cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 350 results. Next

A360099 To get A(n,k), replace 0's in the binary expansion of n with (-1) and interpret the result in base k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, -1, 0, 1, 0, 1, 0, 1, 1, 2, -1, 0, 1, 2, 3, -1, 1, 0, 1, 3, 4, 1, 1, -1, 0, 1, 4, 5, 5, 3, 1, 1, 0, 1, 5, 6, 11, 7, 5, 3, -1, 0, 1, 6, 7, 19, 13, 11, 7, -2, 1, 0, 1, 7, 8, 29, 21, 19, 13, 1, 0, -1, 0, 1, 8, 9, 41, 31, 29, 21, 14, 3, 0, 1, 0, 1, 9, 10, 55, 43, 41, 31, 43, 16, 5, 2, -1
Offset: 0

Views

Author

Alois P. Heinz, Jan 25 2023

Keywords

Comments

The empty bit string is used as binary expansion of 0, so A(0,k) = 0.

Examples

			Square array A(n,k) begins:
   0,  0, 0,  0,  0,   0,   0,   0,   0,   0,   0, ...
   1,  1, 1,  1,  1,   1,   1,   1,   1,   1,   1, ...
  -1,  0, 1,  2,  3,   4,   5,   6,   7,   8,   9, ...
   1,  2, 3,  4,  5,   6,   7,   8,   9,  10,  11, ...
  -1, -1, 1,  5, 11,  19,  29,  41,  55,  71,  89, ...
   1,  1, 3,  7, 13,  21,  31,  43,  57,  73,  91, ...
  -1,  1, 5, 11, 19,  29,  41,  55,  71,  89, 109, ...
   1,  3, 7, 13, 21,  31,  43,  57,  73,  91, 111, ...
  -1, -2, 1, 14, 43,  94, 173, 286, 439, 638, 889, ...
   1,  0, 3, 16, 45,  96, 175, 288, 441, 640, 891, ...
  -1,  0, 5, 20, 51, 104, 185, 300, 455, 656, 909, ...
		

Crossrefs

Columns k=0-6, 10 give: A062157, A145037, A006257, A147991, A147992, A153777, A147993, A359925.
Rows n=0-10 give: A000004, A000012, A023443, A000027(k+1), A165900, A002061, A165900(k+1), A002061(k+1), A083074, A152618, A062158.
Main diagonal gives A360096.

Programs

  • Maple
    A:= proc(n, k) option remember; local m;
         `if`(n=0, 0, k*A(iquo(n, 2, 'm'), k)+2*m-1)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= (n, k)-> (l-> add((2*l[i]-1)*k^(i-1), i=1..nops(l)))(Bits[Split](n)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);

Formula

G.f. for column k satisfies g_k(x) = k*(x+1)*g_k(x^2) + x/(1+x).
A(n,k) = k*A(floor(n/2),k)+2*(n mod 2)-1 for n>0, A(0,k)=0.
A(n,k) mod 2 = A057427(n) if k is even.
A(n,k) mod 2 = A030300(n) if k is odd and n>=1.
A(2^(n+1),1) + n = 0.

A062160 Square array T(n,k) = (n^k - (-1)^k)/(n+1), n >= 0, k >= 0, read by falling antidiagonals.

Original entry on oeis.org

0, 1, 0, -1, 1, 0, 1, 0, 1, 0, -1, 1, 1, 1, 0, 1, 0, 3, 2, 1, 0, -1, 1, 5, 7, 3, 1, 0, 1, 0, 11, 20, 13, 4, 1, 0, -1, 1, 21, 61, 51, 21, 5, 1, 0, 1, 0, 43, 182, 205, 104, 31, 6, 1, 0, -1, 1, 85, 547, 819, 521, 185, 43, 7, 1, 0, 1, 0, 171, 1640, 3277, 2604, 1111, 300, 57, 8, 1, 0, -1, 1, 341, 4921, 13107, 13021, 6665, 2101, 455, 73, 9, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2001

Keywords

Comments

For n >= 1, T(n, k) equals the number of walks of length k between any two distinct vertices of the complete graph K_(n+1). - Peter Bala, May 30 2024

Examples

			From _Seiichi Manyama_, Apr 12 2019: (Start)
Square array begins:
   0, 1, -1,  1,  -1,    1,    -1,      1, ...
   0, 1,  0,  1,   0,    1,     0,      1, ...
   0, 1,  1,  3,   5,   11,    21,     43, ...
   0, 1,  2,  7,  20,   61,   182,    547, ...
   0, 1,  3, 13,  51,  205,   819,   3277, ...
   0, 1,  4, 21, 104,  521,  2604,  13021, ...
   0, 1,  5, 31, 185, 1111,  6665,  39991, ...
   0, 1,  6, 43, 300, 2101, 14706, 102943, ... (End)
		

Crossrefs

Related to repunits in negative bases (cf. A055129 for positive bases).
Main diagonal gives A081216.
Cf. A109502.

Programs

  • Maple
    seq(print(seq((n^k - (-1)^k)/(n+1), k = 0..10)), n = 0..10); # Peter Bala, May 31 2024
  • Mathematica
    T[n_,k_]:=(n^k - (-1)^k)/(n+1); Join[{0},Table[Reverse[Table[T[n-k,k],{k,0,n}]],{n,12}]]//Flatten (* Stefano Spezia, Feb 20 2024 *)

Formula

T(n, k) = n^(k-1) - n^(k-2) + n^(k-3) - ... + (-1)^(k-1) = n^(k-1) - T(n, k-1) = n*T(n, k-1) - (-1)^k = (n - 1)*T(n, k-1) + n*T(n, k-2) = round[n^k/(n+1)] for n > 1.
T(n, k) = (-1)^(k+1) * resultant( n*x + 1, (x^k-1)/(x-1) ). - Max Alekseyev, Sep 28 2021
G.f. of row n: x/((1+x) * (1-n*x)). - Seiichi Manyama, Apr 12 2019
E.g.f. of row n: (exp(n*x) - exp(-x))/(n+1). - Stefano Spezia, Feb 20 2024
From Peter Bala, May 31 2024: (Start)
Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = (m + 1)^(n-1) for n >= 1.
Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1 + m_2 + m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A109502.
T(m_1 + m_2 + m_1*m_2, k) = Sum_{i = 0..k} Sum_{j = i..k} binomial(k, i)* binomial(k-i, j-i)*T(m_1, j)*T(m_2, k-i). (End)

A065167 Table T(n,k) read by antidiagonals, where the k-th row gives the permutation t->t+k of Z, folded to N (k >= 0, n >= 1).

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 4, 1, 6, 6, 5, 6, 2, 8, 8, 6, 3, 8, 4, 10, 10, 7, 8, 1, 10, 6, 12, 12, 8, 5, 10, 2, 12, 8, 14, 14, 9, 10, 3, 12, 4, 14, 10, 16, 16, 10, 7, 12, 1, 14, 6, 16, 12, 18, 18, 11, 12, 5, 14, 2, 16, 8, 18, 14, 20, 20, 12, 9, 14, 3, 16, 4, 18, 10, 20, 16, 22, 22, 13, 14, 7, 16, 1
Offset: 0

Views

Author

Antti Karttunen, Oct 19 2001

Keywords

Comments

Simple periodic site swap permutations of natural numbers.
Row n of the table (starting from n=0) gives a permutation of natural numbers corresponding to the simple, infinite, periodic site swap pattern ...nnnnn...

Examples

			Table begins:
1 2 3 4 5 6 7 ...
2 4 1 6 3 8 5 ...
4 6 2 8 1 10 3 ...
6 8 4 10 2 12 1 ...
		

Crossrefs

Successive rows and associated site swap sequences, starting from the zeroth row: (A000027, A000004), (A065164, A000012), (A065165, A007395), (A065166, A010701). Cf. also A065171, A065174, A065177. trinv given at A054425.

Programs

  • Maple
    PerSS_table := (n) -> PerSS((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1, (n-((trinv(n)*(trinv(n)-1))/2))); PerSS := (n,c) -> Z2N(N2Z(n)+c);
    N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1),1,0);
    [seq(PerSS_table(j),j=0..119)];

Formula

Let f: Z -> N be given by f(z) = 2z if z>0 else 2|z|+1, with inverse g(z) = z/2 if z even else (1-z)/2. Then the n-th term of the k-th row is f(g(n)+k).

A092092 Back and Forth Summant S(n, 3): a(n) = Sum{i=0..floor(2n/3)} (n-3i).

Original entry on oeis.org

1, 1, 0, 3, 2, 0, 5, 3, 0, 7, 4, 0, 9, 5, 0, 11, 6, 0, 13, 7, 0, 15, 8, 0, 17, 9, 0, 19, 10, 0, 21, 11, 0, 23, 12, 0, 25, 13, 0, 27, 14, 0, 29, 15, 0, 31, 16, 0, 33, 17, 0, 35, 18, 0, 37, 19, 0, 39, 20, 0, 41, 21, 0, 43, 22, 0, 45, 23, 0, 47, 24, 0, 49, 25, 0, 51, 26, 0, 53, 27, 0, 55, 28
Offset: 1

Views

Author

Jahan Tuten (jahant(AT)indiainfo.com), Mar 29 2004

Keywords

Comments

The terms for n>1 can also be defined by: a(n)=0 if n==0 (mod 3), and otherwise a(n) equals the inverse of 3 in Z/nZ*. - José María Grau Ribas, Jun 18 2013
The subsequence of nonzero terms is essentially the same as A026741. - Giovanni Resta, Jun 18 2013

References

  • F. Smarandache, Back and Forth Summants, Arizona State Univ., Special Collections, 1972.

Crossrefs

Other values of k: A000004 (k = 1, 2), A027656 (k = 4), A092093 (k = 5).
Cf. A226782 - A226787 for inverses of 4,5,6,.. in Z/nZ*.

Programs

  • Maple
    f:= proc(n) local t;
    t:= n mod 3;
    if t = 0 then 0 elif t = 1 then 2/3*(n+1/2) else (n+1)/3 fi
    end proc:
    map(f, [$1..100]); # Robert Israel, May 19 2016
  • Mathematica
    LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 1, 0, 3, 2, 0}, 100] (* Jean-François Alcover, Jun 04 2020 *)
  • PARI
    S(n, k=3) = local(s, x); s = n; x = n - k; while (x >= -n, s = s + x; x = x - k); s;

Formula

a(3n) = 0; a(3n+1) = 2n+1; a(3n+2) = n+1.
G.f.: x*(1+x+x^3) / ( (x-1)^2*(1+x+x^2)^2 ). - R. J. Mathar, Jun 26 2013
a(n) = Sum_{k=1..n} k*( floor((3k-1)/n)-floor((3k-2)/n) ). - Anthony Browne, May 17 2016

Extensions

Edited and extended by David Wasserman, Dec 19 2005

A108306 Expansion of (3*x+1)/(1-3*x-3*x^2).

Original entry on oeis.org

1, 6, 21, 81, 306, 1161, 4401, 16686, 63261, 239841, 909306, 3447441, 13070241, 49553046, 187869861, 712268721, 2700415746, 10238053401, 38815407441, 147160382526, 557927369901, 2115263257281, 8019571881546, 30404505416481, 115272231894081
Offset: 0

Views

Author

Creighton Dement, Jul 24 2005

Keywords

Comments

Binomial transform is A055271. May be seen as a ibasefor-transform of the zero-sequence A000004 with respect to the floretion given in the program code.
The sequence is the INVERT transform of (1, 5, 10, 20, 40, 80, 160, ...) and can be obtained by extracting the upper left terms of matrix powers of [(1,5); (1,2)]. These results are a case (a=5, b=2) of the conjecture: The INVERT transform of a sequence starting (1, a, a*b, a*b^2, a*b^3, ...) is equivalent to extracting the upper left terms of powers of the 2x2 matrix [(1,a); (1,b)]. - Gary W. Adamson, Jul 31 2016
From Klaus Purath, Mar 09 2023: (Start)
For any terms (a(n), a(n+1)) = (x, y), -3*x^2 - 3*x*y + y^2 = 15*(-3)^n = A082111(2)*(-3)^n. This is valid in general for all recursive sequences (t) with constant coefficients (3,3) and t(0) = 1: -3*x^2 - 3*x*y + y^2 = A082111(t(1)-4)*(-3)^n.
By analogy to this, for three consecutive terms (x, y, z) of any sequence (t) of the form (3,3) with t(0) = 1: y^2 - x*z = A082111(t(1)-4)*(-3)^n. (End)

Crossrefs

Cf. A055271.
Cf. A084057.

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 3*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 01 2016
  • Maple
    seriestolist(series((3*x+1)/(1-3*x-3*x^2), x=0,25));
  • Mathematica
    CoefficientList[Series[(3 x + 1) / (1 - 3 x - 3 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 01 2016 *)

Formula

Recurrence: a(0)=1; a(1)=6; a(n) = 3a(n-1) + 3a(n-2) - N-E. Fahssi, Apr 20 2008

A171522 Denominator of 1/n^2-1/(n+2)^2.

Original entry on oeis.org

0, 9, 16, 225, 144, 1225, 576, 3969, 1600, 9801, 3600, 20449, 7056, 38025, 12544, 65025, 20736, 104329, 32400, 159201, 48400, 233289, 69696, 330625, 97344, 455625, 132496, 613089, 176400, 808201, 230400, 1046529, 295936, 1334025, 374544, 1677025, 467856
Offset: 0

Views

Author

Paul Curtz, Dec 11 2009

Keywords

Comments

This is the third column in the table of denominators of the hydrogenic spectra (the main diagonal A147560):
0, 0, 0, 0, 0, 0, 0, 0... A000004
1, 4, 9, 16, 25, 36, 49, 64... A000290
1, 36, 16, 100, 9, 196, 64, 324... A061038
1, 144, 225, 12, 441, 576, 81, 900... A061040
1, 400, 144, 784, 64,1296, 400,1936... A061042
1, 900 1225,1600,2025, 100,3025,3600... A061044
1,1764, 576, 324, 225,4356, 48,6084... A061046
1,3136,3969,4900,5929,7056,8281, 196... A061048.

Crossrefs

Cf. A105371. Bisections: A060300, A069075.

Programs

  • Maple
    A171522 := proc(n) if n = 0 then 0 else lcm(n+2,n) ; %^2 ; end if ; end:
    seq(A171522(n),n=0..70) ; # R. J. Mathar, Dec 15 2009
  • Mathematica
    a[n_] := If[EvenQ[n], (n*(n+2))^2/4, (n*(n+2))^2]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jun 13 2017 *)
  • PARI
    concat(0, Vec(x*(x^8+4*x^6+16*x^5+190*x^4+64*x^3+180*x^2+16*x+9) / ((x-1)^5*-(x+1)^5) + O(x^100))) \\ Colin Barker, Nov 05 2014

Formula

a(n) = (A066830(n+1))^2.
a(n) = -((-5+3*(-1)^n)*n^2*(2+n)^2)/8. - Colin Barker, Nov 05 2014
G.f.: x*(x^8+4*x^6+16*x^5+190*x^4+64*x^3+180*x^2+16*x+9) / ((x-1)^5*-(x+1)^5). - Colin Barker, Nov 05 2014

Extensions

Edited and extended by R. J. Mathar, Dec 15 2009

A199572 Number of round trips of length n on the cycle graph C_2 from any of the two vertices.

Original entry on oeis.org

1, 0, 4, 0, 16, 0, 64, 0, 256, 0, 1024, 0, 4096, 0, 16384, 0, 65536, 0, 262144, 0, 1048576, 0, 4194304, 0, 16777216, 0, 67108864, 0, 268435456, 0, 1073741824, 0, 4294967296, 0, 17179869184, 0, 68719476736, 0, 274877906944, 0
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2011

Keywords

Comments

See the array and triangle A199571 for the general cycle graph C_N counting.
This is A000302 and A000004 interleaved. - Omar E. Pol, Nov 09 2011
With offset = 1: Number of ways to separate n distinguishable objects into an odd size pile and an even size pile. For example: a(3) = 4 because we have: {{1},{2,3}}; {{2},{1,3}}; {{3},{1,2}}; {{1,2,3},{}}. - Geoffrey Critzer, Jun 10 2013
Inverse Stirling transform of A065143. - Vladimir Reshetnikov, Nov 01 2015

Examples

			a(2) = 4 from starting with vertex no. 1, with edges e1 and e2 to vertex no. 2: e1e1, e2e2, e1e2 and e2e1.
		

Crossrefs

Cf. A000007 (N=1), A078008 (N=3). a(n) is second row of array w(N,L) A199571, and second column of the triangle a(K,N) A199571.
Cf. A065143 (Stirling transform).

Programs

  • Mathematica
    nn = 39; Drop[Range[0, nn]! CoefficientList[Series[ Sinh[x] Cosh[x], {x, 0, nn}],x], 1] (* Geoffrey Critzer, Jun 10 2013 *)
  • PARI
    vector(100, n, n--; (2^(n) +(-2)^n)/2) \\ Altug Alkan, Nov 02 2015

Formula

a(n) = (2^n + (-2)^n)/2 = 2^(n-1)*(1 + (-1)^n).
O.g.f.: 1/(1-(2*x)^2).
E.g.f.: cosh(2*x)=U(0) where U(k) = 1 + 2*x^2/((4*k+1)*(2*k+1) - x^2*(4*k+1)*(2*k+1)/(x^2 + (4*k+3)*(k+1)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Oct 23 2012

A262221 a(n) = 25*n*(n + 1)/2 + 1.

Original entry on oeis.org

1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, 11626, 12401, 13201, 14026, 14876, 15751, 16651, 17576, 18526, 19501, 20501, 21526, 22576, 23651
Offset: 0

Views

Author

Bruno Berselli, Sep 15 2015

Keywords

Comments

Also centered 25-gonal (or icosipentagonal) numbers.
This is the case k=25 of the formula (k*n*(n+1) - (-1)^k + 1)/2. See table in Links section for similar sequences.
For k=2*n, the formula shown above gives A011379.
Primes in sequence: 151, 251, 701, 1951, 3001, 4751, 10151, 12401, ...

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 51 (23rd row of the table).

Crossrefs

Cf. centered polygonal numbers listed in A069190.
Similar sequences of the form (k*n*(n+1) - (-1)^k + 1)/2 with -1 <= k <= 26: A000004, A000124, A002378, A005448, A005891, A028896, A033996, A035008, A046092, A049598, A060544, A064200, A069099, A069125, A069126, A069128, A069130, A069132, A069174, A069178, A080956, A124080, A163756, A163758, A163761, A164136, A173307.

Programs

  • Magma
    [25*n*(n+1)/2+1: n in [0..50]];
  • Mathematica
    Table[25 n (n + 1)/2 + 1, {n, 0, 50}]
    25*Accumulate[Range[0,50]]+1 (* or *) LinearRecurrence[{3,-3,1},{1,26,76},50] (* Harvey P. Dale, Jan 29 2023 *)
  • PARI
    vector(50, n, n--; 25*n*(n+1)/2+1)
    
  • Sage
    [25*n*(n+1)/2+1 for n in (0..50)]
    

Formula

G.f.: (1 + 23*x + x^2)/(1 - x)^3.
a(n) = a(-n-1) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A123296(n) + 1.
a(n) = A000217(5*n+2) - 2.
a(n) = A034856(5*n+1).
a(n) = A186349(10*n+1).
a(n) = A054254(5*n+2) with n>0, a(0)=1.
a(n) = A000217(n+1) + 23*A000217(n) + A000217(n-1) with A000217(-1)=0.
Sum_{i>=0} 1/a(i) = 1.078209111... = 2*Pi*tan(Pi*sqrt(17)/10)/(5*sqrt(17)).
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=0} a(n)/n! = 77*e/2.
Sum_{n>=0} (-1)^(n+1) * a(n)/n! = 23/(2*e). (End)
E.g.f.: exp(x)*(2 + 50*x + 25*x^2)/2. - Elmo R. Oliveira, Dec 24 2024

A268833 Square array A(n, k) = A101080(k, A003188(n+A006068(k))), read by descending antidiagonals, where A003188 is the binary Gray code, A006068 is its inverse, and A101080(x,y) gives the Hamming distance between binary expansions of x and y.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 3, 2, 0, 1, 2, 3, 2, 3, 0, 1, 2, 1, 2, 1, 2, 0, 1, 2, 3, 2, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 3, 2, 0, 1, 2, 1, 2, 3, 4, 3, 2, 3, 0, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 0, 1, 2, 3, 2, 3, 4, 3, 2, 1, 4, 3, 0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3, 2, 0, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 0, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 1, 2, 1, 2
Offset: 0

Views

Author

Antti Karttunen, Feb 15 2016

Keywords

Comments

The entry at row n, column k, gives the Hamming distance between binary expansions of k and A003188(n+A006068(k)). When Gray code is viewed as a traversal of vertices of an infinite dimensional hypercube by bit-flipping (see the illustration "Visualized as a traversal of vertices of a tesseract" in the Wikipedia's "Gray code" article) the argument k is the "address" (the binary code given inside each vertex) of the starting vertex, and argument n tells how many edges forward along the Gray code path we should hop from it (to the direction that leads away from the vertex with code 0000...). A(n, k) gives then the Hamming distance between the starting and the ending vertex. For how this works with case n=3, see comments in A268676. - Antti Karttunen, Mar 11 2024

Examples

			The top left [0 .. 24] X [0 .. 24] section of the array:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
1, 3, 3, 1, 3, 1, 1, 3, 3, 1, 1, 3, 1, 3, 3, 1, 3, 1, 1, 3, 1, 3, 3, 1, 1
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
3, 1, 3, 3, 3, 3, 3, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 3, 3, 1, 3, 1, 3, 3, 3
2, 2, 4, 4, 4, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 2
1, 3, 3, 3, 3, 3, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3
4, 4, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 4, 2, 2, 4
3, 3, 3, 1, 5, 3, 3, 5, 5, 3, 3, 5, 3, 3, 3, 1, 5, 3, 3, 5, 3, 3, 3, 1, 3
2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2
3, 1, 3, 3, 3, 5, 5, 3, 3, 5, 5, 3, 3, 1, 3, 3, 3, 5, 5, 3, 3, 1, 3, 3, 3
2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 2
1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 1
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
3, 5, 5, 3, 3, 1, 3, 3, 5, 3, 3, 5, 3, 5, 5, 3, 5, 3, 3, 5, 3, 5, 5, 3, 3
4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
5, 3, 3, 5, 3, 3, 3, 1, 5, 5, 5, 3, 5, 3, 5, 5, 5, 5, 5, 3, 5, 3, 5, 5, 5
4, 4, 4, 4, 4, 4, 2, 2, 6, 6, 4, 4, 4, 4, 6, 6, 6, 6, 4, 4, 4, 4, 6, 6, 4
3, 3, 3, 3, 3, 3, 1, 3, 5, 5, 3, 5, 3, 5, 5, 5, 5, 5, 3, 5, 3, 5, 5, 5, 3
2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2
		

Crossrefs

Transpose A268834.
Main diagonal: A268835.
Column 0: A005811.
Row 0: A000004, Row 1: A000012, Row 2: A007395, Row 3: A268676.
Cf. also A268726, A268727.

Programs

Formula

A(row,col) = A101080(col, A268820(row, row+col)).
A(n, k) = A101080(k, A003188(n+A006068(k))). - Antti Karttunen, Mar 11 2024

Extensions

Definition simplified by Antti Karttunen, Mar 11 2024

A305622 Triangle read by rows: T(n,k) is the number of chiral pairs of rows of n colors with exactly k different colors.

Original entry on oeis.org

0, 0, 1, 0, 2, 3, 0, 6, 18, 12, 0, 12, 72, 120, 60, 0, 28, 267, 780, 900, 360, 0, 56, 885, 4188, 8400, 7560, 2520, 0, 120, 2880, 20400, 63000, 95760, 70560, 20160, 0, 240, 9000, 93120, 417000, 952560, 1164240, 725760, 181440, 0, 496, 27915, 409140, 2551440, 8217720, 14817600, 15120000, 8164800, 1814400, 0, 992, 85233, 1748220, 14802900, 64614960, 161247240, 239500800, 209563200, 99792000, 19958400
Offset: 1

Views

Author

Robert A. Russell, Jun 06 2018

Keywords

Comments

If the row is achiral, i.e., the same as its reverse, we ignore it. If different from its reverse, we count it and its reverse as a chiral pair.

Examples

			The triangle begins:
  0;
  0,   1;
  0,   2,     3;
  0,   6,    18,     12;
  0,  12,    72,    120,      60;
  0,  28,   267,    780,     900,     360;
  0,  56,   885,   4188,    8400,    7560,     2520;
  0, 120,  2880,  20400,   63000,   95760,    70560,    20160;
  0, 240,  9000,  93120,  417000,  952560,  1164240,   725760,  181440;
  ...
For T(3,2)=2, the chiral pairs are AAB-BAA and ABB-BBA.  For T(3,3)=3, the chiral pairs are ABC-CBA, ACB-BCA, and BAC-CAB.
		

Crossrefs

Columns 1-6 are A000004, A122746(n-2), A305623, A305624, A305625, and A305626.
Row sums are A327091.

Programs

  • Maple
    with(combinat):
    a:=(n,k)->(factorial(k)/2)* (Stirling2(n,k)-Stirling2(ceil(n/2),k)): seq(seq(a(n,k),k=1..n),n=1..11); # Muniru A Asiru, Sep 27 2018
  • Mathematica
    Table[(k!/2) (StirlingS2[n, k] - StirlingS2[Ceiling[n/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
  • PARI
    T(n,k) = (k!/2) * (stirling(n,k,2) - stirling(ceil(n/2),k,2));
    for (n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Sep 27 2018

Formula

T(n,k) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)) where S2(n,k) is the Stirling subset number A008277.
T(n,k) = (A019538(n,k) - A019538(ceiling(n/2),k)) / 2.
T(n,k) = A019538(n,k) - A305621(n,k).
G.f. for column k: k! x^k / (2*Product_{i=1..k}(1-ix)) - k! (x^(2k-1)+x^(2k)) / (2*Product{i=1..k}(1-i x^2)). - Robert A. Russell, Sep 26 2018
T(n, k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A293500(n, i). - Andrew Howroyd, Sep 13 2019
Previous Showing 101-110 of 350 results. Next