cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A119660 Prime factor of the distinct numbers appearing as denominators of Bernoulli numbers A090801 that is greater than all previous a(n). a(1) = 2.

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 239, 263, 347, 359, 383, 443, 467, 479, 503, 563, 587, 647, 659, 719, 827, 839, 863, 887, 983, 1019, 1187, 1223, 1259, 1283, 1307, 1319, 1367, 1439, 1487, 1499, 1523, 1619, 1787
Offset: 1

Views

Author

Alexander Adamchuk, Jul 28 2006

Keywords

Comments

a(n) is identical to A079148[n] up to a(14)=227. Most a(n) except 2,3,239,443,647,659,827,1223,1259,1499,1787... belong to A005385[n]: Safe primes p: (p-1)/2 is also prime.
Except for 2 and 3, the same as A092307. - T. D. Noe, Sep 25 2006

Examples

			A090801[n] begins {1, 2, 6, 30, 42, 66, 138, 282, 330, 354, 498, 510, 642, 690, ...} = {1, {2,1}, {2,3}, {2,3,5}, {2,3,7}, {2,3,11}, {2,3,23}, {2,3,47}, {2,3,5,11}, {2,3,59}, {2,3,83}, {2,3,5,17}, {2,3,107}, {2,3,5,23}, ...}.
a(1) = 2, a(2) = 3, a(3) = 5, a(4) = 7, a(5) = 11, a(6) = 23, a(7) = 47, a(8) = 59, a(9) = 83, a(10) = 107.
		

Crossrefs

A140958 A090801(2n-1)+A090801(2n).

Original entry on oeis.org

3, 36, 108, 420, 684, 1008, 1332, 1668, 2076, 2772, 2952, 3168, 3576, 4236, 4776, 5148, 5532, 5892, 6312, 6696, 7008, 7776, 8064, 8640, 8964, 9648, 10044, 10368, 10692, 11376, 12600, 13872, 14460, 15072, 15288, 15732, 15984, 16344, 17280, 17712, 18132, 18876
Offset: 1

Views

Author

Paul Curtz, Jul 26 2008

Keywords

Comments

All terms are multiples of 3.

Formula

a(n) == 0 (mod 6), n>1.

Extensions

Edited and extended by R. J. Mathar, Sep 07 2009

A218128 a(n) = (A090801(n+2) - 2)/4.

Original entry on oeis.org

0, 1, 7, 10, 16, 34, 70, 82, 88, 124, 127, 160, 172, 199, 217, 250, 268, 340, 352, 358, 379, 394, 397, 442, 451, 520, 538, 574, 619, 622, 664, 682, 700, 718, 754, 775, 802, 829, 844, 871, 880, 970, 973, 988, 1027, 1078, 1081, 1117, 1123, 1171, 1240, 1252, 1258
Offset: 0

Views

Author

Paul Curtz, Oct 21 2012

Keywords

Comments

a(n) mod 9 appears to be always 1 or 7 (except the first term). Checked for the first 1000 terms.
a(n+2) - a(n+1) = 6, 3, 6, 18, 36, 12, 6, 36, 3, 33, 12, 27,... = (A090801(n+4) - A090801(n+3))/4 are multiples of 3.

A002445 Denominators of Bernoulli numbers B_{2n}.

Original entry on oeis.org

1, 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6, 4501770, 6, 33330, 4326, 1590, 642, 209191710, 1518, 1671270, 42
Offset: 0

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem, denominator(B_2n) = product of primes p such that (p-1)|2n.
Row products of A138239. - Mats Granvik, Mar 08 2008
Equals row products of even rows in triangle A143343. In triangle A080092, row products = denominators of B1, B2, B4, B6, ... . - Gary W. Adamson, Aug 09 2008
Julius Worpitzky's 1883 algorithm for generating Bernoulli numbers is shown in A028246. - Gary W. Adamson, Aug 09 2008
There is a relation between the Euler numbers E_n and the Bernoulli numbers B_{2*n}, for n>0, namely, B_{2*n} = A000367(n)/a(n) = ((-1)^n/(2*(1-2^{2*n}))) * Sum_{k = 0..n-1} (-1)^k*2^{2*k}*C(2*n,2*k)*A000364(n-k)*A000367(k)/a(k). (See Bucur, et al.) - L. Edson Jeffery, Sep 17 2012
a(n) is the product of all primes of the form (k + n)/(k - n). - Thomas Ordowski, Jul 24 2025

Examples

			B_{2n} = [ 1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510, ... ].
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 932.
  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 136.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • See A000367 for further references and links (there are a lot).

Crossrefs

Cf. A090801 (distinct numbers appearing as denominators of Bernoulli numbers)
B_n gives A027641/A027642. See A027641 for full list of references, links, formulas, etc.
Cf. A160014 for a generalization.

Programs

  • Magma
    [Denominator(Bernoulli(2*n)): n in [0..60]]; // Vincenzo Librandi, Nov 16 2014
    
  • Maple
    A002445 := n -> mul(i,i=select(isprime,map(i->i+1,numtheory[divisors] (2*n)))): seq(A002445(n),n=0..40); # Peter Luschny, Aug 09 2011
    # Alternative
    N:= 1000: # to get a(0) to a(N)
    A:= Vector(N,2):
    for p in select(isprime,[seq(2*i+1,i=1..N)]) do
      r:= (p-1)/2;
      for n from r to N by r do
        A[n]:= A[n]*p
      od
    od:
    1, seq(A[n],n=1..N); # Robert Israel, Nov 16 2014
  • Mathematica
    Take[Denominator[BernoulliB[Range[0,100]]],{1,-1,2}] (* Harvey P. Dale, Oct 17 2011 *)
  • PARI
    a(n)=prod(p=2,2*n+1,if(isprime(p),if((2*n)%(p-1),1,p),1)) \\ Benoit Cloitre
    
  • PARI
    A002445(n,P=1)=forprime(p=2,1+n*=2,n%(p-1)||P*=p);P \\ M. F. Hasler, Jan 05 2016
    
  • PARI
    a(n) = denominator(bernfrac(2*n)); \\ Michel Marcus, Jul 16 2021
    
  • Sage
    def A002445(n):
        if n == 0:
            return 1
        M = (i + 1 for i in divisors(2 * n))
        return prod(s for s in M if is_prime(s))
    [A002445(n) for n in (0..57)] # Peter Luschny, Feb 20 2016

Formula

E.g.f: x/(exp(x) - 1); take denominators of even powers.
B_{2n}/(2n)! = 2*(-1)^(n-1)*(2*Pi)^(-2n) Sum_{k=1..inf} 1/k^(2n) (gives asymptotics) - Rademacher, p. 16, Eq. (9.1). In particular, B_{2*n} ~ (-1)^(n-1)*2*(2*n)!/ (2*Pi)^(2*n).
If n>=3 is prime,then a((n+1)/2)==(-1)^((n-1)/2)*12*|A000367((n+1)/2)|(mod n). - Vladimir Shevelev, Sep 04 2010
a(n) = denominator(-I*(2*n)!/(Pi*(1-2*n))*integral(log(1-1/t)^(1-2*n) dt, t=0..1)). - Gerry Martens, May 17 2011
a(n) = 2*denominator((2*n)!*Li_{2*n}(1)) for n > 0. - Peter Luschny, Jun 28 2012
a(n) = gcd(2!S(2n+1,2),...,(2n+1)!S(2n+1,2n+1)). Here S(n,k) is the Stirling number of the second kind. See the paper of Komatsu et al. - Istvan Mezo, May 12 2016
a(n) = 2*A001897(n) = A027642(2*n) = 3*A277087(n) for n>0. - Jonathan Sondow, Dec 14 2016

A092307 Primes p such that there are no primes q, 3 < q < p, such that (q-1) divides (p-1).

Original entry on oeis.org

5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 239, 263, 347, 359, 383, 443, 467, 479, 503, 563, 587, 647, 659, 719, 827, 839, 863, 887, 983, 1019, 1187, 1223, 1259, 1283, 1307, 1319, 1367, 1439, 1487, 1499, 1523, 1619, 1787, 1823, 1847, 1907, 2027, 2039, 2063
Offset: 1

Views

Author

T. D. Noe, Feb 12 2004

Keywords

Comments

Using a sieve, these primes can be generated quickly. In the set of primes < 10^9, the density of these primes is about 1/10. It is easy to show that this sequence contains all "safe" primes (A005385).
Primes p such that 6p is the denominator of some Bernoulli number. - T. D. Noe, Sep 26 2006
Except for 5 and 7, primes p such that 12p is the denominator of B(p - 1)/(p - 1) where B(n) is the Bernoulli number. [Peter Luschny, Dec 24 2008]
Primes p such that A027642(p-1) = 6p. Composites m such that A027642(m-1) = 6m are Carmichael numbers 310049210890163447, 18220439770979212619, ... - Amiram Eldar and Thomas Ordowski, May 26 2021

Examples

			11 is in the sequence because 10 is not a multiple of either 4 or 6.
13 is not in the sequence because, although 12 is not a multiple of 6 or 10, it is a multiple of 4.
		

Crossrefs

Cf. A090801 (distinct numbers appearing as denominators of Bernoulli numbers)
Cf. A092308 (for p=prime(n), the number of primes q such that q-1 divides p-1).
Cf. A005385 (primes p such that (p-1)/2 is also prime).
Cf. A152951. [From Peter Luschny, Dec 24 2008]

Programs

  • Maple
    For p>7: seq(`if`(denom(bernoulli(n-1)/(n-1))=12*n,n,NULL),n=2..500); # Peter Luschny, Dec 24 2008
  • Mathematica
    t = Table[p = Prime[n]; Length[Select[Divisors[p - 1] + 1, PrimeQ]], {n, 311}]; Prime[Flatten[Position[t, 3]]]
    npqQ[n_]:=NoneTrue[Prime[Range[3,PrimePi[n]-1]],Mod[n-1,#-1]==0&]; Select[ Prime[ Range[3,400]],npqQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 26 2019 *)
  • Perl
    use ntheory ":all"; forprimes { say if (bernfrac($-1))[1] == 6*$ } 1000; # Dana Jacobsen, Dec 29 2015
    
  • Perl
    use ntheory ":all"; forprimes { my $p=$; say if vecnone { $ > 3 && $ < $p-1 && is_prime($+1) } divisors($p-1); } 5,1000; # Dana Jacobsen, Dec 29 2015

Formula

Let h(x) = 12x(x + log(exp(-x) -1) - log(x)) and [x^n]S(h) denote the coefficient of x^n in the series expansion of h. Consider for n > 1 the relation n = denominator((n - 1)![x^n]S(h)). [Peter Luschny, Dec 24 2008]

A166062 a(n) = denominator(Bernoulli(prime(n) - 1)).

Original entry on oeis.org

2, 6, 30, 42, 66, 2730, 510, 798, 138, 870, 14322, 1919190, 13530, 1806, 282, 1590, 354, 56786730, 64722, 4686, 140100870, 3318, 498, 61410, 4501770, 33330, 4326, 642, 209191710, 1671270, 4357878, 8646, 4110, 274386, 4470, 2162622, 1794590070, 130074
Offset: 1

Views

Author

Paul Curtz, Oct 05 2009

Keywords

Comments

Divisibility through terms of A008578 is a consequence of the Staudt-Clausen theorem.
(Vaguely similar divisibility properties are considered in A165248 and A165943.)
The first 250 entries are all different. Is this true in general?
Would sorting the entries yield the full A090801?
a(n) > 1 is the largest number k such that x*y^p == y*x^p (mod k) for all integers x and y, where p = prime(n). Example: x*y^19 == y*x^19 (mod 798). - Michel Lagneau, Apr 19 2012
Comment from Herbert Kociemba, May 29 2020: (Start)
For each n there is exactly one member of the sequence whose factorization has prime(n) as its largest prime factor, namely a(n). From this we conclude:
1. All elements of the sequence are different.
2. Not all denominators of Bernoulli numbers appear in this sequence. For example the denominator of B(20), 330=2*3*5*11 never appears because the unique sequence element with largest prime divisor 11=prime(5) is a(5)=2*3*11. (End)

Crossrefs

Programs

  • Maple
    seq(denom(bernoulli(ithprime(n)-1)), n=1..38); # Peter Luschny, Jul 14 2019
  • Mathematica
    Table[Denominator[BernoulliB[n - 1]], {n, Prime[Range[38]]}] (* Harvey P. Dale, Apr 22 2012 *)
    Table[GCD @@ Table[(n^k - n), {n, 2, 13}], {k, Prime[Range[100]]}] (* Increase n to 80 and k to 1000 for first thousand terms. - Herbert Kociemba, May 05 2020 *)
    a[i_] := Times @@ Select[Prime[Range[i]], Mod[Prime[i] - 1, # - 1] == 0&]; Table[a[i], {i, 1, 100}](* Herbert Kociemba, May 06 2020 *)
  • PARI
    a(n)=denominator(bernfrac(prime(n)-1)) \\ Charles R Greathouse IV, Apr 30 2012

Formula

a(n) = A027642(A008578(n) - 1).

Extensions

Edited by Peter Luschny, Jul 14 2019

A248614 Rank of the n-th distinct value of the Bernoulli denominators in the sequence of the denominators of the Bernoulli numbers.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 12, 16, 18, 20, 22, 28, 30, 36, 40, 42, 44, 46, 48, 52, 58, 60, 66, 70, 72, 78, 80, 82, 84, 88, 90, 92, 96, 100, 102, 106, 108, 110, 112, 116, 120, 126, 130, 132, 136, 138, 140, 144, 148, 150, 156, 162, 164, 166, 172, 174, 176, 178, 180, 190, 192
Offset: 0

Views

Author

Paul Curtz, Oct 09 2014

Keywords

Comments

Consider sequence A027642 of the denominators of the Bernoulli numbers and the reduced sequence b(n) = 1, 2, 6, 30, 42, 66,... if duplicates are removed (which is 1, 2 followed by A090126). a(n) shows the smallest index --place of first appearance-- of b(n) in the full list A027642.
If n is of the form A002322(p*q) with p*q semiprime, then n is a term. The number 3652 is a term, but it is not of the form A002322(p*q), as Carl Pomerance noted. - Thomas Ordowski, Apr 28 2021; in place of an incorrect comment by Filip Zaludek, Sep 23 2016
For n > 0, numbers n such that A002322(A027642(n)) = n. - Thomas Ordowski, Jul 11 2018
Carl Pomerance (in answer to my question) proved that the set of these numbers has asymptotic density zero. - Thomas Ordowski, Apr 28 2021

Examples

			b(2)=6 appears first in A027642(2), so a(2)=2. b(4)=42 appears first as A027642(6)=42, so a(4)=6. b(5)=66 appears first as A027642(10), so a(5)=10.
		

Crossrefs

Programs

  • Mathematica
    BB = Table[Denominator[BernoulliB[n]], {n, 2, 400, 2}]; For[t = BB; n = 1, n <= Length[t], n++, p = Position[t, t[[n]]] // Rest; t = Delete[t, p]]; reducedBB = Join[{1, 2}, t]; a[0] = 0; a[1] = 1; a[n_] := 2*Position[BB, reducedBB[[n+1]], 1, 1][[1, 1]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 16 2014 *)
  • PARI
    L=List(); N=60; forprime(p=2, N*N, forprime(q=p, N*N, listput(L, lcm(p-1,q-1)) )); listsort(L, 1); for (i=1, N, print1(L[i], ", ")) \\ Filip Zaludek, Sep 23 2016

A218755 Denominators of Bernoulli numbers which are == 6 (mod 9).

Original entry on oeis.org

6, 42, 330, 510, 690, 798, 870, 1410, 1518, 1590, 1770, 1806, 2490, 3102, 3210, 3318, 3894, 4110, 4326, 4470, 4686, 5010, 5190, 5370, 5478, 6486, 6810, 7062, 7890, 8070, 8142, 8646, 8790, 9366, 9510, 10410, 10770, 11022
Offset: 1

Views

Author

Paul Curtz, Nov 05 2012

Keywords

Comments

The sequence contains the elements of A090801 which are == 6 (mod 9).
Conjecture: all first differences 36, 288, 180, 180,... of the sequence are multiples of 36.
The conjecture is true, since elements of A090801 are 2 mod 4. - Charles R Greathouse IV, Nov 22 2012

Crossrefs

Second subset of the Bernoulli denominators: A090801 which are == 3 (mod 9).

Programs

  • Mathematica
    Take[Union[Select[Denominator[BernoulliB[Range[1000]]],Mod[#,9]==6&]],60] (* Harvey P. Dale, Nov 28 2012 *)
  • PARI
    is(n)=if(n%36-6, 0, my(f=factor(n)); if(vecmax(f[, 2])>1, return(0)); fordiv(lcm(apply(k->k-1, f[, 1])), k, if(isprime(k+1) && n%(k+1), return(0))); 1) \\ Charles R Greathouse IV, Nov 26 2012

A090810 Distinct numbers appearing as denominators of Bernoulli(2n) for n > 2, divided by 6.

Original entry on oeis.org

1, 5, 7, 11, 23, 47, 55, 59, 83, 85, 107, 115, 133, 145, 167, 179, 227, 235, 239, 253, 263, 265, 295, 301, 347, 359, 383, 413, 415, 443, 455, 467, 479, 503, 517, 535, 553, 563, 581, 587, 647, 649, 659, 685, 719, 721, 745, 749, 781, 827, 835, 839, 863, 865, 887
Offset: 1

Views

Author

Robert G. Wilson v, Feb 10 2004

Keywords

Programs

  • Mathematica
    Take[ Union[ Table[ Denominator[ BernoulliB[2n]], {n, 1, 500}]], 60]/6

Formula

A090801(n)/6 for n>2.

A114649 Denominators of BernoulliB ranked by frequency of occurrence.

Original entry on oeis.org

6, 30, 42, 66, 510, 138, 798, 2730, 870, 282, 330, 354, 1806, 498, 1590
Offset: 1

Views

Author

Eric W. Weisstein, Dec 21 2005

Keywords

Comments

a(n+1) mod 9 = 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6 which appears to be A010704(n+1). - Paul Curtz, Oct 28 2012

Crossrefs

Extensions

Additional 10 terms from Eric W. Weisstein link, Oct 28 2012
Showing 1-10 of 11 results. Next