cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A002865 Number of partitions of n that do not contain 1 as a part.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137, 165, 210, 253, 320, 383, 478, 574, 708, 847, 1039, 1238, 1507, 1794, 2167, 2573, 3094, 3660, 4378, 5170, 6153, 7245, 8591, 10087, 11914, 13959, 16424, 19196, 22519, 26252, 30701
Offset: 0

Views

Author

Keywords

Comments

Also the number of partitions of n-1, n >= 2, such that the least part occurs exactly once. See A096373, A097091, A097092, A097093. - Robert G. Wilson v, Jul 24 2004 [Corrected by Wolfdieter Lang, Feb 18 2009]
Number of partitions of n+1 where the number of parts is itself a part. Take a partition of n (with k parts) which does not contain 1, remove 1 from each part and add a new part of size k+1. - Franklin T. Adams-Watters, May 01 2006
Number of partitions where the largest part occurs at least twice. - Joerg Arndt, Apr 17 2011
Row sums of triangle A147768. - Gary W. Adamson, Nov 11 2008
From Lewis Mammel (l_mammel(AT)att.net), Oct 06 2009: (Start)
a(n) is the number of sets of n disjoint pairs of 2n things, called a pairing, disjoint with a given pairing (A053871), that are unique under permutations preserving the given pairing.
Can be seen immediately from a graphical representation which must decompose into even numbered cycles of 4 or more things, as connected by pairs alternating between the pairings. Each thing is in a single cycle, so this is a partition of 2n into even parts greater than 2, equivalent to a partition of n into parts greater than 1. (End)
Convolution product (1, 1, 2, 2, 4, 4, ...) * (1, 2, 3, ...) = A058682 starting (1, 3, 7, 13, 23, 37, ...); with row sums of triangle A171239 = A058682. - Gary W. Adamson, Dec 05 2009
Also the number of 2-regular multigraphs with loops forbidden. - Jason Kimberley, Jan 05 2011
Number of appearances of the multiplicity n, n-1, ..., n-k in all partitions of n, for k < n/2. (Only populated by multiplicities of large numbers of 1's.) - William Keith, Nov 20 2011
Also the number of equivalence classes of n X n binary matrices with exactly 2 1's in each row and column, up to permutations of rows and columns (cf. A133687). - N. J. A. Sloane, Sep 16 2013
Starting at a(2) this sequence gives the number of vertices on a nim tree created in the game of edge removal for a path P_{n} where n is the number of vertices on the path. This is the number of nonisomorphic graphs that can result from the path when the game of edge removal is played. - Lyndsey Wong, Jul 09 2016
The number of different ways to climb a staircase taking at least two stairs at a time. - Mohammad K. Azarian, Nov 20 2016
Let 1,0,1,1,1,... (offset 0) count unlabeled, connected, loopless 1-regular digraphs. This here is the Euler transform of that sequence, counting unlabeled loopless 1-regular digraphs. A145574 is the associated multiset transformation. A000166 are the labeled loopless 1-regular digraphs. - R. J. Mathar, Mar 25 2019
For n > 1, also the number of partitions with no part greater than the number of ones. - George Beck, May 09 2019 [See A187219 which is the correct sequence for this interpretation for n >= 1. - Spencer Miller, Jan 30 2023]
From Gus Wiseman, May 19 2019: (Start)
Conjecture: Also the number of integer partitions of n - 1 that have a consecutive subsequence summing to each positive integer from 1 to n - 1. For example, (32211) is such a partition because we have consecutive subsequences:
1: (1)
2: (2)
3: (3) or (21)
4: (22) or (211)
5: (32) or (221)
6: (2211)
7: (322)
8: (3221)
9: (32211)
(End)
There is a sufficient and necessary condition to characterize the partitions defined by Gus Wiseman. It is that the largest part must be less than or equal to the number of ones plus one. Hence, the number of partitions of n with no part greater than the number of ones is the same as the number of partitions of n-1 that have a consecutive subsequence summing to each integer from 1 to n-1. Gus Wiseman's conjecture can be proved bijectively. - Andrew Yezhou Wang, Dec 14 2019
From Peter Bala, Dec 01 2024: (Start)
Let P(2, n) denote the set of partitions of n into parts k > 1. Then A000041(n) = - Sum_{parts k in all partitions in P(2, n+2)} mu(k). For example, with n = 5, there are 4 partitions of n + 2 = 7 into parts greater than 1, namely, 7, 5 + 2, 4 + 3, 3 + 2 + 2, and mu(7) + (mu(5) + mu(2)) + (mu(4 ) + mu(3)) + (mu(3) + mu(2) + mu(2)) = -7 = - A000041(5). (End)

Examples

			a(6) = 4 from 6 = 4+2 = 3+3 = 2+2+2.
G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 7*x^8 + 8*x^9 + ...
From _Gus Wiseman_, May 19 2019: (Start)
The a(2) = 1 through a(9) = 8 partitions not containing 1 are the following. The Heinz numbers of these partitions are given by A005408.
  (2)  (3)  (4)   (5)   (6)    (7)    (8)     (9)
            (22)  (32)  (33)   (43)   (44)    (54)
                        (42)   (52)   (53)    (63)
                        (222)  (322)  (62)    (72)
                                      (332)   (333)
                                      (422)   (432)
                                      (2222)  (522)
                                              (3222)
The a(2) = 1 through a(9) = 8 partitions of n - 1 whose least part appears exactly once are the following. The Heinz numbers of these partitions are given by A247180.
  (1)  (2)  (3)   (4)   (5)    (6)    (7)     (8)
            (21)  (31)  (32)   (42)   (43)    (53)
                        (41)   (51)   (52)    (62)
                        (221)  (321)  (61)    (71)
                                      (331)   (332)
                                      (421)   (431)
                                      (2221)  (521)
                                              (3221)
The a(2) = 1 through a(9) = 8 partitions of n + 1 where the number of parts is itself a part are the following. The Heinz numbers of these partitions are given by A325761.
  (21)  (22)  (32)   (42)   (52)    (62)    (72)     (82)
              (311)  (321)  (322)   (332)   (333)    (433)
                            (331)   (431)   (432)    (532)
                            (4111)  (4211)  (531)    (631)
                                            (4221)   (4222)
                                            (4311)   (4321)
                                            (51111)  (4411)
                                                     (52111)
The a(2) = 1 through a(8) = 7 partitions of n whose greatest part appears at least twice are the following. The Heinz numbers of these partitions are given by A070003.
  (11)  (111)  (22)    (221)    (33)      (331)      (44)
               (1111)  (11111)  (222)     (2221)     (332)
                                (2211)    (22111)    (2222)
                                (111111)  (1111111)  (3311)
                                                     (22211)
                                                     (221111)
                                                     (11111111)
Nonisomorphic representatives of the a(2) = 1 through a(6) = 4 2-regular multigraphs with n edges and n vertices are the following.
  {12,12}  {12,13,23}  {12,12,34,34}  {12,12,34,35,45}  {12,12,34,34,56,56}
                       {12,13,24,34}  {12,13,24,35,45}  {12,12,34,35,46,56}
                                                        {12,13,23,45,46,56}
                                                        {12,13,24,35,46,56}
The a(2) = 1 through a(9) = 8 partitions of n with no part greater than the number of ones are the following. The Heinz numbers of these partitions are given by A325762.
  (11)  (111)  (211)   (2111)   (2211)    (22111)    (22211)     (33111)
               (1111)  (11111)  (3111)    (31111)    (32111)     (222111)
                                (21111)   (211111)   (41111)     (321111)
                                (111111)  (1111111)  (221111)    (411111)
                                                     (311111)    (2211111)
                                                     (2111111)   (3111111)
                                                     (11111111)  (21111111)
                                                                 (111111111)
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 836.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115, p*(n).
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. G. Tait, Scientific Papers, Cambridge Univ. Press, Vol. 1, 1898, Vol. 2, 1900, see Vol. 1, p. 334.

Crossrefs

First differences of partition numbers A000041. Cf. A053445, A072380, A081094, A081095, A232697.
Pairwise sums seem to be in A027336.
Essentially the same as A085811.
A column of A090824 and of A133687 and of A292508 and of A292622. Cf. A229161.
2-regular not necessarily connected graphs: A008483 (simple graphs), A000041 (multigraphs with loops allowed), this sequence (multigraphs with loops forbidden), A027336 (graphs with loops allowed but no multiple edges). - Jason Kimberley, Jan 05 2011
See also A098743 (parts that do not divide n).
Numbers n such that in the edge-delete game on the path P_{n} the first player does not have a winning strategy: A274161. - Lyndsey Wong, Jul 09 2016
Row sums of characteristic array A145573.
Number of partitions of n into parts >= m: A008483 (m = 3), A008484 (m = 4), A185325 - A185329 (m = 5 through 9).

Programs

  • GAP
    Concatenation([1],List([1..41],n->NrPartitions(n)-NrPartitions(n-1))); # Muniru A Asiru, Aug 20 2018
    
  • Magma
    A41 := func; [A41(n)-A41(n-1):n in [0..50]]; // Jason Kimberley, Jan 05 2011
    
  • Maple
    with(combstruct): ZL1:=[S, {S=Set(Cycle(Z,card>1))}, unlabeled]: seq(count(ZL1,size=n), n=0..50);  # Zerinvary Lajos, Sep 24 2007
    G:= {P=Set (Set (Atom, card>1))}: combstruct[gfsolve](G, unlabeled, x): seq  (combstruct[count] ([P, G, unlabeled], size=i), i=0..50);  # Zerinvary Lajos, Dec 16 2007
    with(combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, unlabeled]; end: A:=a(2):seq(count(A, size=n), n=0..50);  # Zerinvary Lajos, Jun 11 2008
    # alternative Maple program:
    A002865:= proc(n) option remember; `if`(n=0, 1, add(
          (numtheory[sigma](j)-1)*A002865(n-j), j=1..n)/n)
        end:
    seq(A002865(n), n=0..60);  # Alois P. Heinz, Sep 17 2017
  • Mathematica
    Table[ PartitionsP[n + 1] - PartitionsP[n], {n, -1, 50}] (* Robert G. Wilson v, Jul 24 2004 *)
    f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 2], {n, 50}] (* Robert G. Wilson v *)
    Table[SeriesCoefficient[Exp[Sum[x^(2*k)/(k*(1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Aug 18 2018 *)
    CoefficientList[Series[1/QPochhammer[x^2, x], {x,0,50}], x] (* G. C. Greubel, Nov 03 2019 *)
    Table[Count[IntegerPartitions[n],?(FreeQ[#,1]&)],{n,0,50}] (* _Harvey P. Dale, Feb 12 2023 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 - x) / eta(x + x * O(x^n)), n))};
    
  • PARI
    a(n)=if(n,numbpart(n)-numbpart(n-1),1) \\ Charles R Greathouse IV, Nov 26 2012
    
  • Python
    from sympy import npartitions
    def A002865(n): return npartitions(n)-npartitions(n-1) if n else 1 # Chai Wah Wu, Mar 30 2023
  • SageMath
    def A002865_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/product((1-x^(m+2)) for m in (0..60)) ).list()
    A002865_list(50) # G. C. Greubel, Nov 03 2019
    

Formula

G.f.: Product_{m>1} 1/(1-x^m).
a(0)=1, a(n) = p(n) - p(n-1), n >= 1, with the partition numbers p(n) := A000041(n).
a(n) = A085811(n+3). - James Sellers, Dec 06 2005 [Corrected by Gionata Neri, Jun 14 2015]
a(n) = A116449(n) + A116450(n). - Reinhard Zumkeller, Feb 16 2006
a(n) = Sum_{k=2..floor((n+2)/2)} A008284(n-k+1,k-1) for n > 0. - Reinhard Zumkeller, Nov 04 2007
G.f.: 1 + Sum_{n>=2} x^n / Product_{k>=n} (1 - x^k). - Joerg Arndt, Apr 13 2011
G.f.: Sum_{n>=0} x^(2*n) / Product_{k=1..n} (1 - x^k). - Joerg Arndt, Apr 17 2011
a(n) = A090824(n,1) for n > 0. - Reinhard Zumkeller, Oct 10 2012
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (12*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + 13*Pi/(24*sqrt(6)))/sqrt(n) + (217*Pi^2/6912 + 9/(2*Pi^2) + 13/8)/n). - Vaclav Kotesovec, Feb 26 2015, extended Nov 04 2016
G.f.: exp(Sum_{k>=1} (sigma_1(k) - 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
a(0) = 1, a(n) = A232697(n) - 1. - George Beck, May 09 2019
From Peter Bala, Feb 19 2021: (Start)
G.f.: A(q) = Sum_{n >= 0} q^(n^2)/( (1 - q)*Product_{k = 2..n} (1 - q^k)^2 ).
More generally, A(q) = Sum_{n >= 0} q^(n*(n+r))/( (1 - q) * Product_{k = 2..n} (1 - q^k)^2 * Product_{i = 1..r} (1 - q^(n+i)) ) for r = 0,1,2,.... (End)
G.f.: 1 + Sum_{n >= 1} x^(n+1)/Product_{k = 1..n-1} 1 - x^(k+2). - Peter Bala, Dec 01 2024

A067029 Exponent of least prime factor in prime factorization of n, a(1)=0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 17 2002

Keywords

Comments

Even bisection is A001511: a(2n) = A007814(n) + 1. - Ralf Stephan, Jan 31 2004
Number of occurrences of the smallest part in the partition with Heinz number n. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). Example: a(24)=3 because the partition with Heinz number 24 = 3*2*2*2 is [2,1,1,1]. - Emeric Deutsch, Oct 02 2015
Together with A028234 is useful for defining sequences that are multiplicative with a(p^e) = f(e), as recurrences of the form: a(1) = 1 and for n > 1, a(n) = f(A067029(n)) * a(A028234(n)). - Antti Karttunen, May 29 2017

Examples

			a(18) = a(2^1 * 3^2) = 1.
		

Crossrefs

Cf. A051903, A020639, A028233, A034684, A071178, first column of A124010, A247180.

Programs

  • Haskell
    a067029 = head . a124010_row
    -- Reinhard Zumkeller, Jul 05 2013, Jun 04 2012
    
  • Maple
    A067029 := proc(n)
        local f,lp,a;
        a := 0 ;
        lp := n+1 ;
        for f in ifactors(n)[2] do
            p := op(1,f) ;
            if p < lp then
                a := op(2,f) ;
                lp := p;
            fi;
        end do:
        a ;
    end proc: # R. J. Mathar, Jul 08 2015
    seq(ifelse(n = 1, 0, ifactors(n)[2][1][2]), n = 1..90); # Peter Luschny, Jun 15 2025
  • Mathematica
    Join[{0},Table[FactorInteger[n][[1,2]],{n,2,100}]] (* Harvey P. Dale, Oct 14 2011 *)
  • PARI
    a(n) = if (n==1, 0, factor(n)[1,2]); \\ Michel Marcus, May 15 2017
    
  • Python
    from sympy import factorint
    def a(n):
        f=factorint(n)
        return 0 if n==1 else f[min(f)] # Indranil Ghosh, May 15 2017
    
  • Scheme
    ;; Naive implementation of A020639 is given under that entry. All of these functions could be also defined with definec to make them faster on the later calls. See http://oeis.org/wiki/Memoization#Scheme
    (define (A067029 n) (if (< n 2) 0 (let ((mp (A020639 n))) (let loop ((e 0) (n (/ n mp))) (cond ((integer? n) (loop (+ e 1) (/ n mp))) (else e)))))) ;;  Antti Karttunen, May 29 2017

Formula

a(n) = A124010(n,1). - Reinhard Zumkeller, Aug 27 2011
A028233(n) = A020639(n)^a(n). - Reinhard Zumkeller, May 13 2006
a(A247180(n)) = 1. - Reinhard Zumkeller, Nov 23 2014
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} (Product_{i=1..k-1} (1 - 1/prime(i)))/(prime(k)-1) = 1/(prime(1)-1) + (1-1/prime(1))*(1/(prime(2)-1) + (1-1/prime(2))*(1/(prime(3)-1) + (1-1/prime(3))*( ... ))) = 1.6125177915... - Amiram Eldar, Oct 26 2021

A356862 Numbers with a unique largest prime exponent.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 88, 89, 90, 92, 96, 97, 98, 99, 101, 103, 104
Offset: 1

Views

Author

Jens Ahlström, Sep 01 2022

Keywords

Comments

If the prime factorization of k has a unique largest exponent, then k is a term.
Numbers whose multiset of prime factors (with multiplicity) has a unique mode. - Gus Wiseman, May 12 2023
Disjoint union of A246655 and A376250. The asymptotic density of this sequence, 0.3660366524547281232052..., is equal to the density of A376250 since the prime powers have a zero density. - Amiram Eldar, Sep 17 2024

Examples

			Prime powers (A246655) are in the sequence, since they have only one prime exponent in their prime factorization, hence a unique largest exponent.
144 is in the sequence, since 144 = 2^4 * 3^2 and there is the unique largest exponent 4.
225 is not in the sequence, since 225 = 3^2 * 5^2 and the largest exponent 2 is not unique, but rather it is the exponent of both the prime factor 3 and of the prime factor 5.
		

Crossrefs

Subsequence of A319161 (which has additional terms 1, 180, 252, 300, 396, 450, 468, ...).
For factors instead of exponents we have A102750.
For smallest instead of largest we have A359178, counted by A362610.
The complement is A362605, counted by A362607.
The complement for co-mode is A362606, counted by A362609.
Partitions of this type are counted by A362608.
These are the positions of 1's in A362611, for co-modes A362613.
A001221 is the number of prime exponents, sum A001222.
A027746 lists prime factors, A112798 indices, A124010 exponents.
A362614 counts partitions by number of modes, A362615 co-modes.

Programs

  • Mathematica
    Select[Range[2, 100], Count[(e = FactorInteger[#][[;; , 2]]), Max[e]] == 1 &] (* Amiram Eldar, Sep 01 2022 *)
  • PARI
    isok(k) = if (k>1, my(f=factor(k), m=vecmax(f[,2]), w=select(x->(f[x,2] == m), [1..#f~])); #w == 1); \\ Michel Marcus, Sep 01 2022
  • Python
    from sympy import factorint
    from collections import Counter
    def ok(k):
        c = Counter(factorint(k)).most_common(2)
        return not (len(c) > 1 and c[0][1] == c[1][1])
    print([k for k in range(2, 105) if ok(k)])
    
  • Python
    from sympy import factorint
    from itertools import count, islice
    def A356862_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:len(f:=sorted(factorint(n).values(),reverse=True))==1 or f[0]!=f[1],count(max(startvalue,2)))
    A356862_list = list(islice(A356862_gen(),30)) # Chai Wah Wu, Sep 10 2022
    

A362610 Number of integer partitions of n having a unique part of least multiplicity.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 10, 13, 16, 23, 30, 35, 50, 61, 73, 95, 123, 139, 187, 216, 269, 328, 411, 461, 594, 688, 836, 980, 1211, 1357, 1703, 1936, 2330, 2697, 3253, 3649, 4468, 5057, 6005, 6841, 8182, 9149, 10976, 12341, 14508, 16447, 19380, 21611, 25553, 28628
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

Alternatively, these are partitions with a part appearing fewer times than each of the others.

Examples

			The partition (3,3,2,2,2,1,1,1) has least multiplicity 2, and only one part of multiplicity 2 (namely 3), so is counted under a(15).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (2111)   (411)     (511)      (422)
                            (11111)  (3111)    (2221)     (611)
                                     (21111)   (4111)     (2222)
                                     (111111)  (22111)    (5111)
                                               (31111)    (22211)
                                               (211111)   (41111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For parts instead of multiplicities we have A002865, ranks A247180.
For median instead of co-mode we have A238478, complement A238479.
These partitions have ranks A359178.
For mode complement of co-mode we have A362607, ranks A362605.
For mode instead of co-mode we have A362608, ranks A356862.
The complement is counted by A362609, ranks A362606.
A000041 counts integer partitions.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[Length/@Split[#],Min@@Length/@Split[#]]==1&]],{n,0,30}]
  • PARI
    seq(n) = my(A=O(x*x^n)); Vec(sum(m=2, n+1, sum(j=1, n, x^(j*(m-1))/(1 + if(j*m<=n, x^(j*m)/(1-x^j) )) + A)*prod(j=1, n\m, 1 + x^(j*m)/(1 - x^j) + A)), -(n+1)) \\ Andrew Howroyd, May 04 2023

Formula

G.f.: Sum_{m>=2} (Sum_{j>=1} x^(j*(m-1))/(1 + x^(j*m)/(1 - x^j))) * (Product_{j>=1} (1 + x^(j*m)/(1 - x^j))). - Andrew Howroyd, May 04 2023

A359178 Numbers with a unique smallest prime exponent.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116, 117
Offset: 1

Views

Author

Jens Ahlström, Jan 08 2023

Keywords

Comments

180 is the smallest number with a unique smallest prime exponent that is not a member of A130091.

Examples

			2 = 2^1 is a term since it has 1 as a unique smallest exponent.
6 = 2^1 * 3^1 is not a term since it has two primes with the same smallest exponent.
180 = 2^2 * 3^2 * 5^1 is a term since it has 1 as a unique smallest exponent.
		

Crossrefs

For parts instead of multiplicities we have A247180, counted by A002865.
For greatest instead of smallest we have A356862, counted by A362608.
The complement is A362606, counted by A362609.
Partitions of this type are counted by A362610.
These are the positions of 1's in A362613, for modes A362611.
A001221 counts prime exponents and A001222 adds them up.
A027746 lists prime factors, A112798 indices, A124010 exponents.

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Count[e, Min[e]] == 1]; Select[Range[2, 200], q] (* Amiram Eldar, Jan 08 2023 *)
  • PARI
    isok(n) = if (n>1, my(f=factor(n), e = vecmin(f[,2])); #select(x->(x==e), f[,2], 1) == 1); \\ Michel Marcus, Jan 27 2023
  • Python
    from sympy import factorint
    def ok(k):
      c = sorted(factorint(k).values())
      return len(c) == 1 or c[0] != c[1]
    print([k for k in range(2, 118) if ok(k)])
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A359178_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:(f:=list(factorint(n).values())).count(min(f))==1,count(max(startvalue,2)))
    A359178_list = list(islice(A359178_gen(),20)) # Chai Wah Wu, Feb 08 2023
    

A275812 Sum of exponents larger than one in the prime factorization of n: A001222(n) - A056169(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 5, 0, 2, 2, 4, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2016

Keywords

Crossrefs

Differs from A212172 for the first time at n=36, where a(36)=4, while A212172(36)=2.

Programs

  • Mathematica
    Table[Total@ Map[Last, Select[FactorInteger@ n, Last@ # > 1 &] /. {} -> {{0, 0}}], {n, 120}] (* Michael De Vlieger, Aug 11 2016 *)
  • PARI
    a(n) = my(f = factor(n)); sum(k=1, #f~, if (f[k,2] > 1, f[k,2])); \\ Michel Marcus, Jul 19 2017
  • Perl
    sub a275812 { vecsum( grep {$> 1} map {$->[1]} factor_exp(shift) ); } # Dana Jacobsen, Aug 15 2016
    
  • Python
    from sympy import factorint, primefactors
    def a001222(n):
        return 0 if n==1 else a001222(n//primefactors(n)[0]) + 1
    def a056169(n):
        f=factorint(n)
        return 0 if n==1 else sum(1 for i in f if f[i]==1)
    def a(n):
        return a001222(n) - a056169(n)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 19 2017
    

Formula

a(1) = 0, and for n > 1, if A067029(n)=1 [when n is one of the terms of A247180], a(n) = a(A028234(n)), otherwise a(n) = A067029(n)+a(A028234(n)).
a(n) = A001222(n) - A056169(n).
a(n) = A001222(A057521(n)). - Antti Karttunen, Jul 19 2017
From Amiram Eldar, Sep 28 2023: (Start)
Additive with a(p) = 0, and a(p^e) = e for e >= 2.
a(n) >= 0, with equality if and only if n is squarefree (A005117).
a(n) <= A001222(n), with equality if and only if n is powerful (A001694).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (1/p^2 + 1/(p*(p-1))) = A085548 + A136141 = 1.22540408909086062637... . (End)
a(n) = A046660(n) + A056170(n). - Amiram Eldar, Jan 09 2024

A088377 a(n) = (smallest prime factor of n)^2; a(1) = 1.

Original entry on oeis.org

1, 4, 9, 4, 25, 4, 49, 4, 9, 4, 121, 4, 169, 4, 9, 4, 289, 4, 361, 4, 9, 4, 529, 4, 25, 4, 9, 4, 841, 4, 961, 4, 9, 4, 25, 4, 1369, 4, 9, 4, 1681, 4, 1849, 4, 9, 4, 2209, 4, 49, 4, 9, 4, 2809, 4, 25, 4, 9, 4, 3481, 4, 3721, 4, 9, 4, 25, 4, 4489, 4, 9, 4, 5041, 4, 5329, 4, 9, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 28 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := FactorInteger[n][[1, 1]]^2; Array[a, 100] (* Amiram Eldar, May 16 2025 *)
  • PARI
    a(n) = if(n == 1, 1, factor(n)[1,1]^2); \\ Amiram Eldar, May 16 2025

Formula

a(n) = A000290(A020639(n)).
a(n) = sqrt(A088379(n)). - Amiram Eldar, May 16 2025

A326066 a(n) = sigma(n) - sigma(A032742(n)), where A032742 gives the largest proper divisor of n.

Original entry on oeis.org

0, 2, 3, 4, 5, 8, 7, 8, 9, 12, 11, 16, 13, 16, 18, 16, 17, 26, 19, 24, 24, 24, 23, 32, 25, 28, 27, 32, 29, 48, 31, 32, 36, 36, 40, 52, 37, 40, 42, 48, 41, 64, 43, 48, 54, 48, 47, 64, 49, 62, 54, 56, 53, 80, 60, 64, 60, 60, 59, 96, 61, 64, 72, 64, 70, 96, 67, 72, 72, 96, 71, 104, 73, 76, 93, 80, 84, 112, 79, 96, 81, 84, 83
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Cf. A000203, A013661, A020639, A032742, A246655 (positions of fixed points), A247180, A326065, A326067, A326135, A326136.

Programs

  • Mathematica
    Join[{0},Table[DivisorSigma[1,n]-DivisorSigma[1,Divisors[n][[-2]]],{n,2,100}]] (* Harvey P. Dale, Jan 12 2022 *)
  • PARI
    A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
    A326065(n) = sigma(A032742(n));
    A326066(n) = (sigma(n) - sigma(A032742(n)));

Formula

a(n) = A000203(n) - A326065(n) = A000203(n) - A000203(A032742(n)).
a(1) = 0; for n > 1, if n is of the form p^k (p prime and exponent k >= 1), then a(n) = n, otherwise a(n) > n.
For terms in A247180, i.e., when n = A020639(n) * A032742(n), with the smallest prime factor A020639(n) unitary, a(n) = A020639(n) * A326065(n).
Sum_{k=1..n} a(k) ~ (zeta(2)/2) * (1 - c) * n^2, where c is defined in the corresponding formula in A326065. . - Amiram Eldar, Dec 21 2024
Showing 1-8 of 8 results.