cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A058499 G.f.: Product_{j>=1} (1 - x^j)^(-A000084(j)).

Original entry on oeis.org

1, 1, 3, 7, 20, 52, 152, 432, 1292, 3876, 11900, 36856, 115728, 366348, 1170280, 3764080, 12186584, 39673332, 129812956, 426648632, 1407939880, 4663160064, 15496048156, 51650777864, 172639344440, 578511221636, 1943155984792
Offset: 0

Views

Author

N. J. A. Sloane, Jan 18 2001

Keywords

Comments

Bears same relationship to A000084 as A000084 does to A000669.

A000669 Number of series-reduced planted trees with n leaves. Also the number of essentially series series-parallel networks with n edges; also the number of essentially parallel series-parallel networks with n edges.

Original entry on oeis.org

1, 1, 2, 5, 12, 33, 90, 261, 766, 2312, 7068, 21965, 68954, 218751, 699534, 2253676, 7305788, 23816743, 78023602, 256738751, 848152864, 2811996972, 9353366564, 31204088381, 104384620070, 350064856815, 1176693361956, 3963752002320
Offset: 1

Views

Author

Keywords

Comments

Also the number of unlabeled connected cographs on n nodes. - N. J. A. Sloane and Eric W. Weisstein, Oct 21 2003
A cograph is a simple graph which contains no path of length 3 as an induced subgraph. - Michael Somos, Apr 19 2014
Also called "hierarchies" by Genitrini (2016). - N. J. A. Sloane, Mar 24 2017

Examples

			G.f. = x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 33*x^6 + 90*x^7 + 261*x^8 + ...
a(4)=5 with the following series-reduced planted trees: (oooo), (oo(oo)), (o(ooo)), (o(o(oo))), ((oo)(oo)). - _Michael Somos_, Jul 25 2003
		

References

  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 43.
  • A. Brandstaedt, V. B. Le and J. P. Spinrad, Graph Classes: A Survey, SIAM Publications, 1999. (For definition of cograph)
  • A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 3, p. 246.
  • D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, p. 589, Answers to Exercises Section 2.3.4.4 5.
  • L. F. Meyers, Corrections and additions to Tree Representations in Linguistics. Report 3, 1966, p. 138. Project on Linguistic Analysis, Ohio State University Research Foundation, Columbus, Ohio.
  • L. F. Meyers and W. S.-Y. Wang, Tree Representations in Linguistics. Report 3, 1963, pp. 107-108. Project on Linguistic Analysis, Ohio State University Research Foundation, Columbus, Ohio.
  • J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93 (the numbers called a_n in this paper). Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals (1/2)*A000084 for n >= 2.
Cf. A000311, labeled hierarchies on n points.
Column 1 of A319254.
Main diagonal of A292085.
Row sums of A292086.

Programs

  • Maple
    Method 1: a := [1,1]; for n from 3 to 30 do L := series( mul( (1-x^k)^(-a[k]),k=1..n-1)/(1-x^n)^b, x,n+1); t1 := coeff(L,x,n); R := series( 1+2*add(a[k]*x^k,k=1..n-1)+2*b*x^n, x, n+1); t2 := coeff(R,x,n); t3 := solve(t1-t2,b); a := [op(a),t3]; od: A000669 := n-> a[n];
    Method 2, more efficient: with(numtheory): M := 1001; a := array(0..M); p := array(0..M); a[1] := 1; a[2] := 1; a[3] := 2; p[1] := 1; p[2] := 3; p[3] := 7;
    Method 2, cont.: for m from 4 to M do t1 := divisors(m); t3 := 0; for d in t1 minus {m} do t3 := t3+d*a[d]; od: t4 := p[m-1]+2*add(p[k]*a[m-k],k=1..m-2)+t3; a[m] := t4/m; p[m] := t3+t4; od: # A000669 := n-> a[n]; A058757 := n->p[n];
    # Method 3:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(a(i)+j-1, j)*
           b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, n, b(n, n-1)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jan 28 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i]+j-1, j]* b[n-i*j, i-1], {j, 0, n/i}]]];
    a[n_] := If[n<2, n, b[n, n-1]];
    Array[a, 40] (* Jean-François Alcover, Jan 08 2021, after Alois P. Heinz *)
  • PARI
    {a(n) = my(A, X); if( n<2, n>0, X = x + x * O(x^n); A = 1 / (1 - X); for(k=2, n, A /= (1 - X^k)^polcoeff(A, k)); polcoeff(A, n)/2)}; /* Michael Somos, Jul 25 2003 */
    
  • Sage
    from collections import Counter
    def A000669_list(n):
        list = [1] + [0] * (n - 1)
        for i in range(1, n):
            for p in Partitions(i + 1, min_length=2):
                m = Counter(p)
                list[i] += prod(binomial(list[s - 1] + m[s] - 1, m[s]) for s in m)
        return list
    print(A000669_list(20)) # M. Eren Kesim, Jun 21 2021

Formula

Product_{k>0} 1/(1-x^k)^a_k = 1+x+2*Sum_{k>1} a_k*x^k.
a(n) ~ c * d^n / n^(3/2), where d = 3.560839309538943329526129172709667..., c = 0.20638144460078903185013578707202765... [Ravelomanana and Thimonier, 2001]. - Vaclav Kotesovec, Aug 25 2014
Consider a nontrivial partition p of n. For each size s of a part occurring in p, compute binomial(a(s)+m-1, m) where m is the multiplicity of s. Take the product of this expression over all s. Take the sum of this new expression over all p to obtain a(n). - Thomas Anton, Nov 22 2018

Extensions

Sequence crossreference fixed by Sean A. Irvine, Sep 15 2009

A000311 Schroeder's fourth problem; also series-reduced rooted trees with n labeled leaves; also number of total partitions of n.

Original entry on oeis.org

0, 1, 1, 4, 26, 236, 2752, 39208, 660032, 12818912, 282137824, 6939897856, 188666182784, 5617349020544, 181790703209728, 6353726042486272, 238513970965257728, 9571020586419012608, 408837905660444010496, 18522305410364986906624
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of labeled series-reduced rooted trees with n leaves (root has degree 0 or >= 2); a(n-1) = number of labeled series-reduced trees with n leaves. Also number of series-parallel networks with n labeled edges, divided by 2.
A total partition of n is essentially what is meant by the first part of the previous line: take the numbers 12...n, and partition them into at least two blocks. Partition each block with at least 2 elements into at least two blocks. Repeat until only blocks of size 1 remain. (See the reference to Stanley, Vol. 2.) - N. J. A. Sloane, Aug 03 2016
Polynomials with coefficients in triangle A008517, evaluated at 2. - Ralf Stephan, Dec 13 2004
Row sums of unsigned A134685. - Tom Copeland, Oct 11 2008
Row sums of A134991, which contains an e.g.f. for this sequence and its compositional inverse. - Tom Copeland, Jan 24 2018
From Gus Wiseman, Dec 28 2019: (Start)
Also the number of singleton-reduced phylogenetic trees with n labels. A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) nonempty sets. It is singleton-reduced if no non-leaf node covers only singleton branches. For example, the a(4) = 26 trees are:
{1,2,3,4} {{1},{2},{3,4}} {{1},{2,3,4}}
{{1},{2,3},{4}} {{1,2},{3,4}}
{{1,2},{3},{4}} {{1,2,3},{4}}
{{1},{2,4},{3}} {{1,2,4},{3}}
{{1,3},{2},{4}} {{1,3},{2,4}}
{{1,4},{2},{3}} {{1,3,4},{2}}
{{1,4},{2,3}}
{{{1},{2,3}},{4}}
{{{1,2},{3}},{4}}
{{1},{{2},{3,4}}}
{{1},{{2,3},{4}}}
{{{1},{2,4}},{3}}
{{{1,2},{4}},{3}}
{{1},{{2,4},{3}}}
{{{1,3},{2}},{4}}
{{{1},{3,4}},{2}}
{{{1,3},{4}},{2}}
{{{1,4},{2}},{3}}
{{{1,4},{3}},{2}}
(End)

Examples

			E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 26*x^4/4! + 236*x^5/5! + 2752*x^6/6! + ...
where exp(A(x)) = 1 - x + 2*A(x), and thus
Series_Reversion(A(x)) = x - x^2/2! - x^3/3! - x^4/4! - x^5/5! - x^6/6! + ...
O.g.f.: G(x) = x + x^2 + 4*x^3 + 26*x^4 + 236*x^5 + 2752*x^6 + 39208*x^7 + ...
where
G(x) = x/2 + x/(2*(2-x)) + x/(2*(2-x)*(2-2*x)) + x/(2*(2-x)*(2-2*x)*(2-3*x)) + x/(2*(2-x)*(2-2*x)*(2-3*x)*(2-4*x)) + x/(2*(2-x)*(2-2*x)*(2-3*x)*(2-4*x)*(2-5*x)) + ...
From _Gus Wiseman_, Dec 28 2019: (Start)
A rooted tree is series-reduced if it has no unary branchings, so every non-leaf node covers at least two other nodes. The a(4) = 26 series-reduced rooted trees with 4 labeled leaves are the following. Each bracket (...) corresponds to a non-leaf node.
  (1234)  ((12)34)  ((123)4)
          (1(23)4)  (1(234))
          (12(34))  ((124)3)
          (1(24)3)  ((134)2)
          ((13)24)  (((12)3)4)
          ((14)23)  ((1(23))4)
                    ((12)(34))
                    (1((23)4))
                    (1(2(34)))
                    (((12)4)3)
                    ((1(24))3)
                    (1((24)3))
                    (((13)2)4)
                    ((13)(24))
                    (((13)4)2)
                    ((1(34))2)
                    (((14)2)3)
                    ((14)(23))
                    (((14)3)2)
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 224.
  • J. Felsenstein, Inferring phyogenies, Sinauer Associates, 2004; see p. 25ff.
  • L. R. Foulds and R. W. Robinson, Enumeration of phylogenetic trees without points of degree two. Ars Combin. 17 (1984), A, 169-183. Math. Rev. 85f:05045
  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 197.
  • E. Schroeder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see "total partitions", Example 5.2.5, Equation (5.27), and also Fig. 5-3 on page 14. See also the Notes on page 66.

Crossrefs

Row sums of A064060 and A134991.
The unlabeled version is A000669.
Unlabeled phylogenetic trees are A141268.
The node-counting version is A060356, with unlabeled version A001678.
Phylogenetic trees with n labels are A005804.
Chains of set partitions are A005121, with maximal version A002846.
Inequivalent leaf-colorings of series-reduced rooted trees are A318231.
For n >= 2, A000311(n) = A006351(n)/2 = A005640(n)/2^(n+1).
Cf. A000110, A000669 = unlabeled hierarchies, A119649.

Programs

  • Maple
    M:=499; a:=array(0..500); a[0]:=0; a[1]:=1; a[2]:=1; for n from 0 to 2 do lprint(n,a[n]); od: for n from 2 to M do a[n+1]:=(n+2)*a[n]+2*add(binomial(n,k)*a[k]*a[n-k+1],k=2..n-1); lprint(n+1,a[n+1]); od:
    Order := 50; t1 := solve(series((exp(A)-2*A-1),A)=-x,A); A000311 := n-> n!*coeff(t1,x,n);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(combinat[multinomial](n, n-i*j, i$j)/j!*
          a(i)^j*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, n, b(n, n-1)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 28 2016
    # faster program:
    b:= proc(n, i) option remember;
        `if`(i=0 and n=0, 1, `if`(i<=0 or i>n, 0,
        i*b(n-1, i) + (n+i-1)*b(n-1, i-1))) end:
    a:= n -> `if`(n<2, n, add(b(n-1, i), i=0..n-1)):
    seq(a(n), n=0..40);  # Peter Luschny, Feb 15 2021
  • Mathematica
    nn = 19; CoefficientList[ InverseSeries[ Series[1+2a-E^a, {a, 0, nn}], x], x]*Range[0, nn]! (* Jean-François Alcover, Jul 21 2011 *)
    a[ n_] := If[ n < 1, 0, n! SeriesCoefficient[ InverseSeries[ Series[ 1 + 2 x - Exp[x], {x, 0, n}]], n]]; (* Michael Somos, Jun 04 2012 *)
    a[n_] := (If[n < 2,n,(column = ConstantArray[0, n - 1]; column[[1]] = 1; For[j = 3, j <= n, j++, column = column * Flatten[{Range[j - 2], ConstantArray[0, (n - j) + 1]}] + Drop[Prepend[column, 0], -1] * Flatten[{Range[j - 1, 2*j - 3], ConstantArray[0, n - j]}];]; Sum[column[[i]], {i, n - 1}]  )]); Table[a[n], {n, 0, 20}] (* Peter Regner, Oct 05 2012, after a formula by Felsenstein (1978) *)
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&,j]]]/j!*a[i]^j *b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n<2, n, b[n, n-1]]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 07 2016, after Alois P. Heinz *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p],{p,Select[sps[m],1Gus Wiseman, Dec 28 2019 *)
    (* Lengthy but easy to follow *)
      lead[, n /; n < 3] := 0
      lead[h_, n_] := Module[{p, i},
            p = Position[h, {_}];
            Sum[MapAt[{#, n} &, h, p[[i]]], {i, Length[p]}]
            ]
      follow[h_, n_] := Module[{r, i},
            r = Replace[Position[h, {_}], {a__} -> {a, -1}, 1];
            Sum[Insert[h, n, r[[i]]], {i, Length[r]}]
            ]
      marry[, n /; n < 3] := 0
      marry[h_, n_] := Module[{p, i},
            p = Position[h, _Integer];
            Sum[MapAt[{#, n} &, h, p[[i]]], {i, Length[p]}]
            ]
      extend[a_ + b_, n_] := extend[a, n] + extend[b, n]
      extend[a_, n_] := lead[a, n] + follow[a, n] + marry[a, n]
      hierarchies[1] := hierarchies[1] = extend[hier[{}], 1]
      hierarchies[n_] := hierarchies[n] = extend[hierarchies[n - 1], n] (* Daniel Geisler, Aug 22 2022 *)
  • Maxima
    a(n):=if n=1 then 1 else sum((n+k-1)!*sum(1/(k-j)!*sum((2^i*(-1)^(i)*stirling2(n+j-i-1,j-i))/((n+j-i-1)!*i!),i,0,j),j,1,k),k,1,n-1); /* Vladimir Kruchinin, Jan 28 2012 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, for( i=1, n, A = Pol(exp(A + x * O(x^i)) - A + x - 1)); n! * polcoeff(A, n))}; /* Michael Somos, Jan 15 2004 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = O(x); for( i=1, n, A = intformal( 1 / (1 + x - 2*A))); n! * polcoeff(A, n))}; /* Michael Somos, Oct 25 2014 */
    
  • PARI
    {a(n) = n! * polcoeff(serreverse(1+2*x - exp(x +x^2*O(x^n))), n)}
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Oct 27 2014
    
  • PARI
    \p100 \\ set precision
    {A=Vec(sum(n=0, 600, 1.*x/prod(k=0, n, 2 - k*x + O(x^31))))}
    for(n=0, 25, print1(if(n<1,0,round(A[n])),", ")) \\ Paul D. Hanna, Oct 27 2014
    
  • Python
    from functools import lru_cache
    from math import comb
    @lru_cache(maxsize=None)
    def A000311(n): return n if n <= 1 else -(n-1)*A000311(n-1)+comb(n,m:=n+1>>1)*(0 if n&1 else A000311(m)**2) + (sum(comb(n,i)*A000311(i)*A000311(n-i) for i in range(1,m))<<1) # Chai Wah Wu, Nov 10 2022

Formula

E.g.f. A(x) satisfies exp A(x) = 2*A(x) - x + 1.
a(0)=0, a(1)=a(2)=1; for n >= 2, a(n+1) = (n+2)*a(n) + 2*Sum_{k=2..n-1} binomial(n, k)*a(k)*a(n-k+1).
a(1)=1; for n>1, a(n) = -(n-1) * a(n-1) + Sum_{k=1..n-1} binomial(n, k) * a(k) * a(n-k). - Michael Somos, Jun 04 2012
From the umbral operator L in A135494 acting on x^n comes, umbrally, (a(.) + x)^n = (n * x^(n-1) / 2) - (x^n / 2) + Sum_{j>=1} j^(j-1) * (2^(-j) / j!) * exp(-j/2) * (x + j/2)^n giving a(n) = 2^(-n) * Sum_{j>=1} j^(n-1) * ((j/2) * exp(-1/2))^j / j! for n > 1. - Tom Copeland, Feb 11 2008
Let h(x) = 1/(2-exp(x)), an e.g.f. for A000670, then the n-th term of A000311 is given by ((h(x)*d/dx)^n)x evaluated at x=0, i.e., A(x) = exp(x*a(.)) = exp(x*h(u)*d/du) u evaluated at u=0. Also, dA(x)/dx = h(A(x)). - Tom Copeland, Sep 05 2011 (The autonomous differential eqn. here is also on p. 59 of Jones. - Tom Copeland, Dec 16 2019)
A134991 gives (b.+c.)^n = 0^n, for (b_n)=A000311(n+1) and (c_0)=1, (c_1)=-1, and (c_n)=-2* A000311(n) = -A006351(n) otherwise. E.g., umbrally, (b.+c.)^2 = b_2*c_0 + 2 b_1*c_1 + b_0*c_2 =0. - Tom Copeland, Oct 19 2011
a(n) = Sum_{k=1..n-1} (n+k-1)!*Sum_{j=1..k} (1/(k-j)!)*Sum_{i=0..j} 2^i*(-1)^i*Stirling2(n+j-i-1, j-i)/((n+j-i-1)!*i!), n>1, a(0)=0, a(1)=1. - Vladimir Kruchinin, Jan 28 2012
Using L. Comtet's identity and D. Wasserman's explicit formula for the associated Stirling numbers of second kind (A008299) one gets: a(n) = Sum_{m=1..n-1} Sum_{i=0..m} (-1)^i * binomial(n+m-1,i) * Sum_{j=0..m-i} (-1)^j * ((m-i-j)^(n+m-1-i))/(j! * (m-i-j)!). - Peter Regner, Oct 08 2012
G.f.: x/Q(0), where Q(k) = 1 - k*x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
G.f.: x*Q(0), where Q(k) = 1 - x*(k+1)/(x*(k+1) - (1-k*x)*(1-x-k*x)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2013
a(n) ~ n^(n-1) / (sqrt(2) * exp(n) * (2*log(2)-1)^(n-1/2)). - Vaclav Kotesovec, Jan 05 2014
E.g.f. A(x) satisfies d/dx A(x) = 1 / (1 + x - 2 * A(x)). - Michael Somos, Oct 25 2014
O.g.f.: Sum_{n>=0} x / Product_{k=0..n} (2 - k*x). - Paul D. Hanna, Oct 27 2014
E.g.f.: (x - 1 - 2 LambertW(-exp((x-1)/2) / 2)) / 2. - Vladimir Reshetnikov, Oct 16 2015 (This e.g.f. is given in A135494, the entry alluded to in my 2008 formula, and in A134991 along with its compositional inverse. - Tom Copeland, Jan 24 2018)
a(0) = 0, a(1) = 1; a(n) = n! * [x^n] exp(Sum_{k=1..n-1} a(k)*x^k/k!). - Ilya Gutkovskiy, Oct 17 2017
a(n+1) = Sum_{k=0..n} A269939(n, k) for n >= 1. - Peter Luschny, Feb 15 2021

Extensions

Name edited by Gus Wiseman, Dec 28 2019

A003430 Number of unlabeled series-parallel posets (i.e., generated by unions and sums) with n nodes.

Original entry on oeis.org

1, 1, 2, 5, 15, 48, 167, 602, 2256, 8660, 33958, 135292, 546422, 2231462, 9199869, 38237213, 160047496, 674034147, 2854137769, 12144094756, 51895919734, 222634125803, 958474338539, 4139623680861, 17931324678301, 77880642231286, 339093495674090, 1479789701661116
Offset: 0

Views

Author

Keywords

Comments

Number of oriented series-parallel networks with n elements. A series configuration is a unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is a unit element or a multiset of two or more series configurations. a(n) is the number of series or parallel configurations with n elements. The sequences A007453 and A007454 enumerate respectively series and parallel configurations. - Andrew Howroyd, Dec 01 2020

Examples

			From _Andrew Howroyd_, Nov 26 2020: (Start)
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 5: (ooo), (o(o|o)), ((o|o)o), (o|o|o), (o|oo).
a(4) = 15: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)oo), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)), ((o|oo)o), ((o|o|o)o), (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)), (o|(o|o)o).
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39 (which deals with the labeled case of the same sequence).

Crossrefs

Row sums of A339231.
Column k=1 of A339228.
Cf. A000084, A003431, A048172 (labeled N-free posets), A007453, A007454, A339156, A339159, A339225.

Programs

  • Mathematica
    terms = 25; A[] = 1; Do[A[x] = Exp[Sum[(1/k)*(A[x^k] + 1/A[x^k] - 2 + x^k), {k, 1, terms + 1}]] + O[x]^(terms + 1) // Normal, terms + 1];
    CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jun 29 2011, updated Jan 12 2018 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x, 1-n)))); Vec(p)} \\ Andrew Howroyd, Nov 27 2020

Formula

G.f. A(x) = 1 + x + 2*x^2 + 5*x^3 + ... satisfies A(x) = exp(Sum_{k>=1} (1/k)*(A(x^k) + 1/A(x^k) - 2 + x^k)).
From: Andrew Howroyd, Nov 26 2020: (Start)
a(n) = A007453(n) + A007454(n) for n > 1.
Euler transform of A007453.
G.f.: P(x)/(1 - P(x)) where P(x) is the g.f. of A007454.
(End)

Extensions

Name corrected by Salah Uddin Mohammad, Jun 07 2020
a(0)=1 prepended (using the g.f.) by Alois P. Heinz, Dec 01 2020

A048211 Number of distinct resistances that can be produced from a circuit of n equal resistors using only series and parallel combinations.

Original entry on oeis.org

1, 2, 4, 9, 22, 53, 131, 337, 869, 2213, 5691, 14517, 37017, 93731, 237465, 601093, 1519815, 3842575, 9720769, 24599577, 62283535, 157807915, 400094029, 1014905643, 2576046289, 6541989261, 16621908599, 42251728111, 107445714789, 273335703079
Offset: 1

Views

Author

Keywords

Comments

Found by exhaustive search. Program produces all values that are combinations of two binary operators a() and b() (here "sum" and "reciprocal sum of reciprocals") over n occurrences of 1. E.g., given 4 occurrences of 1, the code forms all allowable postfix forms, such as 1 1 1 1 a a a and 1 1 b 1 1 a b, etc. Each resulting form is then evaluated according to the definitions for a and b.
Each resistance that can be constructed from n 1-ohm resistors in a circuit can be written as the ratio of two positive integers, neither of which exceeds the (n+1)st Fibonacci number. E.g., for n=4, the 9 resistances that can be constructed can be written as 1/4, 2/5, 3/5, 3/4, 1/1, 4/3, 5/3, 5/2, 4/1 using no numerator or denominator larger than Fib(n+1) = Fib(5) = 5. If a resistance x can be constructed from n 1-ohm resistors, then a resistance 1/x can also be constructed from n 1-ohm resistors. - Jon E. Schoenfield, Aug 06 2006
The fractions in the comment above are a superset of the fractions occurring here, corresponding to the upper bound A176500. - Joerg Arndt, Mar 07 2015
The terms of this sequence consider only series and parallel combinations; A174283 considers bridge combinations as well. - Jon E. Schoenfield, Sep 02 2013

Examples

			a(2) = 2 since given two 1-ohm resistors, a series circuit yields 2 ohms, while a parallel circuit yields 1/2 ohms.
		

Crossrefs

Let T(x, n) = 1 if x can be constructed with n 1-ohm resistors in a circuit, 0 otherwise. Then A048211 is t(n) = sum(T(x, n)) for all x (x is necessarily rational). Let H(x, n) = 1 if T(x, n) = 1 and T(x, k) = 0 for all k < n, 0 otherwise. Then A051389 is h(n) = sum(H(x, n)) for all x (x is necessarily rational).
Cf. A180414.

Programs

  • Maple
    r:= proc(n) option remember; `if`(n=1, {1}, {seq(seq(seq(
          [f+g, 1/(1/f+1/g)][], g in r(n-i)), f in r(i)), i=1..n/2)})
        end:
    a:= n-> nops(r(n)):
    seq(a(n), n=1..15);  # Alois P. Heinz, Apr 02 2015
  • Mathematica
    r[n_] := r[n] = If[n == 1, {1}, Union @ Flatten @ {Table[ Table[ Table[ {f+g, 1/(1/f+1/g)}, {g, r[n-i]}], {f, r[i]}], {i, 1, n/2}]}]; a[n_] := Length[r[n]]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, May 28 2015, after Alois P. Heinz *)
  • PARI
    \\ not efficient; just to show the method
    N=10;
    L=vector(N);  L[1]=[1];
    { for (n=2, N,
        my( T = Set( [] ) );
        for (k=1, n\2,
            for (j=1, #L[k],
                my( r1 = L[k][j] );
                for (i=1, #L[n-k],
                    my( r2 = L[n-k][i] );
                    T = setunion(T,  Set([r1+r2, r1*r2/(r1+r2) ]) );
                );
            );
        );
        T = vecsort(Vec(T), , 8);
        L[n] = T;
    ); }
    for(n=1, N, print1(#L[n], ", ") );
    \\ Joerg Arndt, Mar 07 2015

Formula

From Bill McEachen, Jun 08 2024: (Start)
(2.414^n)/4 < a(n) < (1-1/n)*(0.318)*(2.618^n) (Khan, n>3).
Conjecture: a(n) ~ K * a(n-1), K approx 2.54. (End)

Extensions

More terms from John W. Layman, Apr 06 2002
a(16)-a(21) from Jon E. Schoenfield, Aug 06 2006
a(22) from Jon E. Schoenfield, Aug 28 2006
a(23) from Jon E. Schoenfield, Apr 18 2010
Definition edited (to specify that the sequence considers only series and parallel combinations) by Jon E. Schoenfield, Sep 02 2013
a(24)-a(25) from Antoine Mathys, Apr 02 2015
a(26)-a(27) from Johannes P. Reichart, Nov 24 2018
a(28)-a(30) from Antoine Mathys, Dec 08 2024

A006351 Number of series-parallel networks with n labeled edges. Also called yoke-chains by Cayley and MacMahon.

Original entry on oeis.org

1, 2, 8, 52, 472, 5504, 78416, 1320064, 25637824, 564275648, 13879795712, 377332365568, 11234698041088, 363581406419456, 12707452084972544, 477027941930515456, 19142041172838025216, 817675811320888020992, 37044610820729973813248, 1774189422608238694776832
Offset: 1

Views

Author

Keywords

Comments

For a simple relationship to series-reduced rooted trees, partitions of n, and phylogenetic trees among other combinatoric constructs, see comments in A000311. - Tom Copeland, Jan 06 2021

Examples

			D^3(1) = (12*x^2+56*x+52)/(x-1)^6. Evaluated at x = 0 this gives a(4) = 52.
a(3) = 8: The 8 possible increasing plane trees on 3 vertices with vertices of outdegree k >= 1 coming in 2 colors, B or W, are
.......................................................
.1B..1B..1W..1W.....1B.......1W........1B........1W....
.|...|...|...|...../.\....../..\....../..\....../..\...
.2B..2W..2B..2W...2...3....2....3....3....2....3....2..
.|...|...|...|.........................................
.3...3...3...3.........................................
G.f. = x + 2*x^2 + 8*x^3 + 52*x^4 + 472*x^5 + 5504*x^6 + 78416*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 417.
  • P. A. MacMahon, Yoke-trains and multipartite compositions in connexion with the analytical forms called "trees", Proc. London Math. Soc. 22 (1891), 330-346; reprinted in Coll. Papers I, pp. 600-616. Page 333 gives A000084 = 2*A000669.
  • P. A. MacMahon, The combination of resistances, The Electrician, 28 (1892), 601-602; reprinted in Coll. Papers I, pp. 617-619.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 142.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.40(a), S(x).

Crossrefs

Cf. A000311, A000084 (for unlabeled case), A032188. A140945.

Programs

  • Maple
    read transforms; t1 := 2*ln(1+x)-x; t2 := series(t1,x,10); t3 := seriestoseries(t2,'revogf'); t4 := SERIESTOLISTMULT(%);
    # N denotes all series-parallel networks, S = series networks, P = parallel networks;
    spec := [ N, N=Union(Z,S,P),S=Set(Union(Z,P),card>=2), P=Set(Union(Z,S), card>=2)}, labeled ]: A006351 := n->combstruct[count](spec,size=n);
    A006351 := n -> add(combinat[eulerian2](n-1,k)*2^(n-k-1),k=0..n-1):
    seq(A006351(n), n=1..18); # Peter Luschny, Nov 16 2012
  • Mathematica
    max = 18; f[x_] := 2*Log[1+x]-x; Rest[ CoefficientList[ InverseSeries[ Series[ f[x], {x, 0, max}], x], x]]*Range[max]! (* Jean-François Alcover, Nov 25 2011 *)
  • Maxima
    a(n):=if n=1 then 1 else ((n-1)!*sum(binomial(n+k-1,n-1)* sum((-1)^(j)*binomial(k,j)*sum((binomial(j,l)*(j-l)!*2^(j-l)*(-1)^l* stirling1(n-l+j-1,j-l))/(n-l+j-1)!,l,0,j),j,1,k),k,1,n-1)); /* Vladimir Kruchinin, Jan 24 2012 */
    
  • PARI
    x='x+O('x^66); Vec(serlaplace(serreverse( 2*log(1+x) - 1*x ))) \\ Joerg Arndt, May 01 2013
  • Sage
    # uses[eulerian2 from A201637]
    def A006351(n): return add(A201637(n-1, k)*2^(n-k-1) for k in (0..n-1))
    [A006351(n) for n in (1..18)]  # Peter Luschny, Nov 16 2012
    

Formula

For n >= 2, A006351(n) = 2*A000311(n) = A005640(n)/2^n. Row sums of A140945.
E.g.f. is reversion of 2*log(1+x)-x.
Also exponential transform of A000311, define b by 1+sum b_n x^n / n! = exp ( 1 + sum a_n x^n /n!).
E.g.f.: A(x), B(x)=x*A(x) satisfies the differential equation B'(x)=(1+B(x))/(1-B(x)). - Vladimir Kruchinin, Jan 18 2011
From Peter Bala, Sep 05 2011: (Start)
The generating function A(x) satisfies the autonomous differential equation A'(x) = (1+A)/(1-A) with A(0) = 0. Hence the inverse function A^-1(x) = int {t = 0..x} (1-t)/(1+t) = 2*log(1+x)-x, which yields A(x) = -1-2*W(-1/2*exp((x-1)/2)), where W is the Lambert W function.
The expansion of A(x) can be found by inverting the above integral using the method of [Dominici, Theorem 4.1] to arrive at the result a(n) = D^(n-1)(1) evaluated at x = 0, where D denotes the operator g(x) -> d/dx((1+x)/(1-x)*g(x)). Compare with A032188.
Applying [Bergeron et al., Theorem 1] to the result x = int {t = 0..A(x)} 1/phi(t), where phi(t) = (1+t)/(1-t) = 1 + 2*t + 2*t^2 + 2*t^3 + ..., leads to the following combinatorial interpretation for the sequence: a(n) gives the number of plane increasing trees on n vertices where each vertex of outdegree k >=1 can be in one of 2 colors. An example is given below. (End)
A134991 gives (b.+c.)^n = 0^n , for (b_n)=A000311(n+1) and (c_0)=1, (c_1)=-1, and (c_n)=-2* A000311(n) = -A006351(n) otherwise. E.g., umbrally, (b.+c.)^2 = b_2*c_0 + 2 b_1*c_1 + b_0*c_2 =0. - Tom Copeland, Oct 19 2011
G.f.: 1/S(0) where S(k) = 1 - x*(k+1) - x*(k+1)/S(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 18 2011
a(n) = ((n-1)!*sum(k=1..n-1, C(n+k-1,n-1)*sum(j=1..k, (-1)^(j)*C(k,j)* sum(l=0..j, (C(j,l)*(j-l)!*2^(j-l)*(-1)^l*stirling1(n-l+j-1,j-l))/ (n-l+j-1)!)))), n>1, a(1)=1. - Vladimir Kruchinin, Jan 24 2012
E.g.f.: A(x) = exp(B(x))-1 where B(x) is the e.g.f. of A000311. - Vladimir Kruchinin, Sep 25 2012
a(n) = sum_{k=0..n-1} A201637(n-1,k)*2^(n-k-1). - Peter Luschny, Nov 16 2012
G.f.: -1 + 2/Q(0), where Q(k)= 1 - k*x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
a(n) ~ sqrt(2)*n^(n-1)/((2*log(2)-1)^(n-1/2)*exp(n)). - Vaclav Kotesovec, Jul 17 2013
G.f.: Q(0)/(1-x), where Q(k) = 1 - x*(k+1)/( x*(k+1) - (1 -x*(k+1))*(1 -x*(k+2))/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 10 2013
a(1) = 1; a(n) = a(n-1) + Sum_{k=1..n-1} binomial(n-1,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Aug 28 2020
Conjecture: a(n) = A379459(n-2,0) = A379460(n-1,0) for n > 1 with a(1) = 1. - Mikhail Kurkov, Jan 16 2025

A339225 Number of unoriented series-parallel networks with n elements.

Original entry on oeis.org

1, 2, 4, 11, 30, 98, 328, 1193, 4459, 17287, 68283, 274726, 1118960, 4607578, 19135274, 80063095, 337104367, 1427274619, 6072510001, 25949049372, 111319539096, 479243000380, 2069825207344, 8965693829582, 38940393808337, 169546919220357, 739895248735963
Offset: 1

Views

Author

Andrew Howroyd, Nov 27 2020

Keywords

Comments

A series configuration is the unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is the unit element or a multiset of two or more series configurations. a(n) is the number of distinct series or parallel configurations with n unit elements modulo reversing the order of all series configurations.

Examples

			In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 4: (ooo), (o(o|o)), (o|o|o), (o|oo).
a(4) = 11: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)),  (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)).
		

Crossrefs

Cf. A000084, A003430 (oriented), A339159 (achiral), A339223, A339224.

Programs

  • PARI
    \\ here B(n) gives A003430 as a power series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
    seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2), t=p); for(n=1, n\2, t=x + q*(1 + p); p=x + x*Ser(EulerT(Vec(t+(s-subst(t,x,x^2))/2))) - t); Vec(p+t-x+B(n))/2}

Formula

a(n) = (A003430(n) + A339159(n))/2.
a(n) = A339223(n) + A339224(n) for n > 1.
A000084(n) <= a(n) <= A003430(n).

A058379 Essentially parallel series-parallel networks with n labeled edges, multiple edges not allowed.

Original entry on oeis.org

0, 1, 0, 3, 7, 90, 676, 9058, 117286, 1934068, 34354196, 698971944, 15520697072, 379690093016, 10064445063128, 288507479108384, 8875736500909216, 291965748820524000, 10221371162528667136, 379535362671828005536, 14896748155197456096736
Offset: 0

Views

Author

N. J. A. Sloane, Dec 19 2000

Keywords

Examples

			A(x) = x + 1/2*x^3 + 7/24*x^4 + 3/4*x^5 + 169/180*x^6 + ...
For n=4 there are two unlabeled networks:
..o.....o--o
./.\.../....\
o...o o------o
.\./
..o
which can be labeled in 3 (resp. 4) ways, for a total of 7.
		

Crossrefs

Cf. A058380, A058381. See A000669 for unlabeled case when parallel edges are allowed.

Programs

  • Maple
    Q := x; for d from 1 to 30 do Q := Q+c*x^(d+1)/(d+1)!; t1 := coeff(series(2*Q - (exp(Q)-1+log(1+x)), x, d+2), x, d+1); t2 := solve(t1,c); Q := subs(c=t2,Q); Q := series(Q,x,d+2); od: A058379 := n->coeff(Q,x,n)*n!; # method 1
    Order := 50; t1 := solve(series((exp(A)-2*A-1),A)=-log(1+x),A); A058379 := n-> n!*coeff(t1,x,n); # method 2
  • Mathematica
    CoefficientList[InverseSeries[Series[-1+E^(1+2*a-E^a), {a, 0, 20}], x], x]*Range[0, 20]! (* Jean-François Alcover, Jul 21 2011 *)
    CoefficientList[Series[(-1 + Log[1+x] - 2*ProductLog[-Sqrt[1+x]/(2*Sqrt[E])])/2,{x,0,15}],x] * Range[0,15]! (* Vaclav Kotesovec, Jan 08 2014 *)
  • Maxima
    a(n):=sum((sum((m+k-1)!*sum(sum(((-1)^i*2^i*stirling2(m+j-i-1, j-i))/(i!*(m+j-i-1)!),i,0,j)/(k-j)!,j,0,k),k,0,m-1)) *stirling1(n,m), m,1,n); /* Vladimir Kruchinin, Feb 17 2012 */
    
  • PARI
    Vec(serlaplace(-1/2 + log(1+x)/2 - lambertw(-exp(-.5)*sqrt(1+x)/2))) \/ 1 \\ Charles R Greathouse IV, Jun 16 2021

Formula

E.g.f. satisfies A(x) = x + O(x^2), 2*A(x) = exp(A(x)) - 1 + log(1+x).
a(n) = sum(m=1..n, (sum(k=0..m-1, (m+k-1)!*sum(j=0..k, sum(i=0..j, ((-1)^i*2^i*Stirling2(m+j-i-1,j-i))/(i!*(m+j-i-1)!))/(k-j)!))) *Stirling1(n,m)). - Vladimir Kruchinin, Feb 17 2012
E.g.f.: -1/2 + log(1+x)/2 - LambertW(-exp(-1/2)*sqrt(1+x)/2). - Vaclav Kotesovec, Jan 08 2014
a(n) ~ n^(n-1) / (2*sqrt(2) * (4-exp(1))^(n-1/2)). - Vaclav Kotesovec, Jan 08 2014

A106240 Triangle read by rows: T(n,m) = number of unlabeled cographs on n nodes with m connected components.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 12, 7, 3, 1, 1, 33, 20, 8, 3, 1, 1, 90, 55, 22, 8, 3, 1, 1, 261, 162, 63, 23, 8, 3, 1, 1, 766, 477, 188, 65, 23, 8, 3, 1, 1, 2312, 1450, 564, 196, 66, 23, 8, 3, 1, 1, 7068, 4446, 1732, 590, 198, 66, 23, 8, 3, 1, 1, 21965, 13858, 5384, 1824, 598, 199, 66, 23, 8, 3, 1, 1
Offset: 1

Views

Author

Washington Bomfim, May 06 2005

Keywords

Examples

			T(10,8) = 3 because the partitions of 10 with 8 parts are 31111111 and 22111111. The partition 31111111 corresponds to 2 graphs and the partition 22111111 corresponds to only one.
T(n,m) = 1, if and only if m>=n-1. Because A000669(1)=A000669(2)=1, the partitions of n with all parts <=2 correspond to summands = 1. If there is only a summand (or partition), the total is equal to 1. It is clear that for m>=n-1 there is only one partition of n with exactly m parts.
Triangle begins:
   1,
   1,  1,
   2,  1,  1,
   5,  3,  1, 1,
  12,  7,  3, 1, 1,
  33, 20,  8, 3, 1, 1,
  90, 55, 22, 8, 3, 1, 1,
		

Crossrefs

Cf. A000669 (first column), A000084 (row sums), A201922.

Formula

T(n, m) = sum over the partitions of n with m parts: 1K1 + 2K2 + ... + nKn = n, K1 + K2 + ... + Kn = m, of Product_{i=1..n} binomial(A000669(i)+Ki-1, Ki).

A048172 Number of labeled series-parallel graphs with n edges.

Original entry on oeis.org

1, 3, 19, 195, 2791, 51303, 1152019, 30564075, 935494831, 32447734143, 1257770533339, 53884306900515, 2528224238464471, 128934398091500823, 7101273378743303779, 420078397130637237915, 26563302733186339752511, 1788055775343964413724143, 127652707703771090396080939
Offset: 1

Views

Author

Keywords

Comments

Labeled N-free posets. - Detlef Pauly (dettodet(AT)yahoo.de), Dec 27 2002

References

  • Ronald C. Read, Graphical enumeration by cycle-index sums: first steps toward a unified treatment, Research Report CORR 91-19, University of Waterloo, Sept 1991.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39.

Crossrefs

Cf. A000112 (unlabeled posets), A001035 (labeled posets), A003430 (unlabeled analog).

Programs

  • Maple
    with(gfun):
    f := series((ln(1+x)-x^2/(1+x)), x, 21):
    egf := seriestoseries(f, 'revogf'):
    seriestolist(egf, 'Laplace');
  • Mathematica
    lim = 19; Join[{1}, Drop[ CoefficientList[ InverseSeries[ Series[x + 2*(1 - Cosh[x]) , {x, 0, lim}], y] + InverseSeries[ Series[-Log[1 - x] - x^2/(1 - x),{x, 0, lim}], y], y], 2]*Range[2, lim]!] (* Jean-François Alcover, Sep 21 2011, after g.f. *)
    m = 17; Rest[CoefficientList[InverseSeries[Series[Log[1+x]-x^2/(1+x), {x, 0, m}], x], x]*Table[k!,{k, 0, m}]](* Jean-François Alcover, Apr 18 2011 *)
  • Maxima
    h(n,k):=if n=k then 0 else (-1)^(n-k)*binomial(n-k-1,k-1); a(n):=if n=1 then 1 else -sum((k!/n!*stirling1(n,k)+sum(binomial(k,j)*sum((j)!/(i)!*stirling1(i,j)*h(n-i,k-j),i,j,n-k+j),j,1,k-1)+h(n,k))*a(k),k,1,n-1); /* Vladimir Kruchinin, Sep 08 2010 */
  • PARI
    x='x+O('x^55);
    s=-log(1-x)-x^2/(1-x);
    A048174=Vec(serlaplace(serreverse(s)));
    t=x+2*(1-cosh(x));
    A058349=Vec(serlaplace(serreverse(t)));
    A048172=A048174+A058349;  A048172[1]-=1;
    A048172 /* Joerg Arndt, Feb 04 2011 */
    

Formula

a(n) = A058349(n) + A048174(n).
a(n) = A058349(n) + A058350(n) (n>=2).
Reference (by Ronald C. Read) gives generating functions.
E.g.f. is reversion of log(1+x)-x^2/(1+x).
a(n)=if n=1 then 1 else -sum((k!/n!*stirling1(n,k)+sum(binomial(k,j)*sum((j)!/(i)!*stirling1(i,j)*h(n-i,k-j),i,j,n-k+j),j,1,k-1)+h(n,k))*a(k),k,1,n-1), h(n,k)=if n=k then 0 else (-1)^(n-k)*binomial(n-k-1,k-1), n>0. - Vladimir Kruchinin, Sep 08 2010
a(n) ~ sqrt((5+3*sqrt(5))/10) * n^(n-1) / (exp(n) * (2 - sqrt(5) + log((1+sqrt(5))/2))^(n-1/2)). - Vaclav Kotesovec, Feb 25 2014

Extensions

More terms from Joerg Arndt, Feb 04 2011
Previous Showing 11-20 of 44 results. Next