cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A000120 1's-counting sequence: number of 1's in binary expansion of n (or the binary weight of n).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3
Offset: 0

Views

Author

Keywords

Comments

The binary weight of n is also called Hamming weight of n. [The term "Hamming weight" was named after the American mathematician Richard Wesley Hamming (1915-1998). - Amiram Eldar, Jun 16 2021]
a(n) is also the largest integer such that 2^a(n) divides binomial(2n, n) = A000984(n). - Benoit Cloitre, Mar 27 2002
To construct the sequence, start with 0 and use the rule: If k >= 0 and a(0), a(1), ..., a(2^k-1) are the first 2^k terms, then the next 2^k terms are a(0) + 1, a(1) + 1, ..., a(2^k-1) + 1. - Benoit Cloitre, Jan 30 2003
An example of a fractal sequence. That is, if you omit every other number in the sequence, you get the original sequence. And of course this can be repeated. So if you form the sequence a(0 * 2^n), a(1 * 2^n), a(2 * 2^n), a(3 * 2^n), ... (for any integer n > 0), you get the original sequence. - Christopher.Hills(AT)sepura.co.uk, May 14 2003
The n-th row of Pascal's triangle has 2^k distinct odd binomial coefficients where k = a(n) - 1. - Lekraj Beedassy, May 15 2003
Fixed point of the morphism 0 -> 01, 1 -> 12, 2 -> 23, 3 -> 34, 4 -> 45, etc., starting from a(0) = 0. - Robert G. Wilson v, Jan 24 2006
a(n) is the number of times n appears among the mystery calculator sequences: A005408, A042964, A047566, A115419, A115420, A115421. - Jeremy Gardiner, Jan 25 2006
a(n) is the number of solutions of the Diophantine equation 2^m*k + 2^(m-1) + i = n, where m >= 1, k >= 0, 0 <= i < 2^(m-1); a(5) = 2 because only (m, k, i) = (1, 2, 0) [2^1*2 + 2^0 + 0 = 5] and (m, k, i) = (3, 0, 1) [2^3*0 + 2^2 + 1 = 5] are solutions. - Hieronymus Fischer, Jan 31 2006
The first appearance of k, k >= 0, is at a(2^k-1). - Robert G. Wilson v, Jul 27 2006
Sequence is given by T^(infinity)(0) where T is the operator transforming any word w = w(1)w(2)...w(m) into T(w) = w(1)(w(1)+1)w(2)(w(2)+1)...w(m)(w(m)+1). I.e., T(0) = 01, T(01) = 0112, T(0112) = 01121223. - Benoit Cloitre, Mar 04 2009
For n >= 2, the minimal k for which a(k(2^n-1)) is not multiple of n is 2^n + 3. - Vladimir Shevelev, Jun 05 2009
Triangle inequality: a(k+m) <= a(k) + a(m). Equality holds if and only if C(k+m, m) is odd. - Vladimir Shevelev, Jul 19 2009
a(k*m) <= a(k) * a(m). - Robert Israel, Sep 03 2023
The number of occurrences of value k in the first 2^n terms of the sequence is equal to binomial(n, k), and also equal to the sum of the first n - k + 1 terms of column k in the array A071919. Example with k = 2, n = 7: there are 21 = binomial(7,2) = 1 + 2 + 3 + 4 + 5 + 6 2's in a(0) to a(2^7-1). - Brent Spillner (spillner(AT)acm.org), Sep 01 2010, simplified by R. J. Mathar, Jan 13 2017
Let m be the number of parts in the listing of the compositions of n as lists of parts in lexicographic order, a(k) = n - length(composition(k)) for all k < 2^n and all n (see example); A007895 gives the equivalent for compositions into odd parts. - Joerg Arndt, Nov 09 2012
From Daniel Forgues, Mar 13 2015: (Start)
Just tally up row k (binary weight equal k) from 0 to 2^n - 1 to get the binomial coefficient C(n,k). (See A007318.)
0 1 3 7 15
0: O | . | . . | . . . . | . . . . . . . . |
1: | O | O . | O . . . | O . . . . . . . |
2: | | O | O O . | O O . O . . . |
3: | | | O | O O O . |
4: | | | | O |
Due to its fractal nature, the sequence is quite interesting to listen to.
(End)
The binary weight of n is a particular case of the digit sum (base b) of n. - Daniel Forgues, Mar 13 2015
The mean of the first n terms is 1 less than the mean of [a(n+1),...,a(2n)], which is also the mean of [a(n+2),...,a(2n+1)]. - Christian Perfect, Apr 02 2015
a(n) is also the largest part of the integer partition having viabin number n. The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [2, 2, 2, 1]. The southeast border of its Ferrers board yields 10100, leading to the viabin number 20. - Emeric Deutsch, Jul 20 2017
a(n) is also known as the population count of the binary representation of n. - Chai Wah Wu, May 19 2020

Examples

			Using the formula a(n) = a(floor(n / floor_pow4(n))) + a(n mod floor_pow4(n)):
  a(4) = a(1) + a(0) = 1,
  a(8) = a(2) + a(0) = 1,
  a(13) = a(3) + a(1) = 2 + 1 = 3,
  a(23) = a(1) + a(7) = 1 + a(1) + a(3) = 1 + 1 + 2 = 4.
_Gary W. Adamson_ points out (Jun 03 2009) that this can be written as a triangle:
  0,
  1,
  1,2,
  1,2,2,3,
  1,2,2,3,2,3,3,4,
  1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
  1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
  1,2,2,3,2,3,...
where the rows converge to A063787.
From _Joerg Arndt_, Nov 09 2012: (Start)
Connection to the compositions of n as lists of parts (see comment):
[ #]:   a(n)  composition
[ 0]:   [0]   1 1 1 1 1
[ 1]:   [1]   1 1 1 2
[ 2]:   [1]   1 1 2 1
[ 3]:   [2]   1 1 3
[ 4]:   [1]   1 2 1 1
[ 5]:   [2]   1 2 2
[ 6]:   [2]   1 3 1
[ 7]:   [3]   1 4
[ 8]:   [1]   2 1 1 1
[ 9]:   [2]   2 1 2
[10]:   [2]   2 2 1
[11]:   [3]   2 3
[12]:   [2]   3 1 1
[13]:   [3]   3 2
[14]:   [3]   4 1
[15]:   [4]   5
(End)
		

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 119.
  • Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.1.3, Problem 41, p. 589. - N. J. A. Sloane, Aug 03 2012
  • Manfred R. Schroeder, Fractals, Chaos, Power Laws. W.H. Freeman, 1991, p. 383.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The basic sequences concerning the binary expansion of n are this one, A000788, A000069, A001969, A023416, A059015, A007088.
Partial sums see A000788. For run lengths see A131534. See also A001792, A010062.
Number of 0's in n: A023416 and A080791.
a(n) = n - A011371(n).
Sum of digits of n written in bases 2-16: this sequence, A053735, A053737, A053824, A053827, A053828, A053829, A053830, A007953, A053831, A053832, A053833, A053834, A053835, A053836.
This is Guy Steele's sequence GS(3, 4) (see A135416).
Cf. A230952 (boustrophedon transform).
Cf. A070939 (length of binary representation of n).

Programs

  • Fortran
    c See link in A139351
    
  • Haskell
    import Data.Bits (Bits, popCount)
    a000120 :: (Integral t, Bits t) => t -> Int
    a000120 = popCount
    a000120_list = 0 : c [1] where c (x:xs) = x : c (xs ++ [x,x+1])
    -- Reinhard Zumkeller, Aug 26 2013, Feb 19 2012, Jun 16 2011, Mar 07 2011
    
  • Haskell
    a000120 = concat r
        where r = [0] : (map.map) (+1) (scanl1 (++) r)
    -- Luke Palmer, Feb 16 2014
    
  • Magma
    [Multiplicity(Intseq(n, 2), 1): n in [0..104]]; // Marius A. Burtea, Jan 22 2020
    
  • Magma
    [&+Intseq(n, 2):n in [0..104]]; // Marius A. Burtea, Jan 22 2020
  • Maple
    A000120 := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end: wt := A000120;
    A000120 := n -> add(i, i=convert(n,base,2)): # Peter Luschny, Feb 03 2011
    with(Bits): p:=n->ilog2(n-And(n,n-1)): seq(p(binomial(2*n,n)),n=0..200) # Gary Detlefs, Jan 27 2019
  • Mathematica
    Table[DigitCount[n, 2, 1], {n, 0, 105}]
    Nest[Flatten[# /. # -> {#, # + 1}] &, {0}, 7] (* Robert G. Wilson v, Sep 27 2011 *)
    Table[Plus @@ IntegerDigits[n, 2], {n, 0, 104}]
    Nest[Join[#, # + 1] &, {0}, 7] (* IWABUCHI Yu(u)ki, Jul 19 2012 *)
    Log[2, Nest[Join[#, 2#] &, {1}, 14]] (* gives 2^14 term, Carlos Alves, Mar 30 2014 *)
  • PARI
    {a(n) = if( n<0, 0, 2*n - valuation((2*n)!, 2))};
    
  • PARI
    {a(n) = if( n<0, 0, subst(Pol(binary(n)), x ,1))};
    
  • PARI
    {a(n) = if( n<1, 0, a(n\2) + n%2)}; /* Michael Somos, Mar 06 2004 */
    
  • PARI
    a(n)=my(v=binary(n));sum(i=1,#v,v[i]) \\ Charles R Greathouse IV, Jun 24 2011
    
  • PARI
    a(n)=norml2(binary(n)) \\ better use {A000120=hammingweight}. - M. F. Hasler, Oct 09 2012, edited Feb 27 2020
    
  • PARI
    a(n)=hammingweight(n) \\ Michel Marcus, Oct 19 2013
    (Common Lisp) (defun floor-to-power (n pow) (declare (fixnum pow)) (expt pow (floor (log n pow)))) (defun enabled-bits (n) (if (< n 4) (n-th n (list 0 1 1 2)) (+ (enabled-bits (floor (/ n (floor-to-power n 4)))) (enabled-bits (mod n (floor-to-power n 4)))))) ; Stephen K. Touset (stephen(AT)touset.org), Apr 04 2007
    
  • Python
    def A000120(n): return bin(n).count('1') # Chai Wah Wu, Sep 03 2014
    
  • Python
    import numpy as np
    A000120 = np.array([0], dtype="uint8")
    for bitrange in range(25): A000120 = np.append(A000120, np.add(A000120, 1))
    print([A000120[n] for n in range(0, 105)]) # Karl-Heinz Hofmann, Nov 07 2022
    
  • Python
    def A000120(n): return n.bit_count() # Requires Python 3.10 or higher. - Pontus von Brömssen, Nov 08 2022
    
  • Python
    # Also see links.
    
  • SageMath
    def A000120(n):
        if n <= 1: return Integer(n)
        return A000120(n//2) + n%2
    [A000120(n) for n in range(105)]  # Peter Luschny, Nov 19 2012
    
  • SageMath
    def A000120(n) : return sum(n.digits(2)) # Eric M. Schmidt, Apr 26 2013
    
  • Scala
    (0 to 127).map(Integer.bitCount()) // _Alonso del Arte, Mar 05 2019
    

Formula

a(0) = 0, a(2*n) = a(n), a(2*n+1) = a(n) + 1.
a(0) = 0, a(2^i) = 1; otherwise if n = 2^i + j with 0 < j < 2^i, a(n) = a(j) + 1.
G.f.: Product_{k >= 0} (1 + y*x^(2^k)) = Sum_{n >= 0} y^a(n)*x^n. - N. J. A. Sloane, Jun 04 2009
a(n) = a(n-1) + 1 - A007814(n) = log_2(A001316(n)) = 2n - A005187(n) = A070939(n) - A023416(n). - Henry Bottomley, Apr 04 2001; corrected by Ralf Stephan, Apr 15 2002
a(n) = log_2(A000984(n)/A001790(n)). - Benoit Cloitre, Oct 02 2002
For n > 0, a(n) = n - Sum_{k=1..n} A007814(k). - Benoit Cloitre, Oct 19 2002
a(n) = n - Sum_{k>=1} floor(n/2^k) = n - A011371(n). - Benoit Cloitre, Dec 19 2002
G.f.: (1/(1-x)) * Sum_{k>=0} x^(2^k)/(1+x^(2^k)). - Ralf Stephan, Apr 19 2003
a(0) = 0, a(n) = a(n - 2^floor(log_2(n))) + 1. Examples: a(6) = a(6 - 2^2) + 1 = a(2) + 1 = a(2 - 2^1) + 1 + 1 = a(0) + 2 = 2; a(101) = a(101 - 2^6) + 1 = a(37) + 1 = a(37 - 2^5) + 2 = a(5 - 2^2) + 3 = a(1 - 2^0) + 4 = a(0) + 4 = 4; a(6275) = a(6275 - 2^12) + 1 = a(2179 - 2^11) + 2 = a(131 - 2^7) + 3 = a(3 - 2^1) + 4 = a(1 - 2^0) + 5 = 5; a(4129) = a(4129 - 2^12) + 1 = a(33 - 2^5) + 2 = a(1 - 2^0) + 3 = 3. - Hieronymus Fischer, Jan 22 2006
A fixed point of the mapping 0 -> 01, 1 -> 12, 2 -> 23, 3 -> 34, 4 -> 45, ... With f(i) = floor(n/2^i), a(n) is the number of odd numbers in the sequence f(0), f(1), f(2), f(3), f(4), f(5), ... - Philippe Deléham, Jan 04 2004
When read mod 2 gives the Morse-Thue sequence A010060.
Let floor_pow4(n) denote n rounded down to the next power of four, floor_pow4(n) = 4 ^ floor(log4 n). Then a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2, a(n) = a(floor(n / floor_pow4(n))) + a(n % floor_pow4(n)). - Stephen K. Touset (stephen(AT)touset.org), Apr 04 2007
a(n) = n - Sum_{k=2..n} Sum_{j|n, j >= 2} (floor(log_2(j)) - floor(log_2(j-1))). - Hieronymus Fischer, Jun 18 2007
a(n) = A138530(n, 2) for n > 1. - Reinhard Zumkeller, Mar 26 2008
a(A077436(n)) = A159918(A077436(n)); a(A000290(n)) = A159918(n). - Reinhard Zumkeller, Apr 25 2009
a(n) = A063787(n) - A007814(n). - Gary W. Adamson, Jun 04 2009
a(n) = A007814(C(2n, n)) = 1 + A007814(C(2n-1, n)). - Vladimir Shevelev, Jul 20 2009
For odd m >= 1, a((4^m-1)/3) = a((2^m+1)/3) + (m-1)/2 (mod 2). - Vladimir Shevelev, Sep 03 2010
a(n) - a(n-1) = { 1 - a(n-1) if and only if A007814(n) = a(n-1), 1 if and only if A007814(n) = 0, -1 for all other A007814(n) }. - Brent Spillner (spillner(AT)acm.org), Sep 01 2010
a(A001317(n)) = 2^a(n). - Vladimir Shevelev, Oct 25 2010
a(n) = A139351(n) + A139352(n) = Sum_k {A030308(n, k)}. - Philippe Deléham, Oct 14 2011
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j = 1..m+1} (floor(n/2^j + 1/2) - floor(n/2^j)), where m = floor(log_2(n)).
General formulas for the number of digits >= d in the base p representation of n, where 1 <= d < p: a(n) = Sum_{j = 1..m+1} (floor(n/p^j + (p-d)/p) - floor(n/p^j)), where m=floor(log_p(n)); g.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(d*p^j) - x^(p*p^j))/(1-x^(p*p^j)). (End)
a(n) = A213629(n, 1) for n > 0. - Reinhard Zumkeller, Jul 04 2012
a(n) = A240857(n,n). - Reinhard Zumkeller, Apr 14 2014
a(n) = log_2(C(2*n,n) - (C(2*n,n) AND C(2*n,n)-1)). - Gary Detlefs, Jul 10 2014
Sum_{n >= 1} a(n)/2n(2n+1) = (gamma + log(4/Pi))/2 = A344716, where gamma is Euler's constant A001620; see Sondow 2005, 2010 and Allouche, Shallit, Sondow 2007. - Jonathan Sondow, Mar 21 2015
For any integer base b >= 2, the sum of digits s_b(n) of expansion base b of n is the solution of this recurrence relation: s_b(n) = 0 if n = 0 and s_b(n) = s_b(floor(n/b)) + (n mod b). Thus, a(n) satisfies: a(n) = 0 if n = 0 and a(n) = a(floor(n/2)) + (n mod 2). This easily yields a(n) = Sum_{i = 0..floor(log_2(n))} (floor(n/2^i) mod 2). From that one can compute a(n) = n - Sum_{i = 1..floor(log_2(n))} floor(n/2^i). - Marek A. Suchenek, Mar 31 2016
Sum_{k>=1} a(k)/2^k = 2 * Sum_{k >= 0} 1/(2^(2^k)+1) = 2 * A051158. - Amiram Eldar, May 15 2020
Sum_{k>=1} a(k)/(k*(k+1)) = A016627 = log(4). - Bernard Schott, Sep 16 2020
a(m*(2^n-1)) >= n. Equality holds when 2^n-1 >= A000265(m), but also in some other cases, e.g., a(11*(2^2-1)) = 2 and a(19*(2^3-1)) = 3. - Pontus von Brömssen, Dec 13 2020
G.f.: A(x) satisfies A(x) = (1+x)*A(x^2) + x/(1-x^2). - Akshat Kumar, Nov 04 2023

A007953 Digital sum (i.e., sum of digits) of n; also called digsum(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14, 15
Offset: 0

Views

Author

R. Muller

Keywords

Comments

Do not confuse with the digital root of n, A010888 (first term that differs is a(19)).
Also the fixed point of the morphism 0 -> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 1 -> {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 2 -> {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, etc. - Robert G. Wilson v, Jul 27 2006
For n < 100 equal to (floor(n/10) + n mod 10) = A076314(n). - Hieronymus Fischer, Jun 17 2007
It appears that a(n) is the position of 10*n in the ordered set of numbers obtained by inserting/placing one digit anywhere in the digits of n (except a zero before 1st digit). For instance, for n=2, the resulting set is (12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, 92) where 20 is at position 2, so a(2) = 2. - Michel Marcus, Aug 01 2022
Also the total number of beads required to represent n on a Russian abacus (schoty). - P. Christopher Staecker, Mar 31 2023
a(n) / a(2n) <= 5 with equality iff n is in A169964, while a(n) / a(3n) is unbounded, since if n = (10^k + 2)/3, then a(n) = 3*k+1, a(3n) = 3, so a(n) / a(3n) = k + 1/3 -> oo when k->oo (see Diophante link). - Bernard Schott, Apr 29 2023
Also the number of symbols needed to write number n in Egyptian numerals for n < 10^7. - Wojciech Graj, Jul 10 2025

Examples

			a(123) = 1 + 2 + 3 = 6, a(9875) = 9 + 8 + 7 + 5 = 29.
		

Crossrefs

Programs

  • Haskell
    a007953 n | n < 10 = n
              | otherwise = a007953 n' + r where (n',r) = divMod n 10
    -- Reinhard Zumkeller, Nov 04 2011, Mar 19 2011
    
  • Magma
    [ &+Intseq(n): n in [0..87] ];  // Bruno Berselli, May 26 2011
    
  • Maple
    A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: # R. J. Mathar, Mar 17 2011
  • Mathematica
    Table[Sum[DigitCount[n][[i]] * i, {i, 9}], {n, 50}] (* Stefan Steinerberger, Mar 24 2006 *)
    Table[Plus @@ IntegerDigits @ n, {n, 0, 87}] (* or *)
    Nest[Flatten[# /. a_Integer -> Array[a + # &, 10, 0]] &, {0}, 2] (* Robert G. Wilson v, Jul 27 2006 *)
    Total/@IntegerDigits[Range[0,90]] (* Harvey P. Dale, May 10 2016 *)
    DigitSum[Range[0, 100]] (* Requires v. 14 *) (* Paolo Xausa, May 17 2024 *)
  • PARI
    a(n)=if(n<1, 0, if(n%10, a(n-1)+1, a(n/10))) \\ Recursive, very inefficient. A more efficient recursive variant: a(n)=if(n>9, n=divrem(n, 10); n[2]+a(n[1]), n)
    
  • PARI
    a(n, b=10)={my(s=(n=divrem(n, b))[2]); while(n[1]>=b, s+=(n=divrem(n[1], b))[2]); s+n[1]} \\ M. F. Hasler, Mar 22 2011
    
  • PARI
    a(n)=sum(i=1, #n=digits(n), n[i]) \\ Twice as fast. Not so nice but faster:
    
  • PARI
    a(n)=sum(i=1,#n=Vecsmall(Str(n)),n[i])-48*#n \\ M. F. Hasler, May 10 2015
    /* Since PARI 2.7, one can also use: a(n)=vecsum(digits(n)), or better: A007953=sumdigits. [Edited and commented by M. F. Hasler, Nov 09 2018] */
    
  • PARI
    a(n) = sumdigits(n); \\ Altug Alkan, Apr 19 2018
    
  • Python
    def A007953(n):
        return sum(int(d) for d in str(n)) # Chai Wah Wu, Sep 03 2014
    
  • Python
    def a(n): return sum(map(int, str(n))) # Michael S. Branicky, May 22 2021
    
  • Scala
    (0 to 99).map(.toString.map(.toInt - 48).sum) // Alonso del Arte, Sep 15 2019
    
  • Smalltalk
    "Recursive version for general bases. Set base = 10 for this sequence."
    digitalSum: base
    | s |
    base = 1 ifTrue: [^self].
    (s := self // base) > 0
      ifTrue: [^(s digitalSum: base) + self - (s * base)]
      ifFalse: [^self]
    "by Hieronymus Fischer, Mar 24 2014"
    
  • Swift
    A007953(n): String(n).compactMap{$0.wholeNumberValue}.reduce(0, +) // Egor Khmara, Jun 15 2021

Formula

a(A051885(n)) = n.
a(n) <= 9(log_10(n)+1). - Stefan Steinerberger, Mar 24 2006
From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(10n+i) = a(n) + i for 0 <= i <= 9.
a(n) = n - 9*(Sum_{k > 0} floor(n/10^k)) = n - 9*A054899(n). (End)
From Hieronymus Fischer, Jun 17 2007: (Start)
G.f. g(x) = Sum_{k > 0, (x^k - x^(k+10^k) - 9x^(10^k))/(1-x^(10^k))}/(1-x).
a(n) = n - 9*Sum_{10 <= k <= n} Sum_{j|k, j >= 10} floor(log_10(j)) - floor(log_10(j-1)). (End)
From Hieronymus Fischer, Jun 25 2007: (Start)
The g.f. can be expressed in terms of a Lambert series, in that g(x) = (x/(1-x) - 9*L[b(k)](x))/(1-x) where L[b(k)](x) = sum{k >= 0, b(k)*x^k/(1-x^k)} is a Lambert series with b(k) = 1, if k > 1 is a power of 10, else b(k) = 0.
G.f.: g(x) = (Sum_{k > 0} (1 - 9*c(k))*x^k)/(1-x), where c(k) = Sum_{j > 1, j|k} floor(log_10(j)) - floor(log_10(j-1)).
a(n) = n - 9*Sum_{0 < k <= floor(log_10(n))} a(floor(n/10^k))*10^(k-1). (End)
From Hieronymus Fischer, Oct 06 2007: (Start)
a(n) <= 9*(1 + floor(log_10(n))), equality holds for n = 10^m - 1, m > 0.
lim sup (a(n) - 9*log_10(n)) = 0 for n -> oo.
lim inf (a(n+1) - a(n) + 9*log_10(n)) = 1 for n -> oo. (End)
a(n) = A138530(n, 10) for n > 9. - Reinhard Zumkeller, Mar 26 2008
a(A058369(n)) = A004159(A058369(n)); a(A000290(n)) = A004159(n). - Reinhard Zumkeller, Apr 25 2009
a(n) mod 2 = A179081(n). - Reinhard Zumkeller, Jun 28 2010
a(n) <= 9*log_10(n+1). - Vladimir Shevelev, Jun 01 2011
a(n) = a(n-1) + a(n-10) - a(n-11), for n < 100. - Alexander R. Povolotsky, Oct 09 2011
a(n) = Sum_{k >= 0} A031298(n, k). - Philippe Deléham, Oct 21 2011
a(n) = a(n mod b^k) + a(floor(n/b^k)), for all k >= 0. - Hieronymus Fischer, Mar 24 2014
Sum_{n>=1} a(n)/(n*(n+1)) = 10*log(10)/9 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

Extensions

More terms from Hieronymus Fischer, Jun 17 2007
Edited by Michel Marcus, Nov 11 2013

A053735 Sum of digits of (n written in base 3).

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 3, 4, 5, 2, 3, 4, 3, 4, 5, 4, 5, 6, 1, 2, 3, 2, 3, 4, 3, 4, 5, 2, 3, 4, 3, 4, 5, 4, 5, 6, 3, 4, 5, 4, 5, 6, 5, 6, 7, 2, 3, 4, 3, 4, 5, 4, 5, 6, 3, 4, 5, 4, 5, 6, 5, 6, 7, 4, 5, 6, 5, 6, 7, 6, 7, 8, 1, 2, 3, 2, 3, 4, 3, 4, 5, 2, 3, 4, 3, 4, 5, 4, 5, 6, 3, 4, 5, 4, 5, 6
Offset: 0

Views

Author

Henry Bottomley, Mar 28 2000

Keywords

Comments

Also the fixed point of the morphism 0->{0,1,2}, 1->{1,2,3}, 2->{2,3,4}, etc. - Robert G. Wilson v, Jul 27 2006

Examples

			a(20) = 2 + 0 + 2 = 4 because 20 is written as 202 base 3.
From _Omar E. Pol_, Feb 20 2010: (Start)
This can be written as a triangle with row lengths A025192 (see the example in the entry A000120):
0,
1,2,
1,2,3,2,3,4,
1,2,3,2,3,4,3,4,5,2,3,4,3,4,5,4,5,6,
1,2,3,2,3,4,3,4,5,2,3,4,3,4,5,4,5,6,3,4,5,4,5,6,5,6,7,2,3,4,3,4,5,4,5,6,3,...
where the k-th row contains a(3^k+i) for 0<=i<2*3^k and converges to A173523 as k->infinity. (End) [Changed conjectures to statements in this entry. - _Franklin T. Adams-Watters_, Jul 02 2015]
G.f. = x + 2*x^2 + x^3 + 2*x^4 + 3*x^5 + 2*x^6 + 3*x^7 + 4*x^8 + x^9 + 2*x^10 + ...
		

Crossrefs

Cf. A065363, A007089, A173523. See A134451 for iterations.
Sum of digits of n written in bases 2-16: A000120, this sequence, A053737, A053824, A053827, A053828, A053829, A053830, A007953, A053831, A053832, A053833, A053834, A053835, A053836.
Related base-3 sequences: A006047, A230641, A230642, A230643, A230853, A230854, A230855, A230856, A230639, A230640, A010063 (trajectory of 1), A286585, A286632, A289813, A289814.

Programs

  • Haskell
    a053735 = sum . a030341_row
    -- Reinhard Zumkeller, Feb 21 2013, Feb 19 2012
    
  • MATLAB
    m=1; for u=0:104; sol(m)=sum(dec2base(u,3)-'0'); m=m+1;end
    sol; % Marius A. Burtea, Jan 17 2019
  • Magma
    [&+Intseq(n,3):n in [0..104]]; // Marius A. Burtea, Jan 17 2019
    
  • Maple
    seq(convert(convert(n,base,3),`+`),n=0..100); # Robert Israel, Jul 02 2015
  • Mathematica
    Table[Plus @@ IntegerDigits[n, 3], {n, 0, 100}] (* or *)
    Nest[Join[#, # + 1, # + 2] &, {0}, 6] (* Robert G. Wilson v, Jul 27 2006 and modified Jul 27 2014 *)
  • PARI
    {a(n) = if( n<1, 0, a(n\3) + n%3)}; /* Michael Somos, Mar 06 2004 */
    
  • PARI
    A053735(n)=sumdigits(n,3) \\ Requires version >= 2.7. Use sum(i=1,#n=digits(n,3),n[i]) in older versions. - M. F. Hasler, Mar 15 2016
    
  • Scheme
    (define (A053735 n) (let loop ((n n) (s 0)) (if (zero? n) s (let ((d (mod n 3))) (loop (/ (- n d) 3) (+ s d)))))) ;; For R6RS standard. Use modulo instead of mod in older Schemes like MIT/GNU Scheme. - Antti Karttunen, Jun 03 2017
    

Formula

From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(3n) = a(n), a(3n + 1) = a(n) + 1, a(3n + 2) = a(n) + 2.
a(n) = n - 2*Sum_{k>0} floor(n/3^k) = n - 2*A054861(n). (End)
a(n) = A062756(n) + 2*A081603(n). - Reinhard Zumkeller, Mar 23 2003
G.f.: (Sum_{k >= 0} (x^(3^k) + 2*x^(2*3^k))/(1 + x^(3^k) + x^(2*3^k)))/(1 - x). - Michael Somos, Mar 06 2004, corrected by Franklin T. Adams-Watters, Nov 03 2005
In general, the sum of digits of (n written in base b) has generating function (Sum_{k>=0} (Sum_{0 <= i < b} i*x^(i*b^k))/(Sum_{i=0..b-1} x^(i*b^k)))/(1-x). - Franklin T. Adams-Watters, Nov 03 2005
First differences of A094345. - Vladeta Jovovic, Nov 08 2005
a(A062318(n)) = n and a(m) < n for m < A062318(n). - Reinhard Zumkeller, Feb 26 2008
a(n) = A138530(n,3) for n > 2. - Reinhard Zumkeller, Mar 26 2008
a(n) <= 2*log_3(n+1). - Vladimir Shevelev, Jun 01 2011
a(n) = Sum_{k>=0} A030341(n, k). - Philippe Deléham, Oct 21 2011
G.f. satisfies G(x) = (x+2*x^2)/(1-x^3) + (1+x+x^2)*G(x^3), and has a natural boundary at |x|=1. - Robert Israel, Jul 02 2015
a(n) = A056239(A006047(n)). - Antti Karttunen, Jun 03 2017
a(n) = A000120(A289813(n)) + 2*A000120(A289814(n)). - Antti Karttunen, Jul 20 2017
a(0) = 0; a(n) = a(n - 3^floor(log_3(n))) + 1. - Ilya Gutkovskiy, Aug 23 2019
Sum_{n>=1} a(n)/(n*(n+1)) = 3*log(3)/2 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

A053737 Sum of digits of (n written in base 4).

Original entry on oeis.org

0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 3, 4, 5, 6, 4, 5, 6, 7, 5
Offset: 0

Views

Author

Henry Bottomley, Mar 28 2000

Keywords

Comments

Also the fixed point of the morphism 0->{0,1,2,3}, 1->{1,2,3,4}, 2->{2,3,4,5}, etc. - Robert G. Wilson v, Jul 27 2006

Examples

			a(20) = 1+1+0 = 2 because 20 is written as 110 base 4.
From _Omar E. Pol_, Feb 21 2010: (Start)
This can be written as a triangle (cf. A000120):
  0,
  1,2,3,
  1,2,3,4,2,3,4,5,3,4,5,6,
  1,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7,2,3,4,5,3,4,5,6,4,5,6,7,5,6,7,8,3,4,5,6,4,5,6,7,5,6,7,8,6,7,8,9,
  1,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7,2,3,4,5,3,4,5,6,4,5,6,7,5,6,7,8,3,4,5,6,4,...
where the rows converge to A173524.
(End)
		

Crossrefs

Cf. A173524. - Omar E. Pol, Feb 21 2010
Sum of digits of n written in bases 2-16: A000120, A053735, this sequence, A053824, A053827, A053828, A053829, A053830, A007953, A053831, A053832, A053833, A053834, A053835, A053836.
Related base-4 sequences: A053737, A230631, A230632, A010064, A230633, A230634, A230635, A230636, A230637, A230638, A010065 (trajectory of 1).

Programs

  • Haskell
    a053737 n = if n == 0 then 0 else a053737 m + r where (m, r) = divMod n 4
    -- Reinhard Zumkeller, Mar 19 2015
    
  • MATLAB
    for u=0:104; sol(u+1)=sum(dec2base(u,4)-'0');end
    sol % Marius A. Burtea, Jan 17 2019
  • Magma
    [&+Intseq(n,4):n in [0..104]]; // Marius A. Burtea, Jan 17 2019
    
  • Maple
    A053737 := proc(n)
        add(d,d=convert(n,base,4)) ;
    end proc: # R. J. Mathar, Oct 31 2012
  • Mathematica
    Table[Plus @@ IntegerDigits[n, 4], {n, 0, 100}] (* or *)
    Nest[ Flatten[ #1 /. a_Integer -> {a, a+1, a+2, a+3}] &, {0}, 4] (* Robert G. Wilson v, Jul 27 2006 *)
    DigitSum[Range[0, 100], 4] (* Paolo Xausa, Aug 01 2024 *)
  • PARI
    a(n)=if(n<1,0,if(n%4,a(n-1)+1,a(n/4)))
    
  • PARI
    a(n) = sumdigits(n, 4); \\ Michel Marcus, Aug 24 2019
    

Formula

From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(4n+i) = a(n)+i for 0 <= i <= 3.
a(n) = n - 3*Sum_{k>0} floor(n/4^k) = n - 3*A054893(n). (End)
G.f.: (Sum_{k>=0} (x^(4^k) + 2*x^(2*4^k) + 3*x^(3*4^k))/(1 + x^(4^k) + x^(2*4^k) + x^(3*4^k)))/(1-x). - Franklin T. Adams-Watters, Nov 03 2005
a(n) = A138530(n,4) for n > 3. - Reinhard Zumkeller, Mar 26 2008
a(n) = Sum_{k>=0} A030386(n,k). - Philippe Deléham, Oct 21 2011
a(n) = A007953(A007090(n)). - Reinhard Zumkeller, Mar 19 2015
a(0) = 0; a(n) = a(n - 4^floor(log_4(n))) + 1. - Ilya Gutkovskiy, Aug 23 2019
Sum_{n>=1} a(n)/(n*(n+1)) = 4*log(4)/3 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

A053824 Sum of digits of (n written in base 5).

Original entry on oeis.org

0, 1, 2, 3, 4, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 7, 8, 9, 10, 11, 4, 5, 6
Offset: 0

Views

Author

Henry Bottomley, Mar 28 2000

Keywords

Comments

Also the fixed point of the morphism 0->{0,1,2,3,4}, 1->{1,2,3,4,5}, 2->{2,3,4,5,6}, etc. - Robert G. Wilson v, Jul 27 2006

Examples

			a(20) = 4 + 0 = 4 because 20 is written as 40 in base 5.
From _Omar E. Pol_, Feb 21 2010: (Start)
It appears that this can be written as a triangle:
  0,
  1,2,3,4,
  1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,4,5,6,7,8,
  1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,4,5,6,7,8,5,6,7,8,9,2,3,4,5,6,3,4,5,6,7,4,5,...
See the conjecture in the entry A000120. (End)
		

Crossrefs

Sum of digits of n written in bases 2-16: A000120, A053735, A053737, this sequence, A053827, A053828, A053829, A053830, A007953, A053831, A053832, A053833, A053834, A053835, A053836.
Cf. A173525. - Omar E. Pol, Feb 21 2010
Cf. A173670 (last nonzero decimal digit of (10^n)!). - Washington Bomfim, Jan 01 2011

Programs

  • Haskell
    a053824 0 = 0
    a053824 x = a053824 x' + d  where (x', d) = divMod x 5
    -- Reinhard Zumkeller, Jan 31 2014
    
  • Magma
    [&+Intseq(n, 5):n in [0..100]]; // Marius A. Burtea, Aug 24 2019
  • Mathematica
    Table[Plus @@ IntegerDigits[n, 5], {n, 0, 100}] (* or *)
    Nest[Flatten[ #1 /. a_Integer -> Table[a + i, {i, 0, 4}]] &, {0}, 4] (* Robert G. Wilson v, Jul 27 2006 *)
    f[n_] := n - 4 Sum[Floor[n/5^k], {k, n}]; Array[f, 103, 0]
  • PARI
    a(n)=if(n<1,0,if(n%5,a(n-1)+1,a(n/5)))
    
  • PARI
    a(n) = sumdigits(n, 5); \\ Michel Marcus, Aug 24 2019
    

Formula

From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(5n+i) = a(n) + i for 0 <= i <= 4;
a(n) = n - 4*Sum_{k>=1} floor(n/5^k) = n - 4*A027868(n). (End)
a(n) = A138530(n,5) for n > 4. - Reinhard Zumkeller, Mar 26 2008
If i >= 2, a(2^i) mod 4 = 0. - Washington Bomfim, Jan 01 2011
a(n) = Sum_{k>=0} A031235(n,k). - Philippe Deléham, Oct 21 2011
a(0) = 0; a(n) = a(n - 5^floor(log_5(n))) + 1. - Ilya Gutkovskiy, Aug 23 2019
Sum_{n>=1} a(n)/(n*(n+1)) = 5*log(5)/4 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

A053828 Sum of digits of (n written in base 7).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 10, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 10, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 7, 8, 9, 10, 11
Offset: 0

Views

Author

Henry Bottomley, Mar 28 2000

Keywords

Comments

Also the fixed point of the morphism 0->{0,1,2,3,4,5,6}, 1->{1,2,3,4,5,6,7}, 2->{2,3,4,5,6,7,8}, etc. - Robert G. Wilson v, Jul 27 2006

Examples

			a(20) = 2 + 6 = 8 because 20 = 26_7.
From _Omar E. Pol_, Feb 21 2010: (Start)
It appears that this can be written as a triangle (see the conjecture in the entry A000120):
0,
1,2,3,4,5,6,
1,2,3,4,5,6,7,2,3,4,5,6,7,8,3,4,5,6,7,8,9,4,5,6,7,8,9,10,5,6,7,8,9,10,11,6,7,8,9,10,11,12,
1,2,3,4,5,6,7,2,3,4,5,6,7,8,3,4,5,6,7,8,9,4,5,6,7,8,9,10,5,6,7,8,9,10,11,6,7,8,9,10,11,12,7,8,9,10,11,...
where the rows converge to A173527. (End)
		

Crossrefs

Programs

  • Magma
    [&+Intseq(n, 7): n in [0..100]]; // Vincenzo Librandi, Jan 03 2020
  • Mathematica
    Table[Plus @@ IntegerDigits[n, 7], {n, 0, 100}] (* or *)
    Nest[ Flatten[ #1 /. a_Integer -> Table[a + i, {i, 0, 6}]] &, {0}, 4] (* Robert G. Wilson v, Jul 27 2006 *)
  • PARI
    a(n)=if(n<1,0,if(n%7,a(n-1)+1,a(n/7)))
    
  • PARI
    a(n) = my(d=digits(n, 7)); vecsum(d); \\ Michel Marcus, Jan 07 2017
    

Formula

From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(7n+i) = a(n) + i for 0 <= i <= 6.
a(n) = n - 6*(Sum_{k>0} floor(n/7^k)) = n - 6*A054896(n). (End)
a(n) = A138530(n,7) for n > 6. - Reinhard Zumkeller, Mar 26 2008
a(n) = Sum_{k>=0} A031007(n,k). - Philippe Deléham, Oct 21 2011
a(0) = 0; a(n) = a(n - 7^floor(log_7(n))) + 1. - Ilya Gutkovskiy, Aug 24 2019
Sum_{n>=1} a(n)/(n*(n+1)) = 7*log(7)/6 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

A053829 Sum of digits of (n written in base 8).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8, 9, 10, 4, 5, 6, 7, 8, 9, 10, 11, 5, 6, 7, 8, 9, 10, 11, 12, 6, 7, 8, 9, 10, 11, 12, 13, 7, 8, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8, 9, 10, 4, 5, 6, 7, 8, 9, 10
Offset: 0

Views

Author

Henry Bottomley, Mar 28 2000

Keywords

Comments

Also the fixed point of the morphism 0->{0,1,2,3,4,5,6,7}, 1->{1,2,3,4,5,6,7,8}, 2->{2,3,4,5,6,7,8,9}, etc. - Robert G. Wilson v, Jul 27 2006

Examples

			a(20)=2+4=6 because 20 is written as 24 base 8.
From _Omar E. Pol_, Feb 21 2010: (Start)
It appears that this can be written as a triangle (See the conjecture in the entry A000120):
0,
1,2,3,4,5,6,7,
1,2,3,4,5,6,7,8,2,3,4,5,6,7,8,9,3,4,5,6,7,8,9,10,4,5,6,7,8,9,10,11,5,6,7,8,9,10,11,12,6,7,8,9,10,11,12,13,7,8,9,10,11,12,13,14,
1,2,3,4,5,6,7,8,2,3,4,5,6,7,8,9,3,4,5,6,7,8,9,10,4,5,6,7,8,9,10...
where the rows converge to A173528. (End)
		

Crossrefs

Programs

  • Haskell
    a053829 n = q 0 $ divMod n 8 where
       q r (0, d) = r + d
       q r (m, d) = q (r + d) $ divMod m 8
    -- Reinhard Zumkeller, May 15 2011
    
  • Mathematica
    Table[Plus @@ IntegerDigits[n, 8], {n, 0, 95}] (* or *)
    Nest[ Flatten[ #1 /. a_Integer -> Table[a + i, {i, 0, 7}]] &, {0}, 4] (* Robert G. Wilson v, Jul 27 2006 *)
  • PARI
    a(n)=if(n<1,0,if(n%8,a(n-1)+1,a(n/8)))
    
  • PARI
    a(n) = sumdigits(n, 8); \\ Michel Marcus, Jul 10 2022
    
  • Python
    def A053829(n): return sum(int(d) for d in oct(n)[2:]) # Chai Wah Wu, Jul 09 2022

Formula

From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(8n+i) = a(n)+i for 0 <= i <= 7.
a(n) = n-7*(Sum_{k>0} floor(n/8^k)) = n-7*A054897(n). (End)
a(n) = A138530(n,8) for n > 7. - Reinhard Zumkeller, Mar 26 2008
a(n) = Sum_k>=0 {A031045(n,k)}. - Philippe Deléham, Oct 21 2011
a(0) = 0; a(n) = a(n - 8^floor(log_8(n))) + 1. - Ilya Gutkovskiy, Aug 24 2019
Sum_{n>=1} a(n)/(n*(n+1)) = 8*log(8)/7 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

A053830 Sum of digits of (n written in base 9).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 10, 3, 4, 5, 6, 7, 8, 9, 10, 11, 4, 5, 6, 7, 8, 9, 10, 11, 12, 5, 6, 7, 8, 9, 10, 11, 12, 13, 6, 7, 8, 9, 10, 11, 12, 13, 14, 7, 8, 9, 10, 11, 12, 13, 14, 15, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9
Offset: 0

Views

Author

Henry Bottomley, Mar 28 2000

Keywords

Comments

Also the fixed point of the morphism 0->{0,1,2,3,4,5,6,7,8}, 1->{1,2,3,4,5,6,7,8,9}, 2->{2,3,4,5,6,7,8,9,10}, etc. - Robert G. Wilson v, Jul 27 2006

Examples

			a(20) = 2+2 = 4 because 20 is written as 22 base 9.
From _Omar E. Pol_, Feb 23 2010: (Start)
It appears that this can be written as a triangle (see the conjecture in the entry A000120):
0;
1,2,3,4,5,6,7,8;
1,2,3,4,5,6,7,8,9,2,3,4,5,6,7,8,9,10,3,4,5,6,7,8,9,10,11,4,5,6,7,8,9,10,11,...
where the rows converge to A173529. (End)
		

Crossrefs

Programs

  • Magma
    [&+Intseq(n, 9):n in [0..100]]; // Marius A. Burtea, Aug 24 2019
  • Mathematica
    Table[Plus @@ IntegerDigits[n, 9], {n, 0, 100}] (* or *)
    Nest[ Flatten[ #1 /. a_Integer -> Table[a + i, {i, 0, 8}]] &, {0}, 3] (* Robert G. Wilson v, Jul 27 2006 *)
  • PARI
    a(n)=if(n<1,0,if(n%9,a(n-1)+1,a(n/9)))
    

Formula

From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(9n+i) = a(n) + i for 0 <= i <= 8;
a(n) = n - 8*Sum_{k>=1} floor(n/9^k) = n - 8*A054898(n). (End)
a(n) = A138530(n,9) for n > 8. - Reinhard Zumkeller, Mar 26 2008
a(n) = Sum_{k>=0} A031087(n,k). - Philippe Deléham, Oct 21 2011
a(0) = 0; a(n) = a(n - 9^floor(log_9(n))) + 1. - Ilya Gutkovskiy, Aug 24 2019
Sum_{n>=1} a(n)/(n*(n+1)) = 9*log(9)/8 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

A053827 Sum of digits of (n written in base 6).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 10, 6, 7, 8, 9, 10, 11, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 10, 6, 7, 8, 9, 10
Offset: 0

Views

Author

Henry Bottomley, Mar 28 2000

Keywords

Comments

Also the fixed point of the morphism 0->{0,1,2,3,4,5}, 1->{1,2,3,4,5,6}, 2->{2,3,4,5,6,7}, etc. - Robert G. Wilson v, Jul 27 2006
Sum of six consecutive terms is (15,21,27,33,39,45; 21,27,33,39,45,51; 27,33,39,45,51,57; and so on). - Vincenzo Librandi, Aug 02 2010

Examples

			a(20)=3+2=5 because 20 is written as 32 base 6.
From _Omar E. Pol_, Feb 21 2010: (Start)
It appears that this can be written as a triangle :
  0,
  1,2,3,4,5,
  1,2,3,4,5,6,2,3,4,5,6,7,3,4,5,6,7,8,4,5,6,7,8,9,5,6,7,8,9,10,
  1,2,3,4,5,6,2,3,4,5,6,7,3,4,5,6,7,8,4,5,6,7,8,9,5,6,7,8,9,10,6,7,8,9,10,11,2...
where the rows converge to A173526.
See the conjecture in the entry A000120. (End)
		

Crossrefs

Sum of digits of n written in bases 2-16: A000120, A053735, A053737, A053824, this sequence, A053828, A053829, A053830, A007953, A053831, A053832, A053833, A053834, A053835, A053836.
Cf. A173526. - Omar E. Pol, Feb 21 2010

Programs

  • Magma
    [&+Intseq(n,6):n in [0..105]]; // Marius A. Burtea, Aug 24 2019
  • Mathematica
    Table[Plus @@ IntegerDigits[n, 6], {n, 0, 100}] (* or *)
    Nest[ Flatten[ #1 /. a_Integer -> Table[a + i, {i, 0, 5}]] &, {0}, 4] (* Robert G. Wilson v, Jul 27 2006 *)
  • PARI
    a(n)=if(n<1,0,if(n%6,a(n-1)+1,a(n/6)))
    
  • PARI
    a(n) = sumdigits(n, 6); \\ Michel Marcus, Aug 24 2019
    

Formula

From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(6n+i) = a(n)+i for 0 <= i <= 5.
a(n) = n-5*(Sum_{k>0} floor(n/6^k)) = n-5*A054895(n). (End)
a(n) = A138530(n,6) for n > 5. - Reinhard Zumkeller, Mar 26 2008
a(n) = Sum_{k>=0} A030567(n,k). - Philippe Deléham, Oct 21 2011
a(0) = 0; a(n) = a(n - 6^floor(log_6(n))) + 1. - Ilya Gutkovskiy, Aug 23 2019
Sum_{n>=1} a(n)/(n*(n+1)) = 6*log(6)/5 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

A053836 Sum of digits of n written in base 16.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 5, 6, 7
Offset: 0

Views

Author

Henry Bottomley, Mar 28 2000

Keywords

Comments

a(n) = A138530(n,16) for n > 15. - Reinhard Zumkeller, Mar 26 2008

Examples

			a(20) = 1 + 4 = 5 because 20 is written as "14" in base 16.
		

Crossrefs

Programs

  • Haskell
    a053836 n = q 0 $ divMod n 16 where
       q r (0, d) = r + d
       q r (m, d) = q (r + d) $ divMod m 16
    -- Reinhard Zumkeller, May 15 2011
    
  • Mathematica
    Table[Plus @@ IntegerDigits[n, 16], {n, 0, 150}] (* Vladimir Joseph Stephan Orlovsky, Jul 19 2011 *)
  • PARI
    a(n)=if(n<1,0,if(n%16,a(n-1)+1,a(n/16)))
    
  • PARI
    a(n) = sumdigits(n, 16); \\ Michel Marcus, Jan 19 2023
    
  • Python
    def A053836(n): return sum(int(d,16) for d in hex(n)[2:]) # Chai Wah Wu, Jan 19 2023

Formula

a(0)=0, a(16*n+i)=a(n)+i 0<=i<=15; a(n)=n-15*Sum_{k>0} floor(n/16^k). - Benoit Cloitre, Dec 19 2002
Showing 1-10 of 22 results. Next