A119660
Prime factor of the distinct numbers appearing as denominators of Bernoulli numbers A090801 that is greater than all previous a(n). a(1) = 2.
Original entry on oeis.org
2, 3, 5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 239, 263, 347, 359, 383, 443, 467, 479, 503, 563, 587, 647, 659, 719, 827, 839, 863, 887, 983, 1019, 1187, 1223, 1259, 1283, 1307, 1319, 1367, 1439, 1487, 1499, 1523, 1619, 1787
Offset: 1
A090801[n] begins {1, 2, 6, 30, 42, 66, 138, 282, 330, 354, 498, 510, 642, 690, ...} = {1, {2,1}, {2,3}, {2,3,5}, {2,3,7}, {2,3,11}, {2,3,23}, {2,3,47}, {2,3,5,11}, {2,3,59}, {2,3,83}, {2,3,5,17}, {2,3,107}, {2,3,5,23}, ...}.
a(1) = 2, a(2) = 3, a(3) = 5, a(4) = 7, a(5) = 11, a(6) = 23, a(7) = 47, a(8) = 59, a(9) = 83, a(10) = 107.
Original entry on oeis.org
3, 36, 108, 420, 684, 1008, 1332, 1668, 2076, 2772, 2952, 3168, 3576, 4236, 4776, 5148, 5532, 5892, 6312, 6696, 7008, 7776, 8064, 8640, 8964, 9648, 10044, 10368, 10692, 11376, 12600, 13872, 14460, 15072, 15288, 15732, 15984, 16344, 17280, 17712, 18132, 18876
Offset: 1
Original entry on oeis.org
0, 1, 7, 10, 16, 34, 70, 82, 88, 124, 127, 160, 172, 199, 217, 250, 268, 340, 352, 358, 379, 394, 397, 442, 451, 520, 538, 574, 619, 622, 664, 682, 700, 718, 754, 775, 802, 829, 844, 871, 880, 970, 973, 988, 1027, 1078, 1081, 1117, 1123, 1171, 1240, 1252, 1258
Offset: 0
A002445
Denominators of Bernoulli numbers B_{2n}.
Original entry on oeis.org
1, 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6, 4501770, 6, 33330, 4326, 1590, 642, 209191710, 1518, 1671270, 42
Offset: 0
B_{2n} = [ 1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6, -3617/510, ... ].
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 932.
- J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 136.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- See A000367 for further references and links (there are a lot).
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Amelia Bucur, José Luis López-Bonilla, and Jaime Robles-García, A note on the Namias identity for Bernoulli numbers, Journal of Scientific Research (Banaras Hindu University, Varanasi), Vol. 56 (2012), 117-120.
- Suyuong Choi and Younghan Yoon, A decomposition of graph a-numbers, arXiv:2508.06855 [math.CO], 2025. See p. 13.
- G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, Integer Sequences and Periodic Points, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.3
- Shizuo Kaji, Toshiaki Maeno, Koji Nuida, and Yasuhide Numata, Polynomial Expressions of Carries in p-ary Arithmetics, arXiv preprint arXiv:1506.02742 [math.CO], 2015.
- Takao Komatsu, Florian Luca, and Claudio de J. Pita Ruiz V. , A note on the denominators of Bernoulli numbers, Proc. Japan Acad., 90, Ser. A (2014), p. 71-72.
- Guo-Dong Liu, H. M. Srivastava, and Hai-Quing Wang, Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers, J. Int. Seq. 17 (2014) # 14.4.6
- Hong-Mei Liu, Shu-Hua Qi, and Shu-Yan Ding, Some Recurrence Relations for Cauchy Numbers of the First Kind, JIS 13 (2010) # 10.3.8.
- Romeo Meštrović, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
- Niels Nielsen, Traité élémentaire des nombres de Bernoulli, Gauthier-Villars, 1923, pp. 398.
- Niels Erik Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]
- Ronald Orozco López, Solution of the Differential Equation y^(k)= e^(a*y), Special Values of Bell Polynomials and (k,a)-Autonomous Coefficients, Universidad de los Andes (Colombia 2021).
- Simon Plouffe, The First 498 Bernoulli numbers [Project Gutenberg Etext]
- Jan W. H. Swanepoel, A Short Simple Probabilistic Proof of a Well Known Identity and the Derivation of Related New Identities Involving the Bernoulli Numbers and the Euler Numbers, Integers (2025) Vol. 25, Art. No. A50. See p. 2.
- Index entries for sequences related to Bernoulli numbers.
Cf.
A090801 (distinct numbers appearing as denominators of Bernoulli numbers)
See
A000367 for numerators. Cf.
A027762,
A027641,
A027642,
A002882,
A003245,
A127187,
A127188,
A138239,
A028246,
A143343,
A080092,
A001897,
A277087.
-
[Denominator(Bernoulli(2*n)): n in [0..60]]; // Vincenzo Librandi, Nov 16 2014
-
A002445 := n -> mul(i,i=select(isprime,map(i->i+1,numtheory[divisors] (2*n)))): seq(A002445(n),n=0..40); # Peter Luschny, Aug 09 2011
# Alternative
N:= 1000: # to get a(0) to a(N)
A:= Vector(N,2):
for p in select(isprime,[seq(2*i+1,i=1..N)]) do
r:= (p-1)/2;
for n from r to N by r do
A[n]:= A[n]*p
od
od:
1, seq(A[n],n=1..N); # Robert Israel, Nov 16 2014
-
Take[Denominator[BernoulliB[Range[0,100]]],{1,-1,2}] (* Harvey P. Dale, Oct 17 2011 *)
-
a(n)=prod(p=2,2*n+1,if(isprime(p),if((2*n)%(p-1),1,p),1)) \\ Benoit Cloitre
-
A002445(n,P=1)=forprime(p=2,1+n*=2,n%(p-1)||P*=p);P \\ M. F. Hasler, Jan 05 2016
-
a(n) = denominator(bernfrac(2*n)); \\ Michel Marcus, Jul 16 2021
-
def A002445(n):
if n == 0:
return 1
M = (i + 1 for i in divisors(2 * n))
return prod(s for s in M if is_prime(s))
[A002445(n) for n in (0..57)] # Peter Luschny, Feb 20 2016
A092307
Primes p such that there are no primes q, 3 < q < p, such that (q-1) divides (p-1).
Original entry on oeis.org
5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 239, 263, 347, 359, 383, 443, 467, 479, 503, 563, 587, 647, 659, 719, 827, 839, 863, 887, 983, 1019, 1187, 1223, 1259, 1283, 1307, 1319, 1367, 1439, 1487, 1499, 1523, 1619, 1787, 1823, 1847, 1907, 2027, 2039, 2063
Offset: 1
11 is in the sequence because 10 is not a multiple of either 4 or 6.
13 is not in the sequence because, although 12 is not a multiple of 6 or 10, it is a multiple of 4.
Cf.
A090801 (distinct numbers appearing as denominators of Bernoulli numbers)
Cf.
A092308 (for p=prime(n), the number of primes q such that q-1 divides p-1).
Cf.
A005385 (primes p such that (p-1)/2 is also prime).
-
For p>7: seq(`if`(denom(bernoulli(n-1)/(n-1))=12*n,n,NULL),n=2..500); # Peter Luschny, Dec 24 2008
-
t = Table[p = Prime[n]; Length[Select[Divisors[p - 1] + 1, PrimeQ]], {n, 311}]; Prime[Flatten[Position[t, 3]]]
npqQ[n_]:=NoneTrue[Prime[Range[3,PrimePi[n]-1]],Mod[n-1,#-1]==0&]; Select[ Prime[ Range[3,400]],npqQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 26 2019 *)
-
use ntheory ":all"; forprimes { say if (bernfrac($-1))[1] == 6*$ } 1000; # Dana Jacobsen, Dec 29 2015
-
use ntheory ":all"; forprimes { my $p=$; say if vecnone { $ > 3 && $ < $p-1 && is_prime($+1) } divisors($p-1); } 5,1000; # Dana Jacobsen, Dec 29 2015
A166062
a(n) = denominator(Bernoulli(prime(n) - 1)).
Original entry on oeis.org
2, 6, 30, 42, 66, 2730, 510, 798, 138, 870, 14322, 1919190, 13530, 1806, 282, 1590, 354, 56786730, 64722, 4686, 140100870, 3318, 498, 61410, 4501770, 33330, 4326, 642, 209191710, 1671270, 4357878, 8646, 4110, 274386, 4470, 2162622, 1794590070, 130074
Offset: 1
-
seq(denom(bernoulli(ithprime(n)-1)), n=1..38); # Peter Luschny, Jul 14 2019
-
Table[Denominator[BernoulliB[n - 1]], {n, Prime[Range[38]]}] (* Harvey P. Dale, Apr 22 2012 *)
Table[GCD @@ Table[(n^k - n), {n, 2, 13}], {k, Prime[Range[100]]}] (* Increase n to 80 and k to 1000 for first thousand terms. - Herbert Kociemba, May 05 2020 *)
a[i_] := Times @@ Select[Prime[Range[i]], Mod[Prime[i] - 1, # - 1] == 0&]; Table[a[i], {i, 1, 100}](* Herbert Kociemba, May 06 2020 *)
-
a(n)=denominator(bernfrac(prime(n)-1)) \\ Charles R Greathouse IV, Apr 30 2012
A248614
Rank of the n-th distinct value of the Bernoulli denominators in the sequence of the denominators of the Bernoulli numbers.
Original entry on oeis.org
0, 1, 2, 4, 6, 10, 12, 16, 18, 20, 22, 28, 30, 36, 40, 42, 44, 46, 48, 52, 58, 60, 66, 70, 72, 78, 80, 82, 84, 88, 90, 92, 96, 100, 102, 106, 108, 110, 112, 116, 120, 126, 130, 132, 136, 138, 140, 144, 148, 150, 156, 162, 164, 166, 172, 174, 176, 178, 180, 190, 192
Offset: 0
b(2)=6 appears first in A027642(2), so a(2)=2. b(4)=42 appears first as A027642(6)=42, so a(4)=6. b(5)=66 appears first as A027642(10), so a(5)=10.
-
BB = Table[Denominator[BernoulliB[n]], {n, 2, 400, 2}]; For[t = BB; n = 1, n <= Length[t], n++, p = Position[t, t[[n]]] // Rest; t = Delete[t, p]]; reducedBB = Join[{1, 2}, t]; a[0] = 0; a[1] = 1; a[n_] := 2*Position[BB, reducedBB[[n+1]], 1, 1][[1, 1]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 16 2014 *)
-
L=List(); N=60; forprime(p=2, N*N, forprime(q=p, N*N, listput(L, lcm(p-1,q-1)) )); listsort(L, 1); for (i=1, N, print1(L[i], ", ")) \\ Filip Zaludek, Sep 23 2016
A218755
Denominators of Bernoulli numbers which are == 6 (mod 9).
Original entry on oeis.org
6, 42, 330, 510, 690, 798, 870, 1410, 1518, 1590, 1770, 1806, 2490, 3102, 3210, 3318, 3894, 4110, 4326, 4470, 4686, 5010, 5190, 5370, 5478, 6486, 6810, 7062, 7890, 8070, 8142, 8646, 8790, 9366, 9510, 10410, 10770, 11022
Offset: 1
Second subset of the Bernoulli denominators:
A090801 which are == 3 (mod 9).
-
Take[Union[Select[Denominator[BernoulliB[Range[1000]]],Mod[#,9]==6&]],60] (* Harvey P. Dale, Nov 28 2012 *)
-
is(n)=if(n%36-6, 0, my(f=factor(n)); if(vecmax(f[, 2])>1, return(0)); fordiv(lcm(apply(k->k-1, f[, 1])), k, if(isprime(k+1) && n%(k+1), return(0))); 1) \\ Charles R Greathouse IV, Nov 26 2012
A090810
Distinct numbers appearing as denominators of Bernoulli(2n) for n > 2, divided by 6.
Original entry on oeis.org
1, 5, 7, 11, 23, 47, 55, 59, 83, 85, 107, 115, 133, 145, 167, 179, 227, 235, 239, 253, 263, 265, 295, 301, 347, 359, 383, 413, 415, 443, 455, 467, 479, 503, 517, 535, 553, 563, 581, 587, 647, 649, 659, 685, 719, 721, 745, 749, 781, 827, 835, 839, 863, 865, 887
Offset: 1
-
Take[ Union[ Table[ Denominator[ BernoulliB[2n]], {n, 1, 500}]], 60]/6
A114649
Denominators of BernoulliB ranked by frequency of occurrence.
Original entry on oeis.org
6, 30, 42, 66, 510, 138, 798, 2730, 870, 282, 330, 354, 1806, 498, 1590
Offset: 1
Showing 1-10 of 11 results.
Comments