cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A051924 a(n) = binomial(2*n,n) - binomial(2*n-2,n-1); or (3n-2)*C(n-1), where C = Catalan numbers (A000108).

Original entry on oeis.org

1, 4, 14, 50, 182, 672, 2508, 9438, 35750, 136136, 520676, 1998724, 7696444, 29716000, 115000920, 445962870, 1732525830, 6741529080, 26270128500, 102501265020, 400411345620, 1565841089280, 6129331763880, 24014172955500, 94163002754652, 369507926510352
Offset: 1

Views

Author

Barry E. Williams, Dec 19 1999

Keywords

Comments

Number of partitions with Ferrers plots that fit inside an n X n box, but not in an n-1 X n-1 box. - Wouter Meeussen, Dec 10 2001
From Benoit Cloitre, Jan 29 2002: (Start)
Let m(1,j)=j, m(i,1)=i and m(i,j) = m(i-1,j) + m(i,j-1); then a(n) = m(n,n):
1 2 3 4 ...
2 4 7 11 ...
3 7 14 25 ...
4 11 25 50 ... (End)
This sequence also gives the number of clusters and non-crossing partitions of type D_n. - F. Chapoton, Jan 31 2005
If Y is a 2-subset of a 2n-set X then a(n) is the number of (n+1)-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
Prefaced with a 1: (1, 1, 4, 14, 50, ...) and convolved with the Catalan sequence = A097613: (1, 2, 7, 25, 91, ...). - Gary W. Adamson, May 15 2009
Total number of up steps before the second return in all Dyck n-paths. - David Scambler, Aug 21 2012
Conjecture: a(n) mod n^2 = n+2 iff n is an odd prime. - Gary Detlefs, Feb 19 2013
First differences of A000984 and A030662. - J. M. Bergot, Jun 22 2013
From R. J. Mathar, Jun 30 2013: (Start)
Equivalent to the Meeussen comment and the Bergot comment: The array view of A007318 is
1, 1, 1, 1, 1, 1,
1, 2, 3, 4, 5, 6,
1, 3, 6, 10, 15, 21,
1, 4, 10, 20, 35, 56,
1, 5, 15, 35, 70, 126,
1, 6, 21, 56, 126, 252,
and a(n) are the hook sums Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). (End)
From Gus Wiseman, Apr 12 2019: (Start)
Equivalent to Wouter Meeussen's comment, a(n) is the number of integer partitions (of any positive integer) such that the maximum of the length and the largest part is n. For example, the a(1) = 1 through a(3) = 14 partitions are:
(1) (2) (3)
(11) (31)
(21) (32)
(22) (33)
(111)
(211)
(221)
(222)
(311)
(321)
(322)
(331)
(332)
(333)
(End)
Coxeter-Catalan numbers for Coxeter groups of type D_n [Armstrong]. - N. J. A. Sloane, Mar 09 2022
a(n+1) is the number of ways that a best of n pairs contest with early termination can go. For example, the first stage of an association football (soccer) penalty-kick shoot out has n=5 pairs of shots and there are a(6)=672 distinct ways it can go. For n=2 pairs, writing G for goal and M for miss, and listing the up-to-four shots in chronological order with teams alternating shots, the n(3)=14 possibilities are MMMM, MMMG, MMGM, MMGG, MGM, MGGM, MGGG, GMMM, GMMG, GMG, GGMM, GGMG, GGGM, and GGGG. Not all four shots are taken in two cases because it becomes impossible for one team to overcome the lead of the other team. - Lee A. Newberg, Jul 20 2024

Examples

			Sums of {1}, {2, 1, 1}, {2, 2, 3, 3, 2, 1, 1}, {2, 2, 4, 5, 7, 6, 7, 5, 5, 3, 2, 1, 1}, ...
		

References

  • Drew Armstrong, Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups, Mem. Amer. Math. Soc. 202 (2009), no. 949, x+159. MR 2561274 16; See Table 2.8.

Crossrefs

Left-central elements of the (1, 2)-Pascal triangle A029635.
Column sums of A096771.
Cf. A000108, A024482 (diagonal from 2), A076540 (diagonal from 3), A000124 (row from 2), A004006 (row from 3), A006522 (row from 4).
Cf. A128064; first differences of A000984.
Cf. A097613.

Programs

  • Haskell
    a051924 n = a051924_list !! (n-1)
    a051924_list = zipWith (-) (tail a000984_list) a000984_list
    -- Reinhard Zumkeller, May 25 2013
    
  • Magma
    [Binomial(2*n, n)-Binomial(2*n-2, n-1): n in [1..28]]; // Vincenzo Librandi, Dec 21 2016
  • Maple
    C:= n-> binomial(2*n, n)/(n+1): seq((n+1)*C(n)-n*C(n-1), n=1..25); # Emeric Deutsch, Jan 08 2008
    Z:=(1-z-sqrt(1-4*z))/sqrt(1-4*z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..24); # Zerinvary Lajos, Jan 01 2007
    a := n -> 2^(-2+2*n)*GAMMA(-1/2+n)*(3*n-2)/(sqrt(Pi)*GAMMA(1+n)):
    seq(simplify(a(n)), n=1..24); # Peter Luschny, Dec 14 2015
  • Mathematica
    Table[Binomial[2n,n]-Binomial[2n-2,n-1],{n,30}] (* Harvey P. Dale, Jan 15 2012 *)
  • PARI
    a(n)=binomial(2*n,n)-binomial(2*n-2,n-1) \\ Charles R Greathouse IV, Jun 25 2013
    
  • PARI
    {a(n)=polcoeff((1-x) / sqrt(1-4*x +x*O(x^n)) - 1,n)}
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 08 2014
    
  • PARI
    {a(n)=polcoeff( sum(m=1, n, x^m * sum(k=0, m, binomial(m, k)^2 * x^k) / (1-x +x*O(x^n))^(2*m)), n)}
    for(n=1, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 08 2014
    
  • Sage
    a = lambda n: 2^(-2+2*n)*gamma(n-1/2)*(3*n-2)/(sqrt(pi)*gamma(1+n))
    [a(n) for n in (1..120)] # Peter Luschny, Dec 14 2015
    

Formula

G.f.: (1-x) / sqrt(1-4*x) - 1. - Paul D. Hanna, Nov 08 2014
G.f.: Sum_{n>=1} x^n/(1-x)^(2*n) * Sum_{k=0..n} C(n,k)^2 * x^k. - Paul D. Hanna, Nov 08 2014
a(n+1) = binomial(2*n, n) + 2*Sum_{i=0..n-1} binomial(n+i, i) (V's in Pascal's Triangle). - Jon Perry Apr 13 2004
a(n) = n*C(n-1) - (n-1)*C(n-2), where C(n) = A000108(n) = Catalan(n). For example, a(5) = 50 = 5*C(4) - 4*C(3) - 5*14 - 3*5 = 70 - 20. Triangle A128064 as an infinite lower triangular matrix * A000108 = A051924 prefaced with a 1: (1, 1, 4, 14, 50, 182, ...). - Gary W. Adamson, May 15 2009
Sum of 3 central terms of Pascal's triangle: 2*C(2+2*n, n)+C(2+2*n, 1+n). - Zerinvary Lajos, Dec 20 2005
a(n+1) = A051597(2n,n). - Philippe Deléham, Nov 26 2006
The sequence 1,1,4,... has a(n) = C(2*n,n)-C(2*(n-1),n-1) = 0^n+Sum_{k=0..n} C(n-1,k-1)*A002426(k), and g.f. given by (1-x)/(1-2*x-2*x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-.... (continued fraction). - Paul Barry, Oct 17 2009
a(n) = (3*n-2)*(2*n-2)!/(n*(n-1)!^2) = A001700(n) + A001791(n-1). - David Scambler, Aug 21 2012
D-finite with recurrence: a(n) = 2*(3*n-2)*(2*n-3)*a(n-1)/(n*(3*n-5)). - Alois P. Heinz, Apr 25 2014
a(n) = 2^(-2+2*n)*Gamma(-1/2+n)*(3*n-2)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) ~ (3/4)*4^n*(1-(7/24)/n-(7/128)/n^2-(85/3072)/n^3-(581/32768)/n^4-(2611/262144)/n^5)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
E.g.f.: ((1 - x)*BesselI(0,2*x) + x*BesselI(1,2*x))*exp(2*x) - 1. - Ilya Gutkovskiy, Dec 20 2016
a(n) = 2 * A097613(n) for n > 1. - Bruce J. Nicholson, Jan 06 2019
Sum_{n>=1} a(n)/8^n = 7/(4*sqrt(2)) - 1. - Amiram Eldar, May 06 2023

Extensions

Edited by N. J. A. Sloane, May 03 2008, at the suggestion of R. J. Mathar

A071724 a(n) = 3*binomial(2n, n-1)/(n+2), n > 0, with a(0)=1.

Original entry on oeis.org

1, 1, 3, 9, 28, 90, 297, 1001, 3432, 11934, 41990, 149226, 534888, 1931540, 7020405, 25662825, 94287120, 347993910, 1289624490, 4796857230, 17902146600, 67016296620, 251577050010, 946844533674, 3572042254128, 13505406670700
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Comments

Number of standard tableaux of shape (n+1,n-1) (n>=1). - Emeric Deutsch, May 30 2004
From Gus Wiseman, Apr 12 2019: (Start)
Also the number of integer partitions (of any positive integer) such that n is the maximum number of unit steps East or South in the Young diagram starting from the upper-left square and ending in a boundary square in the lower-right quadrant. Also the number of integer partitions fitting in a triangular partition of length n but not of length n - 1. For example, the a(0) = 1 through a(4) = 9 partitions are:
() (1) (2) (3)
(11) (22)
(21) (31)
(32)
(111)
(211)
(221)
(311)
(321)
(End)
The sequence (-1)^(n+1)*a(n), for n >= 1 and +1 for n = 0, is the so-called Z-sequence of the Riordan triangle A158909. For the notion of Z- and A-sequences for Riordan arrays see the W. Lang link under A006232 with details and references. - Wolfdieter Lang, Oct 22 2019

Crossrefs

Number of times n appears in A065770.
Column sums of A325189.
Row sums of A030237.

Programs

  • Magma
    [1] cat [3*Binomial(2*n,n-1)/(n+2): n in [1..29]]; // Vincenzo Librandi, Jul 12 2017
    
  • Maple
    A071724:= n-> 3*binomial(2*n, n-1)/(n+2); 1,seq(A071724(n), n=1..30); # G. C. Greubel, Mar 17 2021
  • Mathematica
    Join[{1}, Table[3Binomial[2n, n-1]/(n+2), {n,1,30}]] (* Vincenzo Librandi, Jul 12 2017 *)
    nn=7;
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    allip=Join@@Table[IntegerPartitions[n],{n,0,nn*(nn+1)/2}];
    Table[Length[Select[allip,otbmax[#]==n&]],{n,0,nn}] (* Gus Wiseman, Apr 12 2019 *)
  • PARI
    a(n)=if(n<1,n==0,3*(2*n)!/(n+2)!/(n-1)!)
    
  • Sage
    [1]+[3*n*catalan_number(n)/(n+2) for n in (1..30)] # G. C. Greubel, Mar 17 2021

Formula

a(n) = A000245(n), n>0.
G.f.: (C(x)-1)*(1-x)/x = (1 + x^2 * C(x)^3)*C(x), where C(x) is g.f. for Catalan numbers, A000108.
G.f.: ((1-sqrt(1-4*x))/(2*x)-1)*(1-x)/x = A(x) satisfies x^2*A(x)^2 + (x-1)*(2*x-1)*A(x) + (x-1)^2 = 0.
G.f.: 1 + x*C(x)^3, where C(x) is g.f. for the Catalan numbers (A000108). Sequence without the first term is the 3-fold convolution of the Catalan sequence. - Emeric Deutsch, May 30 2004
a(n) is the n-th moment of the function defined on the segment (0, 4) of x axis: a(n) = Integral_{x=0..4} x^n*(-x^(1/2)*cos(3*arcsin((1/2)*x^(1/2)))/Pi) dx, n=0, 1... . - Karol A. Penson, Sep 29 2004
D-finite with recurrence -(n+2)*(n-1)*a(n) + 2*n*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Jul 10 2017
a(n) ~ c*2^(2*n)*n^(-3/2), where c = 3/sqrt(Pi). - Stefano Spezia, Sep 23 2022
From Amiram Eldar, Sep 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 14*(Pi/(3*sqrt(3)) + 1)/9.
Sum_{n>=0} (-1)^n/a(n) = 18/25 - 164*log(phi)/(75*sqrt(5)), where phi is the golden ratio (A001622). (End)

A096771 Triangle read by rows: T(n,m) is the number of partitions of n that (just) fit inside an m X m box, but not in an (m-1) X (m-1) box. Partitions of n with Max(max part, length) = m.

Original entry on oeis.org

1, 0, 2, 0, 1, 2, 0, 1, 2, 2, 0, 0, 3, 2, 2, 0, 0, 3, 4, 2, 2, 0, 0, 2, 5, 4, 2, 2, 0, 0, 1, 7, 6, 4, 2, 2, 0, 0, 1, 6, 9, 6, 4, 2, 2, 0, 0, 0, 7, 11, 10, 6, 4, 2, 2, 0, 0, 0, 5, 14, 13, 10, 6, 4, 2, 2, 0, 0, 0, 5, 15, 19, 14, 10, 6, 4, 2, 2, 0, 0, 0, 3, 17, 22, 21, 14, 10, 6, 4, 2, 2, 0, 0, 0, 2, 17, 29
Offset: 1

Views

Author

Wouter Meeussen, Aug 21 2004

Keywords

Comments

Row sums are A000041. Columns are finite and sum to A051924. The final floor(n/2) terms of each row are the reverse of the initial terms of 2*A000041.

Examples

			T(5,3)=3, counting 32, 311 and 221.
From _Gus Wiseman_, Apr 12 2019: (Start)
Triangle begins:
  1
  0  2
  0  1  2
  0  1  2  2
  0  0  3  2  2
  0  0  3  4  2  2
  0  0  2  5  4  2  2
  0  0  1  7  6  4  2  2
  0  0  1  6  9  6  4  2  2
  0  0  0  7 11 10  6  4  2  2
  0  0  0  5 14 13 10  6  4  2  2
  0  0  0  5 15 19 14 10  6  4  2  2
  0  0  0  3 17 22 21 14 10  6  4  2  2
  0  0  0  2 17 29 27 22 14 10  6  4  2  2
  0  0  0  1 17 33 36 29 22 14 10  6  4  2  2
  0  0  0  1 15 39 45 41 30 22 14 10  6  4  2  2
  0  0  0  0 14 41 57 52 43 30 22 14 10  6  4  2  2
  0  0  0  0 11 47 67 69 57 44 30 22 14 10  6  4  2  2
  0  0  0  0  9 46 81 85 76 59 44 30 22 14 10  6  4  2  2
(End)
		

Crossrefs

A version with reflected rows is A338621.
Related triangles are A115720, A325188, A325189, A325192, A325200, with Heinz-encoded versions A257990, A325169, A065770, A325178, A325195.

Programs

  • Mathematica
    Table[Count[Partitions[n], q_List /; Max[Length[q], Max[q]]===k], {n, 16}, {k, n}]
  • PARI
    row(n)={my(r=vector(n)); forpart(p=n, r[max(#p,p[#p])]++); r} \\ Andrew Howroyd, Jan 12 2024

Formula

Sum_{k>=1} k*T(n,k) = A368985(n). - Andrew Howroyd, Jan 12 2024

A325227 Regular triangle read by rows where T(n,k) is the number of integer partitions of n such that the lesser of the maximum part and the number of parts is k.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 0, 2, 1, 0, 0, 2, 3, 0, 0, 0, 2, 4, 1, 0, 0, 0, 2, 6, 3, 0, 0, 0, 0, 2, 6, 6, 1, 0, 0, 0, 0, 2, 8, 9, 3, 0, 0, 0, 0, 0, 2, 8, 13, 6, 1, 0, 0, 0, 0, 0, 2, 10, 16, 11, 3, 0, 0, 0, 0, 0, 0, 2, 10, 20, 17, 6, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2019

Keywords

Examples

			Triangle begins:
  1
  2  0
  2  1  0
  2  3  0  0
  2  4  1  0  0
  2  6  3  0  0  0
  2  6  6  1  0  0  0
  2  8  9  3  0  0  0  0
  2  8 13  6  1  0  0  0  0
  2 10 16 11  3  0  0  0  0  0
  2 10 20 17  6  1  0  0  0  0  0
  2 12 24 25 11  3  0  0  0  0  0  0
  2 12 28 33 19  6  1  0  0  0  0  0  0
  2 14 32 44 29 11  3  0  0  0  0  0  0  0
  2 14 38 53 43 19  6  1  0  0  0  0  0  0  0
Row n = 9 counts the following partitions:
  (9)          (54)        (333)      (4221)    (51111)
  (111111111)  (63)        (432)      (4311)
               (72)        (441)      (5211)
               (81)        (522)      (6111)
               (22221)     (531)      (42111)
               (222111)    (621)      (411111)
               (2211111)   (711)
               (21111111)  (3222)
                           (3321)
                           (32211)
                           (33111)
                           (321111)
                           (3111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Min[Length[#],Max[#]]==k&]],{n,15},{k,n}]

A325232 Number of integer partitions (of any nonnegative integer) whose sum minus the lesser of their maximum part and their number of parts is n.

Original entry on oeis.org

2, 3, 6, 10, 18, 27, 44, 64, 97, 138, 200, 276, 390, 528, 724, 968, 1301, 1712, 2266, 2946, 3842, 4947, 6372, 8122, 10362, 13094, 16544, 20754, 26010, 32392, 40308, 49876, 61648, 75845, 93178, 114006, 139308, 169586, 206158, 249814, 302267, 364664, 439330
Offset: 0

Views

Author

Gus Wiseman, Apr 13 2019

Keywords

Examples

			The a(0) = 1 through a(4) = 18 partitions:
  ()   (2)   (3)    (4)     (5)
  (1)  (11)  (22)   (32)    (33)
       (21)  (31)   (41)    (42)
             (111)  (221)   (51)
             (211)  (321)   (222)
             (311)  (411)   (322)
                    (1111)  (331)
                    (2111)  (421)
                    (3111)  (511)
                    (4111)  (2211)
                            (3211)
                            (4211)
                            (5111)
                            (11111)
                            (21111)
                            (31111)
                            (41111)
                            (51111)
		

Crossrefs

Number of times n appears in A325224.

Programs

  • Mathematica
    nn=30;
    mindif[ptn_]:=If[ptn=={},0,Total[ptn]-Min[Length[ptn],Max[ptn]]];
    allip=Array[IntegerPartitions,2*nn+2,0,Join];
    Table[Length[Select[allip,mindif[#]==n&]],{n,0,nn}]

Formula

For n > 0, a(n) = Sum_{k > 0} A325227(n + k, k).

Extensions

More terms from Giovanni Resta, Apr 15 2019

A265283 Number of ON (black) cells in the n-th iteration of the "Rule 94" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 3, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, 64, 64, 66, 66, 68
Offset: 0

Views

Author

Robert Price, Dec 06 2015

Keywords

Comments

From Gus Wiseman, Apr 13 2019: (Start)
Also the number of integer partitions of n + 3 such that lesser of the maximum part and the number of parts is 2. The Heinz numbers of these partitions are given by A325229. For example, the a(0) = 1 through a(7) = 10 partitions are:
(21) (22) (32) (33) (43) (44) (54) (55)
(31) (41) (42) (52) (53) (63) (64)
(211) (221) (51) (61) (62) (72) (73)
(2111) (222) (2221) (71) (81) (82)
(2211) (22111) (2222) (22221) (91)
(21111) (211111) (22211) (222111) (22222)
(221111) (2211111) (222211)
(2111111) (21111111) (2221111)
(22111111)
(211111111)
(End)

Examples

			From _Michael De Vlieger_, Dec 14 2015: (Start)
First 12 rows, replacing "0" with "." for better visibility of ON cells, followed by the total number of 1's per row:
                        1                          =  1
                      1 1 1                        =  3
                    1 1 . 1 1                      =  4
                  1 1 1 . 1 1 1                    =  6
                1 1 . 1 . 1 . 1 1                  =  6
              1 1 1 . 1 . 1 . 1 1 1                =  8
            1 1 . 1 . 1 . 1 . 1 . 1 1              =  8
          1 1 1 . 1 . 1 . 1 . 1 . 1 1 1            = 10
        1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1          = 10
      1 1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1 1        = 12
    1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1      = 12
  1 1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1 1    = 14
1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1  = 14
(End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule = 94; rows = 30; Table[Total[Table[Take[CellularAutomaton[rule, {{1},0},rows-1,{All,All}][[k]], {rows-k+1, rows+k-1}], {k,1,rows}][[k]]], {k,1,rows}]
    Total /@ CellularAutomaton[94, {{1}, 0}, 65] (* Michael De Vlieger, Dec 14 2015 *)

Formula

Conjectures from Colin Barker, Dec 07 2015 and Apr 16 2019: (Start)
a(n) = (5-(-1)^n+2*n)/2 = A213222(n+3) for n>1.
a(n) = n+2 for n>1 and even.
a(n) = n+3 for n>1 and odd.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>2.
G.f.: (1+2*x-x^4) / ((1-x)^2*(1+x)).
(End)

A325194 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with co-rank n - k, where co-rank is the greater of the length and the largest part.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 7, 1, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 13 2019

Keywords

Examples

			Triangle begins:
  1
  0  0
  0  1  0
  0  0  0  0
  0  0  2  0  0
  0  0  0  1  0  0
  0  0  0  2  1  0  0
  0  0  0  0  2  0  0  0
  0  0  0  0  2  3  0  0  0
  0  0  0  0  0  2  3  0  0  0
  0  0  0  0  0  2  4  2  0  0  0
  0  0  0  0  0  0  2  5  1  0  0  0
  0  0  0  0  0  0  2  4  7  1  0  0  0
  0  0  0  0  0  0  0  2  6  6  0  0  0  0
  0  0  0  0  0  0  0  2  4  9  7  0  0  0  0
  0  0  0  0  0  0  0  0  2  6 11  5  0  0  0  0
  0  0  0  0  0  0  0  0  2  4 10 14  5  0  0  0  0
  0  0  0  0  0  0  0  0  0  2  6 13 15  3  0  0  0  0
  0  0  0  0  0  0  0  0  0  2  4 10 19 17  2  0  0  0  0
  0  0  0  0  0  0  0  0  0  0  2  6 14 22 17  1  0  0  0  0
  0  0  0  0  0  0  0  0  0  0  2  4 10 21 29 17  1  0  0  0  0
Row n = 16 counts the following partitions:
  (8)         (72)       (64)      (533)    (444)
  (11111111)  (711)      (622)     (542)    (3333)
              (2211111)  (631)     (551)    (4332)
              (3111111)  (6211)    (5222)   (4422)
                         (61111)   (5321)   (4431)
                         (222211)  (5411)
                         (322111)  (32222)
                         (331111)  (33221)
                         (421111)  (33311)
                         (511111)  (42221)
                                   (43211)
                                   (44111)
                                   (52211)
                                   (53111)
		

Crossrefs

Column sums are A000041. Row sums are A325193.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[k],Max[Length[#],Max[#]]==n-k&]],{n,0,10},{k,0,n}]
Showing 1-7 of 7 results.