A352916
a(n) = A025179(n-2) + A102839(n-4), for n >= 4, with a(0) = a(2) = 0 and a(1) = a(3) = 1.
Original entry on oeis.org
0, 1, 0, 1, 1, 5, 13, 41, 121, 366, 1100, 3319, 10015, 30253, 91433, 276475, 836291, 2530321, 7657317, 23175867, 70150875, 212349687, 642803631, 1945819299, 5890003539, 17828324220, 53961228258, 163314594513, 494238394601, 1495593167851, 4525366817455
Offset: 0
-
a:= proc(n) option remember; `if`(n<4, irem(n, 2),
((3*(n-4))*(n^4+6*n^3-41*n^2+18*n+76)*a(n-2)+
(2*n^5+3*n^4-136*n^3+525*n^2-658*n+132)*a(n-1))/
((n^4+2*n^3-53*n^2+114*n+12)*(n-1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 19 2022
-
m[n_] := m[n] = If[n == 0, 1, m[n-1] + Sum[m[k]*m[n-2-k], {k, 0, n-2}]];
a[n_] := Switch[n, 0|2, 0, 1|3|4, 1, _, m[n-3] + Binomial[n-3, 2]*m[n-5] + 2*Sum[(i+1)*m[i]*m[n-5-i], {i, 0, n-5}]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 26 2022 *)
-
m(n) = polcoeff( ( 1 - x - sqrt((1 - x)^2 - 4 * x^2 + x^3 * O(x^n))) / (2 * x^2), n); \\ A001006
a(n) = if (n<=3, n%2, m(n-3) + binomial(n-3,2)*m(n-5) + 2*sum(i=0, n-5, (i+1)*m(i)*m(n-5-i))); \\ Michel Marcus, May 19 2022
A091869
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k peaks at even height.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 9, 16, 12, 4, 1, 21, 45, 40, 20, 5, 1, 51, 126, 135, 80, 30, 6, 1, 127, 357, 441, 315, 140, 42, 7, 1, 323, 1016, 1428, 1176, 630, 224, 56, 8, 1, 835, 2907, 4572, 4284, 2646, 1134, 336, 72, 9, 1, 2188, 8350, 14535, 15240, 10710, 5292, 1890, 480, 90, 10, 1
Offset: 1
T(4,1)=6 because we have u(ud)dudud, udu(ud)dud, ududu(ud)d, uuudd(ud)d, u(ud)uuddd and uuu(ud)ddd (here u=(1,1), d=(1,-1) and the peaks at even height are shown between parentheses).
Triangle begins:
1;
1, 1;
2, 2, 1;
4, 6, 3, 1;
9, 16, 12, 4, 1;
21, 45, 40, 20, 5, 1;
51, 126, 135, 80, 30, 6, 1;
127, 357, 441, 315, 140, 42, 7, 1;
323, 1016, 1428, 1176, 630, 224, 56, 8, 1;
835, 2907, 4572, 4284, 2646, 1134, 336, 72, 9, 1;
...
- Alois P. Heinz, Rows n = 1..200, flattened
- J. L. Baril and S. Kirgizov, The pure descent statistic on permutations, Preprint, 2016. See Table 2.
- David Callan, Bijections for Dyck paths with all peak heights of the same parity, arXiv:1702.06150 [math.CO], 2017.
- M. Dziemianczuk, Enumerations of plane trees with multiple edges and Raney lattice paths, Discrete Mathematics 337 (2014): 9-24.
- Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, Counting pattern-avoiding permutations by big descents, arXiv:2408.15111 [math.CO], 2024. See p. 11.
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
- Yidong Sun, The statistic "number of udu's" in Dyck paths, Discrete Math., 287 (2004), 177-186.
- Chao-Jen Wang, Applications of the Goulden-Jackson cluster method to counting Dyck paths by occurrences of subwords.
-
T := proc(n,k) if k0, b(x-1, y-1, 0)*z^irem(t*y+t, 2), 0)+
`if`(y (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0$2)):
seq(T(n), n=1..16); # Alois P. Heinz, May 12 2017
-
(* m = MotzkinNumber *) m[0] = 1; m[n_] := m[n] = m[n - 1] + Sum[m[k]*m[n - 2 - k], {k, 0, n - 2}]; t[n_, n_] = 1; t[n_, k_] := m[n - k]*Binomial[n - 1, k - 1]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2013 *)
-
{T(n, k) = my(y, c, w); if( k<0 || k>=n, 0, w = vector(n); forvec(v=vector(2*n, k, [0, 1]), c=y=0; for(k=1, 2*n, if( 0>(y += (-1)^v[k]), break)); if( y, next); for(i=1, 2*n-2, c += ([0, 1, 0] == v[i..i+2])); w[c+1]++); w[k+1])}; /* Michael Somos, Feb 26 2020 */
A102840
a(0)=0, a(1)=1, a(n)=((2*n-1)*a(n-1)-5*n*a(n-2))/(n-1).
Original entry on oeis.org
0, 1, 3, 0, -20, -45, 21, 308, 540, -585, -4235, -5676, 11232, 54145, 51975, -182400, -654160, -380205, 2680425, 7516400, 1320900, -36753255, -82175665, 24032700, 477852900, 850446025, -749925189, -5944471092, -8220606800, 14049061455, 71102953305, 71989187536, -220682377872
Offset: 0
-
RecurrenceTable[{-5 n a[n-2] + (2*n - 1) a[n-1] + (1 - n) a[n] ==
0, a[0] == 0, a[1] == 1}, a, {n, 0, 30}] (* Vaclav Kotesovec, Feb 15 2019 *)
nxt[{n_,a_,b_}]:={n+1,b,(b(2n+1)-5a(n+1))/n}; NestList[nxt,{1,0,1},40][[;;,2]] (* Harvey P. Dale, Apr 22 2024 *)
-
a(n)=if(n<2,if(n,1,0),1/(n-1)*((2*n-1)*a(n-1)-5*n*a(n-2)))
A374506
Expansion of 1/(1 - 2*x - 3*x^2)^(7/2).
Original entry on oeis.org
1, 7, 42, 210, 966, 4158, 17094, 67782, 261261, 983983, 3635632, 13217568, 47393892, 167919948, 588772152, 2045481480, 7048466271, 24111291897, 81939285582, 276810647190, 930096277110, 3109797881190, 10350813392010, 34309326304890, 113288127469335
Offset: 0
-
a[n_]:= Pochhammer[n+1, 6]*Hypergeometric2F1[(1-n)/2, -n/2, 4, 4]/6!; Array[a,25,0] (* Stefano Spezia, Jul 10 2024 *)
-
a(n) = binomial(n+6, 3)/20*sum(k=0, n\2, binomial(n+3, n-2*k)*binomial(2*k+3, k));
A245551
Expansion of 1/(1 - 2*x - 3*x^2)^(5/2).
Original entry on oeis.org
1, 5, 25, 105, 420, 1596, 5880, 21120, 74415, 258115, 883883, 2994355, 10051860, 33479460, 110750580, 364177332, 1191186855, 3877914915, 12571302975, 40598200335, 130657125984, 419173385400, 1340928798300, 4278305877300, 13617034683525, 43243221276801, 137040737988105
Offset: 0
From _Petros Hadjicostas_, Jun 03 2020: (Start)
Out of the A001006(4) = 9 Motzkin trees with n = 4 edges, only the following 2*a(4-4) = 2 have 3-sets of leaves:
A A
/ \ / \
/ \ / \
B C B C
/ \ / \
/ \ / \
D E D E
{C, D, E} {B, D, E}
(End)
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 6.
- Lifoma Salaam, Combinatorial statistics on phylogenetic trees, Ph.D. Dissertation, Howard University, Washington D.C., 2008; see Theorem 39 (p. 25).
- J. Y. X. Yang, M. X. X. Zhong, and R. D. P. Zhou, On the Enumeration of (s, s+ 1, s+2)-Core Partitions, arXiv preprint arXiv:1406.2583 [math.CO], 2014. See Theorem 4.2.
-
A[0]:= 1: A[1]:= 5:
for n from 2 to 100 do
A[n]:= (2+3/n)*A[n-1] + (3+9/n)*A[n-2]
od:
seq(A[n],n=0..100); # Robert Israel, Aug 01 2014
-
CoefficientList[Series[1/(1 - 2 x - 3 x^2)^(5/2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 01 2014 *)
-
x='x+O('x^50); Vec(1/(1-2*x-3*x^2)^(5/2)) \\ G. C. Greubel, Apr 06 2017
A371408
Number of Dyck paths of semilength n having exactly three (possibly overlapping) occurrences of the consecutive step pattern UDU, where U = (1,1) and D = (1,-1).
Original entry on oeis.org
0, 0, 0, 0, 1, 4, 20, 80, 315, 1176, 4284, 15240, 53295, 183700, 625768, 2110472, 7057505, 23427600, 77271120, 253426752, 827009523, 2686728060, 8693388060, 28026897360, 90058925649, 288516259416, 921755412900, 2937377079000, 9338728806225, 29626186593276
Offset: 0
a(4) = 1: UDUDUDUD.
a(5) = 4: UDUDUDUUDD, UDUDUUDUDD, UDUUDUDUDD, UUDUDUDUDD.
-
a:= n-> `if`(n<4, 0, binomial(n-1, 3)*add(binomial(n-3, j)*
binomial(n-3-j, j-1), j=0..ceil((n-3)/2))/(n-3)):
seq(a(n), n=0..29);
# second Maple program:
a:= proc(n) option remember; `if`(n<5, [0$4, 1][n+1],
(n-1)*((2*n-7)*a(n-1)+3*(n-2)*a(n-2))/((n-2)*(n-4)))
end:
seq(a(n), n=0..29);
A139263
Number of two element anti-chains in Riordan trees on n edges (also called non-redundant trees, i.e., ordered trees where no vertex has out-degree equal to 1).
Original entry on oeis.org
0, 0, 1, 3, 14, 48, 172, 580, 1941, 6373, 20725, 66763, 213575, 679141, 2148948, 6771068, 21257741, 66529077, 207639925, 646480555, 2008458669, 6227766899, 19277394308, 59577651108, 183865477474, 566700165898, 1744578701517, 5364804428455, 16480883532586, 50582859417868, 155114365434224
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 35); [0,0] cat Coefficients(R!( (1 -x -Sqrt(1-2*x-3*x^2))*Sqrt(1-2*x-3*x^2)/(2*(1+x)*(1-2*x-3*x^2)^2) )); // G. C. Greubel, Jun 02 2020
-
a:= proc(n) option remember; `if`(n<4, [0$2, 1, 3][n+1],
((4*n-3)*(n-2)*a(n-1)+(2*n+9)*(n-2)*a(n-2)-3*
(4*n-9)*n*a(n-3)-9*(n-1)*n*a(n-4))/(n*(n-2)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 02 2020
-
CoefficientList[Series[(1 -x -Sqrt[1-2*x-3*x^2])*Sqrt[1-2*x-3*x^2]/(2*(1+x)*(1 - 2*x-3*x^2)^2), {x, 0, 35}], x] (* G. C. Greubel, Jun 02 2020 *)
-
default(seriesprecision, 50)
f(x) = 1/sqrt(1-2*x-3*x^2);
r(x) = (1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x));
a(n) = polcoef(x^2*r(x)^2*f(x)^3, n, x);
for(n=0, 30, print1(a(n), ",")) \\ Petros Hadjicostas, Jun 02 2020
-
r(x)=(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x))
m(x)=(1-x-sqrt(1-2*x-3*x^2))/(2*x^2)
g(x)=derivative(x*r(x),x)
a(x)=x^2*(x*m(x)+1)^3*g(x)^3/r(x)
taylor(a(x),x,0,30).list() # Petros Hadjicostas, Jun 02 2020
A374487
Expansion of 1/(1 - 2*x - 7*x^2)^(3/2).
Original entry on oeis.org
1, 3, 18, 70, 315, 1281, 5348, 21708, 88245, 355135, 1425270, 5692050, 22666735, 89986365, 356400840, 1408459928, 5555679849, 21877337979, 86020384730, 337769595870, 1324677499299, 5189411915897, 20308936981932, 79406140870500, 310206869770525, 1210898719869111
Offset: 0
-
Module[{x}, CoefficientList[Series[1/(1 - (7*x + 2)*x)^(3/2), {x, 0, 25}], x]] (* Paolo Xausa, Aug 25 2025 *)
-
a(n) = binomial(n+2, 2)*sum(k=0, n\2, 2^k*binomial(n, 2*k)*binomial(2*k, k)/(k+1));
A374488
Expansion of 1/(1 - 2*x - 11*x^2)^(3/2).
Original entry on oeis.org
1, 3, 24, 100, 555, 2541, 12628, 59004, 281655, 1315765, 6171132, 28692456, 133315273, 616780815, 2848833120, 13124483344, 60364983987, 277142478921, 1270586298520, 5817063737100, 26600252408961, 121501917998263, 554429553154044, 2527595449990500
Offset: 0
-
Module[{x}, CoefficientList[Series[1/(1 - (11*x + 2)*x)^(3/2), {x, 0, 25}], x]] (* Paolo Xausa, Aug 25 2025 *)
-
a(n) = binomial(n+2, 2)*sum(k=0, n\2, 3^k*binomial(n, 2*k)*binomial(2*k, k)/(k+1));
Showing 1-9 of 9 results.
Comments