Original entry on oeis.org
1, 3, 8, 19, 41, 84, 171, 347, 690, 1385, 2825, 5438, 11077, 24535, 33720, 102623, 350605, -1120228, 5876775, 11232063, -256532422, 1748895117, -4057110163, -42841409122, 605093026361, -3691581277925, 3538657621384, 186391745956155, -2296017574506751
Offset: 0
a(3) = 19 = (1, 3, 3, 1) dot (1, 2, 3, 3) = (1 + 6 + 9 + 3); where A109747 = (1, 2, 3, 3, 2, 3, 5, -4, 5, 55, -212, ...).
-
Join[{1}, Rest[CoefficientList[Series[Exp[2*x + 1 - Exp[-x]], {x, 0, 50}], x]*Range[0, 50]!]] (* G. C. Greubel, Aug 31 2016 *)
A000587
Rao Uppuluri-Carpenter numbers (or complementary Bell numbers): e.g.f. = exp(1 - exp(x)).
Original entry on oeis.org
1, -1, 0, 1, 1, -2, -9, -9, 50, 267, 413, -2180, -17731, -50533, 110176, 1966797, 9938669, 8638718, -278475061, -2540956509, -9816860358, 27172288399, 725503033401, 5592543175252, 15823587507881, -168392610536153, -2848115497132448, -20819319685262839
Offset: 0
G.f. = 1 - x + x^3 + x^4 - 2*x^5 - 9*x^6 - 9*x^7 + 50*x^8 + 267*x^9 + 413*x^10 - ...
- N. A. Kolokolnikova, Relations between sums of certain special numbers (Russian), in Asymptotic and enumeration problems of combinatorial analysis, pp. 117-124, Krasnojarsk. Gos. Univ., Krasnoyarsk, 1976.
- Alfréd Rényi, Új modszerek es eredmenyek a kombinatorikus analfzisben. I. MTA III Oszt. Ivozl., Vol. 16 (1966), pp. 7-105.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. V. Subbarao and A. Verma, Some remarks on a product expansion. An unexplored partition function, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics (Gainesville, FL, 1999), pp. 267-283, Kluwer, Dordrecht, 2001.
- Alois P. Heinz, Table of n, a(n) for n = 0..595 (first 101 terms from T. D. Noe)
- M. Aguiar and A. Lauve, The characteristic polynomial of the Adams operators on graded connected Hopf algebras, 2014. See Example 31. - _N. J. A. Sloane_, May 24 2014
- W. Asakly, A. Blecher, C. Brennan, A. Knopfmacher, T. Mansour, and S. Wagner, Set partition asymptotics and a conjecture of Gould and Quaintance, Journal of Mathematical Analysis and Applications, Volume 416, Issue 2 (15 August 2014), Pages 672-682.
- Tewodros Amdeberhan, Valerio de Angelis and Victor H. Moll, Complementary Bell numbers: arithmetical properties and Wilf's conjecture.
- S. Barbero, U. Cerruti, and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences, J. Int. Seq., Vol. 13 (2010), Article 10.9.7.
- R. E. Beard, On the Coefficients in the Expansion of e^(e^t) and e^(-e^t), J. Institute of Actuaries, Vol. 76 (1950), pp. 152-163. [Annotated scanned copy]
- Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, and Bruno Patrou, State complexity of catenation combined with a boolean operation: a unified approach, arXiv:1505.03474 [cs.FL], 2015.
- Valerio De Angelis and Dominic Marcello, Wilf's Conjecture, The American Mathematical Monthly, Vol. 123, No. 6 (2016), pp. 557-573.
- S. de Wannemacker, T. Laffey and R. Osburn, On a conjecture of Wilf, arXiv:math/0608085 [math.NT], 2006-2007.
- Branko Dragovich, On Summation of p-Adic Series, arXiv:1702.02569 [math.NT], 2017.
- Branko Dragovich, Andrei Yu. Khrennikov, and Natasa Z. Misic, Summation of p-Adic Functional Series in Integer Points, arXiv:1508.05079, 2015
- B. Dragovich and N. Z. Misic, p-Adic invariant summation of some p-adic functional series, P-Adic Numbers, Ultrametric Analysis, and Applications, Volume 6, Issue 4 (October 2014), pp. 275-283.
- Antal E. Fekete, Apropos Bell and Stirling Numbers, Crux Mathematicorum, Vol. 25, No. 5 (1999), pp. 274-281.
- B. Harris and L. Schoenfeld, Asymptotic expansions for the coefficients of analytic functions, Ill. J. Math., Vol. 12 (1968), pp. 264-277.
- M. Klazar, Counting even and odd partitions, Amer. Math. Monthly, Vol. 110, No. 6 (2003), pp. 527-532.
- M. Klazar, Bell numbers, their relatives and algebraic differential equations, J. Combin. Theory, A 102 (2003), 63-87.
- A. Knopfmacher and M. E. Mays, Graph compositions I: Basic enumerations, Integers, Vol. 1 (2001), Article A4. (See the first two columns of the table on p. 9.)
- Vaclav Kotesovec, Plot of |a(n)/n!|^(1/n) / |exp(1/W(-n))/W(-n)| for n = 1..40000, where W is the LambertW function.
- Peter J. Larcombe, Jack Sutton, and James Stanton, A note on the constant 1/e, Palest. J. Math. (2023) Vol. 12, No. 2, 609-619. See p. 617.
- J. W. Layman and C. L. Prather, Generalized Bell numbers and zeros of successive derivatives of an entire function, Journal of Mathematical Analysis and Applications, Volume 96, Issue 1 (15 October 1983), Pages 42-51.
- Toufik Mansour and Mark Shattuck, Counting subword patterns in permutations arising as flattened partitions of sets, Appl. Anal. Disc. Math. (2022), OnLine-First (00):9-9.
- T. Mansour, M. Shattuck and D. G. L. Wang, Recurrence relations for patterns of type (2, 1) in flattened permutations, arXiv preprint arXiv:1306.3355 [math.CO], 2013.
- S. Ramanujan, Notebook entry.
- V. R. Rao Uppuluri and J. A. Carpenter, Numbers generated by the function exp(1-e^x), Fib. Quart., Vol. 7, No. 4 (1969), pp. 437-448.
- Frank Ruskey and Jennifer Woodcock, The Rand and block distances of pairs of set partitions, Combinatorial algorithms, 287-299, Lecture Notes in Comput. Sci., 7056, Springer, Heidelberg, 2011.
- Frank Ruskey, Jennifer Woodcock and Yuji Yamauchi, Counting and computing the Rand and block distances of pairs of set partitions, Journal of Discrete Algorithms, Volume 16 (October 2012), Pages 236-248. [_N. J. A. Sloane_, Oct 03 2012]
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq., Vol. 14 (2011), Article 11.9.7.
- D. Subedi, Complementary Bell Numbers and p-adic Series, J. Int. Seq., Vol. 17 (2014), Article 14.3.1.
- A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011.
- Eric Weisstein's World of Mathematics, Complementary Bell Number.
- D. Wuilquin, Letters to N. J. A. Sloane, August 1984.
- Yifan Yang, On a multiplicative partition function, Electron. J. Combin., Vol. 8, No. 1 (2001), Research Paper 19.
-
a000587 n = a000587_list !! n
a000587_list = 1 : f a007318_tabl [1] where
f (bs:bss) xs = y : f bss (y : xs) where y = - sum (zipWith (*) xs bs)
-- Reinhard Zumkeller, Mar 04 2014
-
b:= proc(n, t) option remember; `if`(n=0, 1-2*t,
add(b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Jun 28 2016
-
Table[ -1 * Sum[ (-1)^( k + 1) StirlingS2[ n, k ], {k, 0, n} ], {n, 0, 40} ]
With[{nn=30},CoefficientList[Series[Exp[1-Exp[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 04 2011 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ 1 - Exp[x]], {x, 0, n}]]; (* Michael Somos, May 27 2014 *)
a[ n_] := If[ n < 0, 0, With[{m = n + 1}, SeriesCoefficient[ Series[ Nest[ x Factor[ 1 - # /. x -> x / (1 - x)] &, 0, m], {x, 0, m}], {x, 0, m}]]]; (* Michael Somos, May 27 2014 *)
Table[BellB[n, -1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
b[1] = 1; k = 1; Flatten[{1, Table[Do[j = k; k -= b[m]; b[m] = j;, {m, 1, n-1}]; b[n] = k; k*(-1)^n, {n, 1, 40}]}] (* Vaclav Kotesovec, Sep 09 2019 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( exp( 1 - exp( x + x * O(x^n))), n))}; /* Michael Somos, Mar 14 2011 */
-
{a(n) = local(A); if( n<0, 0, n++; A = O(x); for( k=1, n, A = x - x * subst(A, x, x / (1 - x))); polcoeff( A, n))}; /* Michael Somos, Mar 14 2011 */
-
Vec(serlaplace(exp(1 - exp(x+O(x^99))))) /* Joerg Arndt, Apr 01 2011 */
-
a(n)=round(exp(1)*suminf(k=0,(-1)^k*k^n/k!))
vector(20,n,a(n-1)) \\ Derek Orr, Sep 19 2014 -- a direct approach
-
x='x+O('x^66); Vec(serlaplace(exp(1 - exp(x)))) \\ Michel Marcus, Sep 19 2014
-
# The objective of this implementation is efficiency.
# n -> [a(0), a(1), ..., a(n)] for n > 0.
def A000587_list(n):
A = [0 for i in range(n)]
A[n-1] = 1
R = [1]
for j in range(0, n):
A[n-1-j] = -A[n-1]
for k in range(n-j, n):
A[k] += A[k-1]
R.append(A[n-1])
return R
# Peter Luschny, Apr 18 2011
-
# Python 3.2 or higher required
from itertools import accumulate
A000587, blist, b = [1,-1], [1], -1
for _ in range(30):
blist = list(accumulate([b]+blist))
b = -blist[-1]
A000587.append(b) # Chai Wah Wu, Sep 19 2014
-
expnums(26, -1) # Zerinvary Lajos, May 15 2009
A014182
Expansion of e.g.f. exp(1-x-exp(-x)).
Original entry on oeis.org
1, 0, -1, 1, 2, -9, 9, 50, -267, 413, 2180, -17731, 50533, 110176, -1966797, 9938669, -8638718, -278475061, 2540956509, -9816860358, -27172288399, 725503033401, -5592543175252, 15823587507881, 168392610536153, -2848115497132448, 20819319685262839
Offset: 0
G.f. = 1 - x^2 + x^3 + 2*x^4 - 9*x^5 + 9*x^6 + 50*x^7 - 267*x^8 + 413*x^9 + ...
-
With[{nn=30},CoefficientList[Series[Exp[1-x-Exp[-x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 15 2012 *)
a[ n_] := SeriesCoefficient[ (1 - Sum[ k / Pochhammer[ 1/x + 1, k], {k, n}]) / (1 - x), {x, 0, n} ]; (* Michael Somos, Nov 07 2014 *)
-
{a(n)=sum(j=0,n,(-1)^(n-j)*Stirling2(n+1,j+1))}
{Stirling2(n,k)=(1/k!)*sum(i=0,k,(-1)^(k-i)*binomial(k,i)*i^n)} \\ Paul D. Hanna, Aug 12 2006
-
{a(n) = if( n<0, 0, n! * polcoeff( exp( 1 - x - exp( -x + x * O(x^n))), n))} /* Michael Somos, Mar 11 2004 */
-
def A014182_list(len): # len>=1
T = [0]*(len+1); T[1] = 1; R = [1]
for n in (1..len-1):
a,b,c = 1,0,0
for k in range(n,-1,-1):
r = a - k*b - (k+1)*c
if k < n : T[k+2] = u;
a,b,c = T[k-1],a,b
u = r
T[1] = u; R.append(u)
return R
A014182_list(27) # Peter Luschny, Nov 01 2012
A335868
a(n) = exp(n) * Sum_{k>=0} (-n)^k * (k - 1)^n / k!.
Original entry on oeis.org
1, -2, 7, -31, 149, -631, 475, 43210, -844727, 10960505, -86569889, -584746911, 46302579229, -1304510879686, 25366896568707, -277053418780891, -4271166460501743, 384590020131637825, -14617527176248527545, 380117694164438489422, -5265650620303861935579
Offset: 0
-
Table[n! SeriesCoefficient[Exp[n (1 - Exp[x]) - x], {x, 0, n}], {n, 0, 20}]
Table[Sum[(-1)^(n - k) Binomial[n, k] BellB[k, -n], {k, 0, n}], {n, 0, 20}]
A340264
T(n, k) = Sum_{j=0..k} binomial(n, k - j)*Stirling2(n - k + j, j). Triangle read by rows, 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, 0, 1, 4, 0, 1, 6, 8, 0, 1, 11, 24, 16, 0, 1, 20, 70, 80, 32, 0, 1, 37, 195, 340, 240, 64, 0, 1, 70, 539, 1330, 1400, 672, 128, 0, 1, 135, 1498, 5033, 7280, 5152, 1792, 256, 0, 1, 264, 4204, 18816, 35826, 34272, 17472, 4608, 512
Offset: 0
[0] 1;
[1] 0, 2;
[2] 0, 1, 4;
[3] 0, 1, 6, 8;
[4] 0, 1, 11, 24, 16;
[5] 0, 1, 20, 70, 80, 32;
[6] 0, 1, 37, 195, 340, 240, 64;
[7] 0, 1, 70, 539, 1330, 1400, 672, 128;
[8] 0, 1, 135, 1498, 5033, 7280, 5152, 1792, 256;
[9] 0, 1, 264, 4204, 18816, 35826, 34272, 17472, 4608, 512;
Alternating sum of row(n) is
A109747(n).
-
egf := exp(t*(exp(-x) - x - 1));
ser := series(egf, x, 22):
p := n -> coeff(ser, x, n);
seq(seq((-1)^n*n!*coeff(p(n), t, k), k=0..n), n = 0..10);
# Alternative:
T := (n, k) -> add(binomial(n, k - j)*Stirling2(n - k + j, j), j=0..k):
seq(seq(T(n, k), k = 0..n), n=0..9); # Peter Luschny, Feb 09 2021
-
T[ n_, k_] := Sum[ Binomial[n, k-j] StirlingS2[n-k+j, j], {j, 0 ,k}]; (* Michael Somos, Jul 18 2021 *)
-
T(n, k) = sum(j=0, k, binomial(n, j)*stirling(n-j, k-j, 2)); /* Michael Somos, Jul 18 2021 */
A335980
Expansion of e.g.f. exp(2 * (1 - exp(-x)) + x).
Original entry on oeis.org
1, 3, 7, 11, 7, -5, 23, 75, -281, -101, 4663, -14229, -41721, 532667, -1464489, -8840053, 103689511, -313202725, -2348557705, 32041266859, -127039882425, -762423051013, 14393151011735, -81523161874741, -236027974047897, 8564406463119387
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[2 (1 - Exp[-x]) + x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = a[n - 1] + 2 Sum[(-1)^(n - k - 1) Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 25}]
-
my(N=33, x='x+O('x^N)); Vec(serlaplace(exp(2 * (1 - exp(-x)) + x))) \\ Joerg Arndt, Jul 04 2020
A335981
Expansion of e.g.f. exp(3 * (1 - exp(-x)) + x).
Original entry on oeis.org
1, 4, 13, 31, 40, -23, -95, 490, 823, -8393, 3766, 174775, -658787, -2751404, 34033297, -55552037, -1170734432, 9362348365, 3277050925, -562286419646, 3848880970147, 8815342530739, -356804325202730, 2389771436686339, 8677476137729929, -302470260552857660
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[3 (1 - Exp[-x]) + x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = a[n - 1] + 3 Sum[(-1)^(n - k - 1) Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 25}]
A335982
Expansion of e.g.f. exp(4 * (1 - exp(-x)) + x).
Original entry on oeis.org
1, 5, 21, 69, 149, 69, -619, -187, 9365, -3515, -193643, 453957, 4704917, -29425595, -83918443, 1640246085, -3184430955, -74516517307, 604223657877, 1324972362053, -52526078298475, 264984579390533, 2477371363954069, -44206576595187899, 133280843118435477
Offset: 0
-
nmax = 24; CoefficientList[Series[Exp[4 (1 - Exp[-x]) + x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = a[n - 1] + 4 Sum[(-1)^(n - k - 1) Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 24}]
A367744
Expansion of e.g.f. exp(1 - x - exp(3*x)).
Original entry on oeis.org
1, -4, 7, 17, -14, -637, -2951, 14126, 333205, 2076245, -12283700, -423234511, -4163106203, 8148184700, 952894223755, 15568620884189, 69314620864450, -2816256959131561, -83397946135434515, -1025683419252783946, 4726361848234575553, 525779836596438636689, 12363747028673287330948, 112888493670408785796989
Offset: 0
-
nmax = 23; CoefficientList[Series[Exp[1 - x - Exp[3 x]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -a[n - 1] - Sum[Binomial[n - 1, k - 1] 3^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
Table[Sum[(-1)^(n - k) Binomial[n, k] 3^k BellB[k, -1], {k, 0, n}], {n, 0, 23}]
A367743
Expansion of e.g.f. exp(1 - x - exp(2*x)).
Original entry on oeis.org
1, -3, 5, 1, -7, -75, -99, 1241, 10161, 18989, -332299, -3857551, -14440151, 141168997, 2807256333, 20182451657, -42073176479, -2999363709091, -38439478980891, -161835672017439, 3439471815545177, 87228227501354517, 937579822282327421, 216540362854403513, -198501712690150659055
Offset: 0
-
nmax = 24; CoefficientList[Series[Exp[1 - x - Exp[2 x]], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -a[n - 1] - Sum[Binomial[n - 1, k - 1] 2^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
Table[Sum[(-1)^(n - k) Binomial[n, k] 2^k BellB[k, -1], {k, 0, n}], {n, 0, 24}]
Showing 1-10 of 14 results.
Comments