cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 382 results. Next

A038049 Number of labeled rooted trees with 2-colored leaves.

Original entry on oeis.org

2, 4, 24, 224, 2880, 47232, 942592, 22171648, 600698880, 18422374400, 630897721344, 23864653578240, 988197253808128, 44460603225407488, 2159714024218951680, 112652924603290615808, 6280048587936003784704, 372616014329572403183616, 23445082059018189741752320
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 185 (3.1.83)

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n, k)*(n-k)^(n-1), k=0..n):
    seq(a(n), n=1..20);  # Alois P. Heinz, Nov 30 2012
  • Mathematica
    Table[n!*Sum[2^j/j!*StirlingS2[n-1,n-j],{j,1,n}],{n,1,20}] (* Vaclav Kotesovec, Nov 30 2012 *)

Formula

Divides by n and shifts left under exponential transform.
E.g.f.: A(x) = x-LambertW(-x*exp(x)). - Vladeta Jovovic, Mar 08 2003
a(n) = Sum_{k=0..n} (binomial(n, k)*(n-k)^(n-1)).
A(x) = 2*compositional inverse of 2*x/(1+exp(2*x)). - Peter Bala, Oct 14 2011
a(n) ~ n^(n-1) * sqrt((1+LambertW(1/e))) / (e*LambertW(1/e))^n. - Vaclav Kotesovec, Nov 30 2012

A042977 Triangle T(n,k) read by rows: coefficients of a polynomial sequence occurring when calculating the n-th derivative of Lambert function W.

Original entry on oeis.org

1, -2, -1, 9, 8, 2, -64, -79, -36, -6, 625, 974, 622, 192, 24, -7776, -14543, -11758, -5126, -1200, -120, 117649, 255828, 248250, 137512, 45756, 8640, 720, -2097152, -5187775, -5846760, -3892430, -1651480, -445572, -70560, -5040
Offset: 0

Views

Author

Keywords

Comments

The first derivative of the Lambert W function is given by dW/dz = exp(-W)/(1+W). Further differentiation yields d^2/dz^2(W) = exp(-2*W)*(-2-W)/(1+W)^3, d^3/dz^3(W) = exp(-3*W)*(9+8*W+2*W^2)/(1+W)^5 and, in general, d^n/dz^n(W) = exp(-n*W)*R(n,W)/(1+W)^(2*n-1), where R(n,W) are the row polynomials of this triangle. - Peter Bala, Jul 22 2012
Conjecture: the polynomials have no real roots greater than or equal to -1. This is equivalent to the statement that the derivatives of the 0th branch of the Lambert W function have no real roots greater than -1/e. - Colin Linzer, Jan 29 2025

Examples

			Triangle begins:
 n\k |    1    W   W^2   W^3   W^4
==================================
  1  |    1
  2  |   -2   -1
  3  |    9    8     2
  4  |  -64  -79   -36    -6
  5  |  625  974   622   192    24
...
T(5,2) = -4*(-79) - 9*(-36) + 3*(-6) = 622.
		

Crossrefs

Cf. A013703 (twice row sums), A000444, A000525, A064781, A064785, A064782.
First column A000169, main diagonal A000142, first subdiagonal A052582.
Cf. A054589.

Programs

  • Maple
    # After Vladimir Kruchinin, for 0 <= m <= n:
    T := (n, m) -> add(add((-1)^(k+n)*binomial(j,k)*binomial(2*n+1,m-j)*(k+n+1)^(n+j), k=0..j)/j!, j=0..m): seq(seq(T(n, k), k=0..n), n=0..7); # Peter Luschny, Feb 23 2018
  • Mathematica
    Table[ Simplify[ (Evaluate[ D[ ProductLog[ z ], {z, n} ] ] /. ProductLog[ z ]->W)*z^n/W^n (1+W)^(2n-1) ], {n, 12} ] // TableForm
    Flatten[ Table[ CoefficientList[ Simplify[ (Evaluate[D[ProductLog[z], {z, n}]] /. ProductLog[z] -> W) z^n / W^n (1 + W)^(2 n - 1)], W], {n, 8}]] (* Michael Somos, Jun 07 2012 *)
    T[ n_, k_] := If[ n < 1 || k < 0, 0, Coefficient[ Simplify[(Evaluate[D[ProductLog[z], {z, n}]] /. ProductLog[z] -> W) z^n / W^n (1 + W)^(2 n - 1)], W, k]] (* Michael Somos, Jun 07 2012 *)
  • Maxima
    B(n):=(if n=1 then 1/(1+x)*exp(-x) else -n!*sum((sum((-1)^(m-j)*binomial(m,j)*sum((j^(n-i)*binomial(j,i)*x^(m-i))/(n-i)!,i,0,n),j,1,m))*B(m)/m!,m,1,n-1)/(1+x)^n);
    a(n):=B(n)*(1+x)^(2*n-1);
    /* Vladimir Kruchinin, Apr 07 2011 */
    
  • Maxima
    a(n):=if n=1 then 1 else (n-1)!*(sum((binomial(n+k-1, n-1)*sum(binomial(k, j)*(x+1)^(n-j-1)*sum(binomial(j, l)*(-1)^(l)*sum((l^(n+j-i-1)*binomial(l, i)*x^(j-i))/(n+j-i-1)!, i, 0, l), l, 1, j), j, 1, k)), k, 1, n-1));
    T(n, k):=coeff(ratsimp(a(n)), x, k);
    for n: 1 thru 12 do print(makelist(T(n, k), k, 0, n-1));
    /* Vladimir Kruchinin, Oct 09 2012 */
    T(n,m):=sum(binomial(2*n+1,m-j)*sum(((n+k+1)^(n+j)*(-1)^(n+k))/((j-k)!*k!),k,0,j),j,0,m); /* Vladimir Kruchinin, Feb 20 2018 */

Formula

E.g.f.: (LambertW(exp(x)*(x+y*(1+x)^2))-x)/(1+x). - Vladeta Jovovic, Nov 19 2003
a(n) = B(n)*(1+x)^(2*n-1), where B(1) = 1/(1+x), and for n>=2, B(n) = -(n!/(1+x)^n)*Sum_{m=1..n-1} (B(m)/m!)*Sum_{j=1..m} (-1)^(m-j)*binomial(m,j)*Sum_{i=0..n} j^(n-i)*binomial(j,i)*x^(m-i)/(n-i)!. - Vladimir Kruchinin, Apr 07 2011
Recurrence equation: T(n+1,k) = -n*T(n,k-1) - (3*n-k-1)*T(n,k) + (k+1)*T(n,k+1). - Peter Bala, Jul 22 2012
T(n,m) = Sum_{j=0..m} C(2*n+1,m-j)*(Sum_{k=0..j} (n+k+1)^(n+j)*(-1)^(n+k)/((j-k)!*k!)). - Vladimir Kruchinin, Feb 20 2018

A061356 Triangle read by rows: T(n, k) is the number of labeled trees on n nodes with maximal node degree k (0 < k < n).

Original entry on oeis.org

1, 2, 1, 9, 6, 1, 64, 48, 12, 1, 625, 500, 150, 20, 1, 7776, 6480, 2160, 360, 30, 1, 117649, 100842, 36015, 6860, 735, 42, 1, 2097152, 1835008, 688128, 143360, 17920, 1344, 56, 1, 43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
Offset: 2

Views

Author

Olivier Gérard, Jun 07 2001

Keywords

Comments

Essentially the coefficients of the Abel polynomials (A137452). - Peter Luschny, Jun 12 2022
This is a formula from Comtet, Theorem F, vol. I, p. 81 (French edition) used in proving Theorem D.
If we let N = n+1, binomial(N-2, k-1)*(N-1)^(N-k-1) = binomial(n-1, k-1)*n^(n-k), so this sequence with offset 1,1 also gives the number of rooted forests of k trees over [n]. - Washington Bomfim, Jan 09 2008
Let S(n,k) be the signed triangle, S(n,k) = (-1)^(n-k)T(n,k), which starts 1, -2, 1, 9, -6, 1, ..., then the inverse of S is the triangle of idempotent numbers A059298. - Peter Luschny, Mar 13 2009
With offset 1 also number of labeled multigraphs of k components, n nodes, and no cycles except one loop in each component. See link below to have a picture showing the bijection between rooted forests and multigraphs of this kind. (Note that there are no labels in the picture, but the bijection remains true if we label the nodes.) - Washington Bomfim, Sep 04 2010
With offset 1, T(n,k) is the number of forests of rooted trees on n nodes with exactly k (rooted) trees. - Geoffrey Critzer, Feb 10 2012
Also the Bell transform of the sequence (n+1)^n (A000169(n+1)) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016
Abel polynomials A(n,x) = x*(x+n)^(n-1) satisfy d/dx A(n,x) = n*A(n-1,x+1). - Michael Somos, May 10 2024
Also, T(n,k) is the number of parking functions with k ties. - Kyle Celano, Aug 18 2025

Examples

			Triangle begins
    1;
    2,     1;
    9,     6,     1;
   64,    48,    12,    1;
  625,   500,   150,   20,    1;
 7776,  6480,  2160,  360,   30,    1;
 ...
From _Peter Bala_, Sep 21 2012: (Start)
O.g.f.'s for the diagonals begin:
1/(1-x) = 1 + x + x^2 + x^3 + ...
2*x/(1-x)^3 = 2 + 6*x + 12*x^3 + ... A002378(n+1)
(9+3*x)/(1-x)^5 = 9 + 48*x + 150*x^2 + ... 3*A004320(n+1)
The numerator polynomials are the row polynomials of A155163.
(End)
		

References

  • L. Comtet, Analyse Combinatoire, P.U.F., Paris 1970. Volume 1, p 81.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974.

Crossrefs

Variant of A137452.
First diagonal is A002378.
Row sums give A000272.
Cf. A028421, A059297, A139526 (row reverse), A155163, A202017.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0,...) as column 0 to the triangle.
    BellMatrix(n -> (n+1)^n, 12); # Peter Luschny, Jan 21 2016
  • Mathematica
    nn = 7; t = Sum[n^(n - 1)  x^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y t], {x, 0, nn}], {x, y}], 1]] // Flatten  (* Geoffrey Critzer, Feb 10 2012 *)
    T[n_, m_] := T[n, m] = Binomial[n, m]*Sum[m^k*T[n-m, k], {k, 1, n-m}]; T[n_, n_] = 1; Table[T[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *)
    Table[Binomial[n - 2, k - 1]*(n - 1)^(n - k - 1), {n, 2, 12}, {k, 1, n - 1}] // Flatten (* G. C. Greubel, Nov 12 2017 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 10;
    M = BellMatrix[(# + 1)^#&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Maxima
    create_list(binomial(n,k)*(n+1)^(n-k),n,0,20,k,0,n); /* Emanuele Munarini, Apr 01 2014 */
    
  • PARI
    for(n=2,11, for(k=1,n-1, print1(binomial(n-2, k-1)*(n-1)^(n-k-1), ", "))) \\ G. C. Greubel, Nov 12 2017
  • Sage
    # uses[bell_matrix from A264428]
    # Adds (1,0,0,0,...) as column 0 to the triangle.
    bell_matrix(lambda n: (n+1)^n, 12) # Peter Luschny, Jan 21 2016
    

Formula

T(n, k) = binomial(n-2, k-1)*(n-1)^(n-k-1).
E.g.f.: (-LambertW(-y)/y)^(x+1)/(1+LambertW(-y)). - Vladeta Jovovic
From Peter Bala, Sep 21 2012: (Start)
Let T(x) = Sum_{n >= 0} n^(n-1)*x^n/n! denote the tree function of A000169. E.g.f.: F(x,t) := exp(t*T(x)) - 1 = -1 + {T(x)/x}^t = t*x + t*(2 + t)*x^2/2! + t*(9 + 6*t + t^2)*x^3/3! + ....
The compositional inverse with respect to x of (1/t)*F(x,t) is the e.g.f. for a signed version of the row reverse of A028421.
The row generating polynomials are the Abel polynomials A(n,x) = x*(x+n)^(n-1) for n >= 1.
Define B(n,x) = x^n/(1+n*x)^(n+1) = (-1)^n*A(-n,-1/x) for n >= 1. The k-th column entries are the coefficients in the formal series expansion of x^k in terms of B(n,x). For example, Col. 1: x = B(1,x) + 2*B(2,x) + 9*B(3,x) + 64*B(4,x) + ..., Col. 2: x^2 = B(2,x) + 6*B(3,x) + 48*B(4,x) + 500*B(5,x) + ... Compare with A059297.
n-th row sum = A000272(n+1).
Row reverse triangle is A139526.
The o.g.f.'s for the diagonals of the triangle are the rational functions R(n,x)/(1-x)^(2*n+1), where R(n,x) are the row polynomials of A155163. See below for examples.
(End)
T(n,m) = C(n,m)*Sum_{k=1..n-m} m^k*T(n-m,k), T(n,n) = 1. - Vladimir Kruchinin, Mar 31 2015

A105784 Number of different forests of unrooted trees, without isolated vertices, on n labeled nodes.

Original entry on oeis.org

0, 1, 3, 19, 155, 1641, 21427, 334377, 6085683, 126745435, 2975448641, 77779634571, 2241339267037, 70604384569005, 2414086713172695, 89049201691604881, 3525160713653081279, 149075374211881719939, 6707440248292609651513, 319946143503599791200675
Offset: 1

Views

Author

Washington Bomfim, Apr 21 2005

Keywords

Comments

Number of labeled acyclic graphs covering n vertices. The unlabeled version is A144958. This is the covering case A001858. The connected case is A000272. - Gus Wiseman, Apr 28 2024

Examples

			a(4) = 19 because there are 19 different such forests on 4 labeled nodes: 4^2 are trees, 3 have two trees and none can have more than two trees.
From _Gus Wiseman_, Apr 28 2024: (Start)
Edge-sets of the a(2) = 1 through a(4) = 19 forests:
    12    12,13    12,34
          12,23    13,24
          13,23    14,23
                   12,13,14
                   12,13,24
                   12,13,34
                   12,14,23
                   12,14,34
                   12,23,24
                   12,23,34
                   12,24,34
                   13,14,23
                   13,14,24
                   13,23,24
                   13,23,34
                   13,24,34
                   14,23,24
                   14,23,34
                   14,24,34
(End)
		

Crossrefs

The connected case is A000272, rooted A000169.
This is the covering case of A001858, unlabeled A005195.
The unlabeled version is A144958.
For triangles instead of cycles we have A372168, covering case of A213434.
For a unique cycle we have A372195, covering case of A372193.
A002807 counts cycles in a complete graph.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A372170 counts simple graphs by triangles, covering A372167.

Programs

  • Maple
    b:= n-> add(add(binomial(m, j) *binomial(n-1, n-m-j)
            *n^(n-m-j) *(m+j)!/ (-2)^j, j=0..m)/m!, m=0..n):
    a:= n-> add(b(k) *(-1)^(n-k) *binomial(n, k), k=0..n):
    seq(a(n), n=1..17);  # Alois P. Heinz, Sep 10 2008
  • Mathematica
    Unprotect[Power]; 0^0 = 1; b[n_] := Sum[Sum[Binomial[m, j]*Binomial[n-1, n -m-j]*n^(n-m-j)*(m+j)!/(-2)^j, {j, 0, m}]/m!, {m, 0, n}]; a[n_] := Sum[ b[k]*(-1)^(n-k)*Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

Formula

a(n)= sum N/D over all the partitions of n: 1K1 + 2K2 + ... + nKn, with smallest part greater than 1, where N = n!*Product_{i=1..n}i^((i-2)Ki) and D = Product_{i=1..n}(Ki!(i!)^Ki).
Inverse binomial transform of A001858. E.g.f.: exp(-x-LambertW(-x) -LambertW(-x)^2/2). - Vladeta Jovovic, Apr 22 2005
a(n) ~ exp(-exp(-1)+1/2) * n^(n-2). - Vaclav Kotesovec, Aug 16 2013

A167008 a(n) = Sum_{k=0..n} C(n,k)^k.

Original entry on oeis.org

1, 2, 4, 14, 106, 1732, 66634, 5745700, 1058905642, 461715853196, 461918527950694, 989913403174541980, 5009399946447021173140, 60070720443204091719085184, 1548154498059133199618813305334, 92346622775540905956057053976278584
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2009

Keywords

Comments

Row sums of A219206.

Crossrefs

Programs

  • Haskell
    a167008 = sum . a219206_row  -- Reinhard Zumkeller, Feb 27 2015
    
  • Magma
    [(&+[Binomial(n,j)^j: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
    
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n, k]^k, {k,0,n}], {n,20}]}]
    (* Program for numerical value of the limit a(n)^(1/n^2) *) (1-r)^(-r/2)/.FindRoot[(1-r)^(2*r-1)==r^(2*r),{r,1/2},WorkingPrecision->100] (* Vaclav Kotesovec, Dec 12 2012 *)
    Total/@Table[Binomial[n,k]^k,{n,0,20},{k,0,n}] (* Harvey P. Dale, Oct 19 2021 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)^k)
    
  • SageMath
    [sum(binomial(n,j)^j for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022

Formula

Limit_{n->oo} a(n)^(1/n^2) = (1-r)^(-r/2) = 1.533628065110458582053143..., where r = A220359 = 0.70350607643066243... is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Dec 12 2012

A181555 a(n) = A002110(n)^n.

Original entry on oeis.org

1, 2, 36, 27000, 1944810000, 65774855015100000, 733384949590939374729000000, 9037114296609938214167920266348510000000, 78354300210436852307898467208663359164858967744100000000
Offset: 0

Views

Author

Matthew Vandermast, Oct 31 2010

Keywords

Comments

For n>0, a(n)= first counting number whose prime signature consists of n repeated n times (cf. A002024). Subsequence of A025487.

Examples

			a(4) = 1944810000 = 210^4 = 2^4 * 3^4 * 5^4 * 7^4.
		

Crossrefs

A061742(n) = A002110(n)^2. See also A006939, A066120, A166475, A167448.
A000005(a(n)) = A000169(n). The divisors of a(n) appear as the first A000169(n) terms of A178479, with A178479(A000169(n)) = a(n).
A071207(n, k) gives the number of divisors of n with (n-k) distinct prime factors, A181567(n, k) gives the number of divisors of n with k prime factors counted with multiplicity.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Product[Prime[i], {i, 1, n}]^n; Array[a, 9, 0] (* Amiram Eldar, Aug 08 2019 *)

Formula

a(n) = A079474(2n,n). - Alois P. Heinz, Aug 22 2019

A275550 Number of classes of endofunctions of [n] under reversal and complement to n+1.

Original entry on oeis.org

1, 1, 2, 10, 72, 819, 11772, 206572, 4196352, 96871525, 2500050000, 71328400806, 2229026605056, 75718793541895, 2778001759096256, 109473473278652344, 4611686020574871552, 206810065502975099529
Offset: 0

Views

Author

Olivier Gérard, Aug 01 2016

Keywords

Comments

Possible classes size are 1,2,4
n 1 2 4
-----------------
1 1 0 0
2 0 2 0
3 1 5 4
4 0 16 56
5 1 74 744
6 0 216 11556
7 1 1371 205200.
Classes of size 2 can be further decomposed by whether the function is stable by reversal or stable by (reversal and complement).
n 2 2-r 2-rc
-----------------
1 0 0 0
2 2 1 1
3 5 4 1
4 16 8 8
5 74 62 12
6 216 108 108
7 1371 1200 171.

Crossrefs

Cf. A000312 All endofunctions
Cf. A000169 Classes under translation mod n
Cf. A001700 Classes under sort
Cf. A056665 Classes under rotation
Cf. A168658 Classes under complement to n+1
Cf. A130293 Classes under translation and rotation
Cf. A081721 Classes under rotation and reversal
Cf. A275549 Classes under reversal
Cf. A275550 Classes under reversal and complement
Cf. A275551 Classes under translation and reversal
Cf. A275552 Classes under translation and complement
Cf. A275553 Classes under translation, complement and reversal
Cf. A275554 Classes under translation, rotation and complement
Cf. A275555 Classes under translation, rotation and reversal
Cf. A275556 Classes under translation, rotation, complement and reversal
Cf. A275557 Classes under rotation and complement
Cf. A275558 Classes under rotation, complement and reversal
Cf. A192396 floor(((k+1)^n-(1+(-1)^k)/2)/2)
Cf. A275574 (2-r classes)

Programs

  • Mathematica
    Table[1/8 (1+(-1)^(1+n)+2 n^n+n^Floor[n/2] (3+(-1)^(n+1) (-1+n)+n)),{n,1,17}]
  • PARI
    a(n) = (1+(-1)^(n+1)+2*n^n+(3+((-1)^(n+1))*(n-1)+n)*n^(floor(n/2)) )/8; \\ Andrew Howroyd, Sep 30 2017

Formula

a(n) = (1+(-1)^(n+1)+2*n^n+(3+((-1)^(n+1))*(n-1)+n)*n^(floor(n/2)) )/8.
Classes of size 2: (2 (-1 + (-1)^n) + n^floor(n/2)*(3 + ((-1)^(1 + n))* (-1 + n) + n))/4.

Extensions

Duplicate a(7) removed by Andrew Howroyd, Sep 30 2017

A343658 Array read by antidiagonals where A(n,k) is the number of ways to choose a multiset of k divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 6, 2, 1, 1, 6, 5, 10, 3, 4, 1, 1, 7, 6, 15, 4, 10, 2, 1, 1, 8, 7, 21, 5, 20, 3, 4, 1, 1, 9, 8, 28, 6, 35, 4, 10, 3, 1, 1, 10, 9, 36, 7, 56, 5, 20, 6, 4, 1, 1, 11, 10, 45, 8, 84, 6, 35, 10, 10, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2021

Keywords

Comments

First differs from A343656 at A(4,2) = 6, A343656(4,2) = 5.
As a triangle, T(n,k) = number of ways to choose a multiset of n - k divisors of k.

Examples

			Array begins:
       k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
  n=1:  1   1   1   1   1   1   1   1   1
  n=2:  1   2   3   4   5   6   7   8   9
  n=3:  1   2   3   4   5   6   7   8   9
  n=4:  1   3   6  10  15  21  28  36  45
  n=5:  1   2   3   4   5   6   7   8   9
  n=6:  1   4  10  20  35  56  84 120 165
  n=7:  1   2   3   4   5   6   7   8   9
  n=8:  1   4  10  20  35  56  84 120 165
  n=9:  1   3   6  10  15  21  28  36  45
Triangle begins:
   1
   1   1
   1   2   1
   1   3   2   1
   1   4   3   3   1
   1   5   4   6   2   1
   1   6   5  10   3   4   1
   1   7   6  15   4  10   2   1
   1   8   7  21   5  20   3   4   1
   1   9   8  28   6  35   4  10   3   1
   1  10   9  36   7  56   5  20   6   4   1
   1  11  10  45   8  84   6  35  10  10   2   1
For example, row n = 6 counts the following multisets:
  {1,1,1,1,1}  {1,1,1,1}  {1,1,1}  {1,1}  {1}  {}
               {1,1,1,2}  {1,1,3}  {1,2}  {5}
               {1,1,2,2}  {1,3,3}  {1,4}
               {1,2,2,2}  {3,3,3}  {2,2}
               {2,2,2,2}           {2,4}
                                   {4,4}
Note that for n = 6, k = 4 in the triangle, the two multisets {1,4} and {2,2} represent the same divisor 4, so they are only counted once under A343656(4,2) = 5.
		

Crossrefs

Row k = 1 of the array is A000005.
Column n = 4 of the array is A000217.
Column n = 6 of the array is A000292.
Row k = 2 of the array is A184389.
The distinct products of these multisets are counted by A343656.
Antidiagonal sums of the array (or row sums of the triangle) are A343661.
A000312 = n^n.
A009998(n,k) = n^k (as an array, offset 1).
A007318 counts k-sets of elements of {1..n}.
A059481 counts k-multisets of elements of {1..n}.

Programs

  • Mathematica
    multchoo[n_,k_]:=Binomial[n+k-1,k];
    Table[multchoo[DivisorSigma[0,k],n-k],{n,10},{k,n}]
  • PARI
    A(n,k) = binomial(numdiv(n) + k - 1, k)
    { for(n=1, 9, for(k=0, 8, print1(A(n,k), ", ")); print ) } \\ Andrew Howroyd, Jan 11 2024

Formula

A(n,k) = ((A000005(n), k)) = A007318(A000005(n) + k - 1, k).
T(n,k) = ((A000005(k), n - k)) = A007318(A000005(k) + n - k - 1, n - k).

A369192 Number of labeled simple graphs with n vertices and at most n edges (not necessarily covering).

Original entry on oeis.org

1, 1, 2, 8, 57, 638, 9949, 198440, 4791323, 135142796, 4346814276, 156713948672, 6251579884084, 273172369790743, 12969420360339724, 664551587744173992, 36543412829258260135, 2146170890448154922648, 134053014635659737513358, 8872652968135849629240560
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Examples

			The a(0) = 1 through a(3) = 8 graphs:
  {}  {}  {}       {}
          {{1,2}}  {{1,2}}
                   {{1,3}}
                   {{2,3}}
                   {{1,2},{1,3}}
                   {{1,2},{2,3}}
                   {{1,3},{2,3}}
                   {{1,2},{1,3},{2,3}}
		

Crossrefs

The version for loop-graphs is A066383, covering A369194.
The case of equality is A116508, covering A367863, also A367862.
The connected case is A129271, unlabeled A005703.
The covering case is A369191, minimal case A053530.
Counting only covered vertices gives A369193.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable graphs, covering A367869.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=n&]],{n,0,5}]
  • Python
    from math import comb
    def A369192(n): return sum(comb(comb(n,2),k) for k in range(n+1)) # Chai Wah Wu, Jul 14 2024

Formula

a(n) = Sum_{k=0..n} binomial(binomial(n,2),k).

A372195 Number of labeled simple graphs covering n vertices with a unique undirected cycle of length > 2.

Original entry on oeis.org

0, 0, 0, 1, 15, 232, 3945, 75197, 1604974, 38122542, 1000354710, 28790664534, 902783451933, 30658102047787, 1121532291098765, 43985781899812395, 1841621373756094796, 82002075703514947236, 3869941339069299799884, 192976569550677042208068, 10139553075163838030949495
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2024

Keywords

Comments

An undirected cycle in a graph is a sequence of distinct vertices, up to rotation and reversal, such that there are edges between all consecutive elements, including the last and the first.

Examples

			The a(4) = 15 graphs:
  12,13,14,23
  12,13,14,24
  12,13,14,34
  12,13,23,24
  12,13,23,34
  12,13,24,34
  12,14,23,24
  12,14,23,34
  12,14,24,34
  12,23,24,34
  13,14,23,24
  13,14,23,34
  13,14,24,34
  13,23,24,34
  14,23,24,34
		

Crossrefs

For no cycles we have A105784 (for triangles A372168, non-covering A213434), unlabeled A144958 (for triangles A372169).
Counting triangles instead of cycles gives A372171 (non-covering A372172), unlabeled A372174 (non-covering A372194).
The unlabeled version is A372191, non-covering A236570.
The non-covering version is A372193, column k = 1 of A372176.
A000088 counts unlabeled graphs, labeled A006125.
A001858 counts acyclic graphs, unlabeled A005195.
A002807 counts cycles in a complete graph.
A006129 counts labeled graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.
A372167 counts covering graphs by triangles (non-covering A372170), unlabeled A372173 (non-covering A263340).

Programs

  • Mathematica
    cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations/@Subsets[Union@@y,{k}],And@@Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&],{k,3,Length[y]}],Min@@#==First[#]&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[cyc[#]]==2&]],{n,0,5}]
  • PARI
    seq(n)={my(w=lambertw(-x+O(x*x^n))); Vec(serlaplace(exp(-w-w^2/2-x)*(-log(1+w)/2 + w/2 - w^2/4)), -n-1)} \\ Andrew Howroyd, Jul 31 2024

Formula

Inverse binomial transform of A372193. - Andrew Howroyd, Jul 31 2024

Extensions

a(7) onwards from Andrew Howroyd, Jul 31 2024
Previous Showing 81-90 of 382 results. Next