46658, 50655, 54874, 59321
Offset: 1

Views

Author

Laurence Michaels (guardian(AT)ntplx.net)

Keywords

Comments

(n*a(n+1)^3+1)/(n^3+1) is the smallest integer of the form (n*k^3+1)/(n^3+1). - Benoit Cloitre, May 02 2002

Crossrefs

Programs

Formula

a(n) = (n-2)^3 + 2 = A084380(n-2). - Philippe Deléham, Feb 23 2014
a(n+1) = A002061(n)*(n-2) + 3. - Philippe Deléham, Feb 23 2014
G.f.: x*(1-2*x+x^2+6*x^3)/(1-x)^4. - Philippe Deléham, Feb 23 2014
E.g.f.: 6 + (x^3-3*x^2+7*x-6)*exp(x). - Nikolaos Pantelidis, Feb 06 2023

Extensions

Extended and corrected by Erich Friedman

A274077 a(n) = n^3 + 4.

Original entry on oeis.org

4, 5, 12, 31, 68, 129, 220, 347, 516, 733, 1004, 1335, 1732, 2201, 2748, 3379, 4100, 4917, 5836, 6863, 8004, 9265, 10652, 12171, 13828, 15629, 17580, 19687, 21956, 24393, 27004, 29795, 32772, 35941, 39308, 42879, 46660, 50657, 54876, 59323, 64004, 68925
Offset: 0

Views

Author

Vincenzo Librandi, Jun 09 2016

Keywords

Crossrefs

Sequences of the type n^3+k: A000578 (k=0), A001093 (k=1), A084380 (k=2), A084378 (k=3), this sequence (k=4), A084381 (k=5), A084382 (k=6), A084377 (k=7).

Programs

  • Magma
    [n^3+4: n in [0..50]];
    
  • Maple
    seq(n^3+4, n=0..100); # Robert Israel, Jun 09 2016
  • Mathematica
    Table[n^3 + 4, {n, 0, 60}]
    Range[0,50]^3+4 (* or *) LinearRecurrence[{4,-6,4,-1},{4,5,12,31},50] (* Harvey P. Dale, Jul 01 2017 *)
  • PARI
    a(n) = n^3 + 4 \\ Felix Fröhlich, Jun 09 2016

Formula

O.g.f.: (4 - 11*x + 16*x^2 - 3*x^3)/(1 - x)^4.
E.g.f.: (x^3 + 3*x^2 + x + 4)*exp(x). - Robert Israel, Jun 09 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).

A259189 Semiprimes of the form n^3 + 2.

Original entry on oeis.org

10, 218, 514, 731, 1333, 2199, 2746, 3377, 4915, 5834, 6861, 8002, 9263, 12169, 15627, 29793, 35939, 42877, 54874, 59321, 68923, 117651, 125002, 132653, 148879, 185195, 205381, 314434, 405226, 421877, 474554, 531443, 592706, 658505, 704971
Offset: 1

Views

Author

Morris Neene, Jun 20 2015

Keywords

Comments

Intersection of A001358 and A084380. - Michel Marcus, Jun 20 2015
Since there are no squares of the form n^3 + 2, all semiprimes in this sequence are products of distinct primes.
No term in A040034 divides any term in this sequence.

Crossrefs

Cf. A001358 (semiprimes), A084380 (n^3+2), A144953 (primes of same form).
Cf. A237040 (similar sequence with n^3+1).

Programs

  • Magma
    IsSP:=func;[r:n in [1..1000]|IsSP(r) where r is 2+n^3];
    
  • Mathematica
    Select[Range[100]^3 + 2, PrimeOmega[#] == 2 &] (* Alonso del Arte, Jun 20 2015 *)
  • PARI
    is(n)=bigomega(n^3 + 2)==2 \\ Anders Hellström, Sep 07 2015
  • Perl
    use ntheory ":all"; my @sp = grep { scalar(factor($))==2 } map { $**3+2 } 1..100; say "@sp"; # Dana Jacobsen, Sep 07 2015
    
Showing 1-7 of 7 results.