cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A162255 a(n) = 2*a(n-2) for n > 2; a(1) = 3, a(2) = 2.

Original entry on oeis.org

3, 2, 6, 4, 12, 8, 24, 16, 48, 32, 96, 64, 192, 128, 384, 256, 768, 512, 1536, 1024, 3072, 2048, 6144, 4096, 12288, 8192, 24576, 16384, 49152, 32768, 98304, 65536, 196608, 131072, 393216, 262144, 786432, 524288, 1572864, 1048576, 3145728, 2097152
Offset: 1

Views

Author

Klaus Brockhaus, Jun 29 2009

Keywords

Comments

Apparently a(n) = A074323(n+1). a(n) = A072946(n-1) for n > 1.
Partial sums are in A164053.
Binomial transform is A135532 without initial term -1. Second binomial transform is A161938.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,2},{3,2},50] (* Harvey P. Dale, Aug 28 2012 *)
  • PARI
    m=42; u=concat([3, 2], vector(m-2)); for(n=3, m, u[n]=2*u[n-2]); u

Formula

a(n) = (2^(1/4))^(3+2*n+(-1)^n) * (2-(-1)^n)/2.
G.f.: x*(3+2*x)/(1-2*x^2).
E.g.f.: cosh(sqrt(2)*x) + 3*sinh(sqrt(2)*x)/sqrt(2) - 1. - Stefano Spezia, May 26 2024

Extensions

G.f. corrected, comments and cross-references added by Klaus Brockhaus, Aug 08 2009
Corrected by Harvey P. Dale, Aug 28 2012

A098790 a(n) = 2*a(n-1) + a(n-2) + 1, a(0) = 1, a(1) = 2.

Original entry on oeis.org

1, 2, 6, 15, 37, 90, 218, 527, 1273, 3074, 7422, 17919, 43261, 104442, 252146, 608735, 1469617, 3547970, 8565558, 20679087, 49923733, 120526554, 290976842, 702480239, 1695937321, 4094354882, 9884647086, 23863649055, 57611945197
Offset: 0

Views

Author

Creighton Dement, Oct 30 2004

Keywords

Comments

Previous name was: a(n) = A048739(n) - A000129(n).
Partial sums of Pell numbers A000129 except omit next-to-last Pell number. E.g., 37 = 0+1+2+5+12+29 - 12.

References

  • M. Bicknell-Johnson and G. E. Bergum, The Generalized Fibonacci Numbers {C(n)}, C(n)=C(n-1)+C(n-2)+K, Applications of Fibonacci Numbers, 1986, pp. 193-205.

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = 2a[n - 1] + a[n - 2] + 1; Table[ a[n], {n, 0, 28}] (* Robert G. Wilson v, Nov 04 2004 *)
    LinearRecurrence[{3,-1,-1},{1,2,6},31] (* Harvey P. Dale, Oct 15 2011 *)
    CoefficientList[Series[(x^2 - x + 1)/((1 - x) (1 - 2 x - x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 14 2014 *)

Formula

a(n) = 2*a(n-1) + a(n-2) + 1, a(0) = 1, a(1) = 2.
G.f.: (x^2-x+1)/((1-x)(1-2x-x^2)).
a(n+1) = - A024537(n+1) + 2*A048739(n+1) - 2*A048739(n).
a(n) = - A024537(n) + A052542(n+1).
Partial sums of A074323. - Paul Barry, Mar 11 2007
a(n) = (sqrt(2)+1)^n*(3/4+sqrt(2)/4)+(sqrt(2)-1)^n*(3/4-sqrt(2)/4)*(-1)^n-1/2; - Paul Barry, Mar 11 2007
a(0)=1, a(1)=2, a(2)=6, a(n)=3*a(n-1)-a(n-2)-a(n-3). [Harvey P. Dale, Oct 15 2011]
a(2*n) = A124124(2*n+1). - Hermann Stamm-Wilbrandt, Aug 03 2014
a(2*n+1) = A006451(2*n+1). - Hermann Stamm-Wilbrandt, Aug 26 2014
a(n) = 7*a(n-2) - 7*a(n-4) + a(n-6), for n>5. - Hermann Stamm-Wilbrandt, Aug 26 2014
2*a(n) = A135532(n+1)-1. - R. J. Mathar, Jan 13 2023

Extensions

More terms from Robert G. Wilson v, Nov 04 2004
Definition edited by N. J. A. Sloane, Aug 03 2014
New name from existing formula by Joerg Arndt, Aug 13 2014

A164682 a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 8.

Original entry on oeis.org

5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048, 2560, 4096, 5120, 8192, 10240, 16384, 20480, 32768, 40960, 65536, 81920, 131072, 163840, 262144, 327680, 524288, 655360, 1048576, 1310720, 2097152, 2621440, 4194304
Offset: 1

Views

Author

Klaus Brockhaus, Aug 21 2009

Keywords

Comments

Interleaving of A020714 and A000079 without initial terms 1, 2, 4.
First differences are in A162255.
Binomial transform is A135532 without initial terms -1, 3. Fourth binomial transform is A164537.

Crossrefs

Equals A094958 (numbers of the form 2^n or 5*2^n) without initial terms 1, 2, 4.
Cf. A020714 (5*2^n), A000079 (powers of 2), A162255, A135532, A164537.

Programs

  • Magma
    [ n le 2 select 2+3*n else 2*Self(n-2): n in [1..40] ];
  • Mathematica
    LinearRecurrence[{0,2},{5,8},60] (* Harvey P. Dale, Jul 20 2022 *)

Formula

a(n) = (9-(-1)^n)*2^(1/4*(2*n-5+(-1)^n)).
G.f.: x*(5+8*x)/(1-2*x^2).

A266504 a(n) = 2*a(n - 2) + a(n - 4) with a(0) = a(1) = 2, a(2) = 1, a(3) = 3.

Original entry on oeis.org

2, 2, 1, 3, 4, 8, 9, 19, 22, 46, 53, 111, 128, 268, 309, 647, 746, 1562, 1801, 3771, 4348, 9104, 10497, 21979, 25342, 53062, 61181, 128103, 147704, 309268, 356589, 746639, 860882, 1802546, 2078353, 4351731, 5017588, 10506008, 12113529, 25363747, 29244646, 61233502
Offset: 0

Views

Author

Raphie Frank, Dec 30 2015

Keywords

Comments

This sequence gives all x in N | 2*x^2 - 7(-1)^x = y^2. The companion sequence to this sequence, giving y values, is A266505.
A266505(n)/a(n) converges to sqrt(2).
Alternatively, 1/4*(3*A002203(floor[n/2]) - A002203(n-(-1)^n)), where A002203 gives the Companion Pell numbers, or, in Lucas sequence notation, V_n(2, -1).
Alternatively, bisection of A266506.
Alternatively, A048654(n -1) and A078343(n + 1) interlaced.
Alternatively, A100525(n-1), A266507(n), A038761(n) and A253811(n) interlaced.
Let b(n) = (a(n) - a(n)(mod 2))/2, that is b(n) = {1, 1, 0, 1, 2, 4, 4, 9, 11, 23, 26, 55, 64, ...}. Then:
A006452(n) = {b(4n+0) U b(4n+1)} gives n in N such that n^2 - 1 is triangular;
A216134(n) = {b(4n+2) U b(4n+3)} gives n in N such that n^2 + n + 1 is triangular (indices of Sophie Germain triangular numbers);
A216162(n) = {b(4n+0) U b(4n+2) U b(4n+1) U b(4n+3)}, sequences A006452 and A216134 interlaced.

Crossrefs

Programs

  • Magma
    I:=[2,2,1,3]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
    
  • Mathematica
    LinearRecurrence[{0, 2, 0, 1}, {2, 2, 1, 3}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
    Table[SeriesCoefficient[(1 - x) (2 + 4 x + x^2)/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 41}] (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    Vec((1-x)*(2+4*x+x^2)/(1-2*x^2-x^4) + O(x^50)) \\ Colin Barker, Dec 31 2015

Formula

a(n) = 1/sqrt(8)*(+sqrt(2)*(1+sqrt(2))^(floor(n/2)-(-1)^n)*(-1)^n - 3*(1-sqrt(2))^(floor(n/2)-(-1)^n) + sqrt(2)*(1-sqrt(2))^(floor(n/2)-(-1)^n)*(-1)^n + 3*(1+sqrt(2))^(floor(n/2)-(-1)^n)).
a(n) = 1/4*((3*((1+sqrt(2))^floor(n/2)+(1-sqrt(2))^floor(n/2))) - (-1)^n*((1+sqrt(2))^(floor(n/2)-(-1)^n)+(1-sqrt(2))^(floor(n/2)-(-1)^n))).
a(2n) = (+sqrt(2)*(1+sqrt(2))^(n-1) - 3 *(1-sqrt(2))^(n-1) + sqrt(2)*(1-sqrt(2))^(n-1) + 3*(1 + sqrt(2))^(n-1))/sqrt(8) = A048654(n -1).
a(2n) = 1/4*((3*((1+sqrt(2))^n+(1-sqrt(2))^n)) - ((1+sqrt(2))^(n-1)+(1-sqrt(2))^(n-1))) = A048654(n -1).
a(2n + 1) = (-sqrt(2)*(1+sqrt(2))^(n+1) - 3 *(1-sqrt(2))^(n+1) - sqrt(2)*(1-sqrt(2))^(n+1) + 3*(1+sqrt(2))^(n+1))/sqrt(8) = A078343(n + 1).
a(2n + 1) =1/4*((3*((1+sqrt(2))^n+(1-sqrt(2))^n)) + ((1+sqrt(2))^(n+1)+(1-sqrt(2))^(n+1))) = A078343(n + 1).
a(4n + 0) = 6*a(4n - 4) - a(4n - 8) = A100525(n-1).
a(4n + 1) = 6*a(4n - 3) - a(4n - 7) = A266507(n).
a(4n + 2) = 6*a(4n - 2) - a(4n - 6) = A038761(n).
a(4n + 3) = 6*a(4n - 1) - a(4n - 5) = A253811(n).
sqrt(2*a(n)^2 - 7(-1)^a(n))*sgn(2*n - 1) = A266505(n).
(a(2n + 1) + a(2n))/2 = A002203(n), where A002203 gives the companion Pell numbers.
(a(2n + 1) - a(2n))/2 = A000129(n), where A000129 gives the Pell numbers.
(a(2n+2) + a(2n+1))*2 = A002203(n+2)
(a(2n+2) - a(2n+1))*2 = A002203(n-1).
G.f.: (1-x)*(2+4*x+x^2) / (1-2*x^2-x^4). - Colin Barker, Dec 31 2015

A048745 Partial sums of A048654.

Original entry on oeis.org

1, 5, 14, 36, 89, 217, 526, 1272, 3073, 7421, 17918, 43260, 104441, 252145, 608734, 1469616, 3547969, 8565557, 20679086, 49923732, 120526553, 290976841, 702480238, 1695937320, 4094354881, 9884647085, 23863649054, 57611945196, 139087539449, 335787024097
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,5,14]; [n le 3 select I[n] else 3*Self(n-1) -Self(n-2) -Self(n-3): n in [1..31]]; // G. C. Greubel, May 23 2021
    
  • Mathematica
    t={1,5}; Do[AppendTo[t, t[[-2]] + 2*t[[-1]] + 3], {n,40}]; t (* Vladimir Joseph Stephan Orlovsky, Jan 27 2012 *)
    Accumulate[LinearRecurrence[{2,1},{1,4},30]] (* or *) LinearRecurrence[{3,-1,-1},{1,5,14},30] (* Harvey P. Dale, Aug 03 2020 *)
  • PARI
    a(n)=polcoeff((1+2*x)/(1-3*x+x^2+x^3)+x*O(x^n),n) \\ Paul D. Hanna
    
  • Sage
    [(5*lucas_number1(n+1,2,-1) + 3*lucas_number1(n,2,-1) -3)/2 for n in (0..30)] # G. C. Greubel, May 23 2021

Formula

a(n) = 2*a(n-1) + a(n-2) + 3, a(0)=1, a(1)=5.
a(n) = ( ((4+(5/2)*sqrt(2))*(1+sqrt(2))^n - (4-(5/2)*sqrt(2))*(1-sqrt(2))^n)/ 2*sqrt(2) ) - 3/2.
G.f.: (1+2*x)/((1-x)*(1-2*x-x^2)). - Paul D. Hanna, Feb 22 2005
a(n) = 3*a(n-1) - a(n-2) - a(n-3), n>2, a(0)=1, a(1)=5, a(2)=14. - Philippe Deléham, Dec 16 2008
2*a(n) = A135532(n+2) - 3. - R. J. Mathar, Mar 06 2013
a(n) = (1/2)*( 5*P(n+1) + 3*P(n) - 3), where P(n) = A000129(n). - G. C. Greubel, May 23 2021

A266505 a(n) = 2*a(n - 2) + a(n - 4) with a(0) = -1, a(1) = 1, a(2) = 3, a(3) = 5.

Original entry on oeis.org

-1, 1, 3, 5, 5, 11, 13, 27, 31, 65, 75, 157, 181, 379, 437, 915, 1055, 2209, 2547, 5333, 6149, 12875, 14845, 31083, 35839, 75041, 86523, 181165, 208885, 437371, 504293, 1055907, 1217471, 2549185, 2939235, 6154277, 7095941, 14857739, 17131117, 35869755, 41358175, 86597249, 99847467
Offset: 0

Views

Author

Raphie Frank, Dec 30 2015

Keywords

Comments

a(n)/A266504(n) converges to sqrt(2).
Alternatively, bisection of A266506.
Alternatively, A135532(n) and A048655(n) interlaced.
Alternatively, A255236(n-1), A054490(n), A038762(n) and A101386(n) interlaced.
Let b(n) = (a(n) - (a(n) mod 2))/2, that is b(n) = {-1, 0, 1, 2, 2, 5, 6, 13, 15, 32, 37, 78, 90, ...}. Then:
A006451(n) = {b(4n+0) U b(4n+1)} gives n in N such that triangular(n) + 1 is square;
A216134(n) = {b(4n+2) U b(4n+3)} gives n in N such that triangular(n) follows form n^2 + n + 1 (twice a triangular number + 1).

Crossrefs

Programs

  • Magma
    I:=[-1,1,3,5]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
    
  • Maple
    a:=proc(n) option remember; if n=0 then -1 elif n=1 then 1 elif n=2 then 3 elif n=3 then 5 else 2*a(n-2)+a(n-4); fi; end:  seq(a(n), n=0..50); # Wesley Ivan Hurt, Jan 01 2016
  • Mathematica
    LinearRecurrence[{0, 2, 0, 1}, {-1, 1, 3, 5}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
    Table[SeriesCoefficient[(-1 + 3 x) (1 + x)^2/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 42}] (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    my(x='x+O('x^40)); Vec((-1+3*x)*(1+x)^2/(1-2*x^2-x^4)) \\ G. C. Greubel, Jul 26 2018

Formula

G.f.: (-1 + 3*x)*(1 + x)^2/(1 - 2*x^2 - x^4).
a(n) = (-(1+sqrt(2))^floor(n/2)*(-1)^n - sqrt(8)*(1-sqrt(2))^floor(n/2) - (1-sqrt(2))^floor(n/2)*(-1)^n + sqrt(8)*(1+sqrt(2))^floor(n/2))/2.
a(n) = 3*(((1+sqrt(2))^floor(n/2)-(1-sqrt(2))^floor(n/2))/sqrt(8)) - (-1)^n*(((1+sqrt(2))^(floor(n/2)-(-1)^n)-(1-sqrt(2))^(floor(n/2)-(-1)^n))/sqrt(8)).
a(n) = (3*A000129(floor(n/2)) - A000129(n-(-1)^n)), where A000129 gives the Pell numbers.
a(n) = sqrt(2*A266504(n)^2 - 7*(-1)^A266504(n))*sgn(2*n-1), where A266504 gives all x in N such that 2*x^2 - 7*(-1)^x = y^2. This sequence gives associated y values.
a(2n) = (-(1 + sqrt(2))^n - sqrt(8)*(1 - sqrt(2))^n - (1 - sqrt(2))^n + sqrt(8)*(1 + sqrt(2))^n)/2 = a(2n) = A135532(n).
a(2n) = 3*(((1+sqrt(2))^n-(1-sqrt(2))^n)/sqrt(8)) - (((1+sqrt(2))^(n-1)-(1-sqrt(2))^(n-1))/sqrt(8)) = A135532(n).
a(2n+1) = (+(1 + sqrt(2))^n - sqrt(8)*(1 - sqrt(2))^n + (1 - sqrt(2))^n + sqrt(8)*(1 + sqrt(2))^n)/2 = a(2n + 1) = A048655(n).
a(2n+1) = 3*(((1+sqrt(2))^n-(1-sqrt(2))^n)/sqrt(8)) + (((1+sqrt(2))^(n+1)-(1-sqrt(2))^(n+1))/sqrt(8)) = A048655(n).
a(4n + 0) = 6*a(4n - 4) - a(4n - 8) = A255236(n-1).
a(4n + 1) = 6*a(4n - 3) - a(4n - 7) = A054490(n).
a(4n + 2) = 6*a(4n - 2) - a(4n - 6) = A038762(n).
a(4n + 3) = 6*a(4n - 1) - a(4n - 5) = A101386(n).
(sqrt(2*(a(2n + 1) )^2 + 14*(-1)^floor(n/2)))/2 = A266504(n).
(a(2n + 1) + a(2n))/8 = A000129(n), where A000129 gives the Pell numbers.
a(2n + 1) - a(2n) = A002203(n), where A002203 gives the companion Pell numbers.
(a(2n + 2) + a(2n + 1))/2 = A000129(n+2).
(a(2n + 2) - a(2n + 1))/2 = A000129(n-1).

A161938 a(n) = ((3+sqrt(2))*(2+sqrt(2))^n + (3-sqrt(2))*(2-sqrt(2))^n)/2.

Original entry on oeis.org

3, 8, 26, 88, 300, 1024, 3496, 11936, 40752, 139136, 475040, 1621888, 5537472, 18906112, 64549504, 220385792, 752444160, 2569005056, 8771131904, 29946517504, 102243806208, 349082189824, 1191841146880, 4069200207872, 13893118537728, 47434073735168
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 22 2009, Jun 29 2009

Keywords

Comments

Second binomial transform of A162255.

Crossrefs

Programs

  • GAP
    a:=[3,8];; for n in [3..25] do a[n]:=4*a[n-1]-2*a[n-2]; od; a; # Muniru A Asiru, Sep 28 2018
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((3+r)*(2+r)^n+(3-r)*(2-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 01 2009
    
  • Magma
    I:=[3,8]; [n le 2 select I[n] else 4*Self(n-1) - 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 28 2018
    
  • Maple
    seq(coeff(series((3-4*x)/(1-4*x+2*x^2),x,n+1), x, n), n = 0..25); # Muniru A Asiru, Sep 28 2018
  • Mathematica
    CoefficientList[Series[(3-4*x)/(1-4*x+2*x^2), {x,0,50}], x] (* G. C. Greubel, Sep 28 2018 *)
  • PARI
    my(x='x+O('x^50)); Vec((3-4*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Sep 28 2018
    

Formula

a(n) = 4*a(n-1) - 2*a(n-2) for n>1; a(0) = 3; a(1) = 8.
G.f.: (3-4*x)/(1-4*x+2*x^2).
From G. C. Greubel, Sep 28 2018: (Start)
a(2*n) = 2^(n-1) * (Q(2*n +1) + 2*Q(2*n)), Q(m) = Pell-Lucas numbers = A002203(m).
a(2*n+1) = 2^(n-1) * (P(2*n+2) + 2*P(2*n+1)), P(m) = Pell numbers = A000129(m). (End)

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 01 2009

A137232 a(n) = -a(n-1) + 7*a(n-2) + 3*a(n-3) with a(0) = a(1) = 0, a(2) = 1.

Original entry on oeis.org

0, 0, 1, -1, 8, -12, 65, -125, 544, -1224, 4657, -11593, 40520, -107700, 356561, -988901, 3161728, -9014352, 28179745, -81795025, 252010184, -740036124, 2258722337, -6682944653, 20273892640, -60278338200, 182146752721, -543273442201, 1637465696648, -4893939533892, 14726379083825
Offset: 0

Views

Author

Paul Curtz, Mar 08 2008

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,0,1]; [n le 3 select I[n] else -Self(n-1) +7*Self(n-2) +3*Self(n-3): n in [1..36]]; // G. C. Greubel, Apr 19 2021
    
  • Mathematica
    Table[((-3)^n + 5*Fibonacci[n,2] -Fibonacci[n+1,2])/14, {n,0,40}] (* G. C. Greubel, Apr 19 2021 *)
    LinearRecurrence[{-1,7,3},{0,0,1},40] (* Harvey P. Dale, Apr 26 2022 *)
  • Sage
    [((-3)^n +5*lucas_number1(n,2,-1) -lucas_number1(n+1,2,-1))/14 for n in (0..40)] # G. C. Greubel, Apr 19 2021

Formula

From R. J. Mathar, Mar 17 2008: (Start)
O.g.f.: x^2/((1+3*x)*(1-2*x-x^2)).
a(n) = ( (-3)^n + A135532(n) )/14. (End)
a(n) = (1/14)*( (-3)^n + 5*Pell(n) - Pell(n+1) ), where Pell(n) = A000129(n). - G. C. Greubel, Apr 19 2021

A227792 Expansion of (1 + 6*x + 17*x^2 - x^3 - 3*x^4)/(1 - 6*x^2 + x^4).

Original entry on oeis.org

1, 6, 23, 35, 134, 204, 781, 1189, 4552, 6930, 26531, 40391, 154634, 235416, 901273, 1372105, 5253004, 7997214, 30616751, 46611179, 178447502, 271669860, 1040068261, 1583407981, 6061962064, 9228778026, 35331704123, 53789260175, 205928262674
Offset: 0

Views

Author

Ralf Stephan, Sep 23 2013

Keywords

Comments

Also, values i where A067060(i)/i reaches a new maximum (conjectured).

Crossrefs

Cf. A041017.

Programs

  • Mathematica
    CoefficientList[Series[(1+6x+17x^2-x^3-3x^4)/(1-6x^2+x^4),{x,0,40}],x] (* or *) LinearRecurrence[{0,6,0,-1},{1,6,23,35,134},40] (* Harvey P. Dale, Jun 12 2021 *)
  • PARI
    a(n)=polcoeff((-3*x^4-x^3+17*x^2+6*x+1)/(x^4-6*x^2+1)+O(x^100),n)

Formula

G.f.: (1+6*x+17*x^2-x^3-3*x^4)/((1+2*x-x^2)*(1-2*x-x^2)).
a(2n) = A038723(n+1), n>0.
a(2n+1) = A001109(n+2).
a(n) = (1/4) * (A135532(n+3) + (-1)^n*A001333(n+2) ).
Showing 1-9 of 9 results.